A NOTE ON BAKER'S METHOD

K. RAMACHANDRA

(Received 3 June 1968)

1. Introduction

Let $\alpha_{1}, \cdots, \alpha_{n}(n \geqq 2)$ be (fixed) multiplicatively independent non zero algebraic numbers and set $M(H)=\min \left|\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}\right|$ the minimum taken over all algebraic numbers $\beta_{1}, \cdots, \beta_{n}$ not all equal to zero, of degrees not exceeding a fixed natural number d_{0}, and heights not exceeding an arbitrary natural number H. Then an important result [1] of Baker states that $M(H)>A e^{-(\log H)^{n+1+\varepsilon}}$ for every fixed $\varepsilon>0$ and an explicit constant $A=A\left(\alpha_{1}, \cdots, \alpha_{n}, d_{0}, \varepsilon\right)$. It may be remarked that Baker deduces his general result from the special case where β_{n} is fixed to be -1 . The following straight forward generalization might be of some interest since it shows that the exponent $n+1+\varepsilon$ need not be the best, and that the best exponent obtainable by his method has some chance of being $1+\varepsilon$ (see the corollary to the Theorem).

Theorem. Let $\alpha_{1}, \cdots, \alpha_{n+f}(n \geqq 1, f \geqq 1)$ be (fixed) multiplicatively independent non-zero algebraic numbers and set

$$
M\left(H, \alpha_{n+i}\right)=\min \left|\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}-\log \alpha_{n+i}\right|, \quad(i=1, \cdots, f),
$$

the minimum taken over all algebraic numbers $\beta_{1}, \cdots, \beta_{n}$ of degrees not exceeding a fixed natural number d_{0}, and heights not exceeding an arbitrary natural number H. Then there holds

$$
\sum_{i=1}^{f} M\left(H, \alpha_{n+i}\right)>A e^{-(\log H)^{(n+1) / f^{+1+\varepsilon}}}
$$

with an explicit positive constant $A=A\left(\alpha_{1}, \cdots, \alpha_{n+f}, d_{0}, \varepsilon\right)$.
Corollary. Given $\alpha_{1}, \cdots, \alpha_{n}$ as in the theorem and an $\varepsilon>0$, there exists an algebraic number α_{n+1} for which $M\left(H, \alpha_{n+1}\right)$ exceeds $A e^{-(\log H)^{2+e}}$ for infinitely many H, with an explicit positive constant

$$
A=A\left(\alpha_{1}, \cdots, \alpha_{n+1}, d_{0}, \varepsilon\right)
$$

The corollary follows from the theorem on making f large and using Dirichlet's box principle. The author is thankful to Professors A. Baker, K. Mahler, K. G. Ramanathan and C. L. Siegel for encouragement.

2. Proof of the theorem

We begin by stating
Lemma (Generalization of Siegel's, [2] pp. 35-38). Suppose that the coefficients of the linear forms $y_{k}=a_{k 1} x_{1}+\cdots+a_{k q} x_{q}(k=1$ to $p, p<q)$ are integers in an algebraic number field K of degree d and $\left|\overline{a_{k l}}\right| \leqq A(\geqq 1)$. Then there exist rational integers x_{1}, \cdots, x_{q} not all zero, satisfying $y_{1}=0, \cdots, y_{p}=0$ such that

$$
\left|x_{k}\right|<1+(2 q A)^{(p d(d+1)) /(2 q-p d(d+1))} \quad k=1, \cdots, q
$$

provided $2 q>p d(d+1)$.
The proof of the lemma consists of an estimation of the number of algebraic numbers of bounded height and degree and will be left as an exercise to the reader.

Let us write $\alpha_{n+i}=\alpha_{1}^{\beta_{i 1}} \cdots \alpha_{n}^{\beta_{i n}} e^{\beta_{i}}(i=1, \cdots, f)$ where $\left\|\beta_{i j}\right\|$ is an $f \times n$ matrix of algebraic numbers and $\left|\beta_{i}\right|$ are all small say all $\leqq 1 / e$ and so $e^{\beta_{i}}=1+\beta_{i} \gamma_{i}$ where

$$
\left|\gamma_{i}\right|=\left|1+\frac{\beta_{i}}{2!}+\frac{\beta_{i}^{2}}{3!}+\cdots\right| \leqq e
$$

For a natural number N we have also $e^{\beta_{i} N}=1+\beta_{i} \gamma_{i}^{\prime}$ where

$$
\left|\gamma_{i}^{\prime}\right|=\left|\frac{1}{\beta_{i}}\left\{\left(1+\beta_{i} \gamma_{i}\right)^{N}-1\right\}\right|=\left|\gamma_{i}\right|\left|\sum_{\nu=1}^{N}\binom{N}{v}\left(\beta_{i} \gamma_{i}\right)^{\nu-1}\right| \leqq 2^{N} e
$$

We shall fix $\left|\beta_{i}\right|$ to be much smaller later. We shall write $S_{i}=\max _{j} \operatorname{size}\left(\beta_{j i}\right)$, $S=\max _{i} S_{i}$ (by size (α) for any algebraic number α we mean $d(\alpha)+\alpha$ where $d(\alpha)$ is the least natural number for which $\alpha d(\alpha)$ is an algebraic integer. The notation α denotes maximum of the absolute values of the conjugates of α). We introduce the fundamental function

$$
\begin{align*}
\Phi\left(z_{1}, \cdots, z_{n}\right) & =\sum_{\lambda=0}^{L} p(\lambda) \alpha_{1}^{\gamma_{1} z_{1}} \cdots \alpha_{n}^{\gamma_{n} z_{n} 1} \quad \text { where } \tag{1}\\
\gamma_{i} & =\lambda_{i}+\lambda_{n+1} \beta_{1 i}+\cdots+\lambda_{n+f} \beta_{f i} \quad(i=1, \cdots, n)
\end{align*}
$$

with an estimate for the rational integers $p(\lambda)=p\left(\lambda_{1}, \cdots, \lambda_{n+f}\right)$ not all zero, to be specified immediately. We shall see that

$$
\begin{equation*}
\sum_{\underline{\lambda}=0}^{L} p(\underline{\lambda}) \alpha_{1}^{\lambda_{1} l} \cdots \alpha_{n+f}^{\lambda_{n+f} l} \gamma_{1}^{m_{1}} \cdots \gamma_{n}^{m_{n}}=0, \quad\binom{1 \leqq l \leqq h}{0 \leqq m_{1}+\cdots+m_{n} \leqq k} \tag{2}
\end{equation*}
$$

with h and k large and $|p(\underset{\sim}{\lambda})|$ small. This will be done by the lemma above. We have i) number of equations $\leqq h(k+1)^{n}$; ii) number of unknowns

[^0]$=(L+1)^{n+f}>L^{n+f}$ and iii) estimate for the size of the coefficients $\leqq C_{1}^{L h}\left(C_{2} S L\right)^{f k}$ where $C_{1}=\left(\max _{i=1, \cdots, n+f} \text { size }\left(\alpha_{i}\right)\right)^{n+f}$ and $C_{2}=2$ (because size $\left.\gamma_{i}=d\left(\gamma_{i}-\lambda_{i}\right)+\mid \gamma_{i}-\lambda_{i}+\lambda_{i} \leqq \operatorname{size}\left(\gamma_{i}-\lambda_{i}\right)+L \leqq(S L)^{f}+L \leqq(2 S L)^{f}\right)$. So under the condition
\[

$$
\begin{equation*}
L^{n+f} \geqq h(k+1)^{n} d(d+1) \tag{3}
\end{equation*}
$$

\]

(where d is the degree of the number field obtained by adjoining $\alpha_{1}, \cdots, \alpha_{n+f}$ and $\beta_{j i}(j=1, \cdots, n ; i=1, \cdots, f)$ to the rationals), the conditions (2) are all satisfied with

$$
\begin{equation*}
|p(\underline{\lambda})| \leqq 2\left(2(L+1)^{n+f} C_{1}^{2 L h}\left(C_{2} S L\right)^{2 f k}\right)<C_{3}^{L n+k}(S L)^{2 f k} \tag{4}
\end{equation*}
$$

where since

$$
4(L+1)^{n+f} C_{1}^{2 L h} C_{2}^{2 f k} \leqq\left(C_{1}^{2} 8^{n+f}\right)^{L h}\left(C_{2}^{2 f}\right)^{k}, \quad C_{3}=\max \left(C_{1}^{2} 8^{n+f}, C_{2}^{2 f}\right)
$$

The rest of the argument is by induction. Suppose now that

$$
\begin{equation*}
\sum_{\underline{\lambda}=0}^{L} p(\underline{\lambda}) \alpha_{1}^{\lambda_{1} l} \cdots \alpha_{n+f}^{\lambda_{n+} l} \gamma_{1}^{m_{1}} \cdots \gamma_{n}^{m_{n}}=0 \quad\binom{1 \leqq l \leqq h_{1}(\geqq h)}{0 \leqq m_{1}+\cdots+m_{n} \leqq k_{1}(\leqq k)} \tag{5}
\end{equation*}
$$

Then we shall require β_{i} to be so small that

$$
\begin{equation*}
\sum_{\underline{\lambda}=0}^{L} p(\underline{\lambda}) \alpha_{1}^{\lambda_{1} l} \cdots \alpha_{n+f}^{\lambda_{n+f}^{l}} \gamma_{1}^{m_{1}} \cdots \gamma_{n}^{m_{n}}=0 \quad\binom{h_{1}<l \leqq h_{2}}{0 \leqq m_{1}+\cdots+m_{n} \leqq k_{2}\left(<k_{1}\right)} \tag{6}
\end{equation*}
$$

We now set

$$
\begin{equation*}
f(z)=\Phi_{m_{1}, \cdots, m_{n}}\left(z_{1}, \cdots, z_{n}\right)_{z_{1}=\cdots=z_{n}=z} \quad\left(0 \leqq m_{1}+\cdots+m_{n} \leqq k_{2}\right) \tag{7}
\end{equation*}
$$

and we have for $h_{1}<l \leqq h_{2}$

$$
\begin{align*}
f(l)= & \frac{1}{2 \pi i} \int_{|z|=4 h_{2}} \frac{f(z)}{z-l} \prod_{r=1}^{h_{1}}\left(\frac{l-r}{z-r}\right)^{k_{1}-k_{2}+1} d z \tag{8}\\
& -\frac{1}{2 \pi i} \sum_{r=1}^{n_{1}} \sum_{m=0}^{k_{1}-k_{2}} \frac{f^{(m)}(r)}{m!} \int_{|z-r|=\frac{1}{2}} \frac{(z-r)^{m}}{z-l} \prod_{r=1}^{h_{1}}\left(\frac{l-\gamma}{z-r}\right)^{k_{1}-k_{2}+1} d z .
\end{align*}
$$

This formula shows that $|f(l)|$ is considerably small, while $f(l)$ being apart from a power product of $\log \alpha_{1}, \cdots, \log \alpha_{n}$, very close to a non zero algebraic number, the assumption that $f(l) \neq 0$ leads to a lower bound for $|f(l)|$ which when $\beta=\max _{i}\left|\beta_{i}\right|$ is small, leads to a contradiction. We note the relation

$$
\begin{aligned}
f^{(m)}(r) & =\left(\frac{\partial}{\partial z_{1}}+\cdots+\frac{\partial}{\partial z_{n}}\right)^{m} \Phi_{m_{1}, \cdots, m_{n}}\left(z_{1}, \cdots, z_{n}\right)_{z_{1}=\cdots=z_{n}=r} \\
& =\sum_{j_{1}+\cdots+j_{n}=m} \frac{m!}{j_{1}!\cdots j_{n}!} \Phi_{m_{1}+j_{1}, \cdots, m_{n}+j_{n}}(r, \cdots, r)
\end{aligned}
$$

and the fact that $\left(m_{1}+j_{1}\right)+\cdots+\left(m_{n}+j_{n}\right) \leqq k_{2}+k_{1}-k_{2}=k_{1}$.

We now split up the proof into five parts $\left(C_{1}, C_{2}, \cdots\right.$ will denote constants $\geqq 2$).

1. Upper estimate for $f^{(m)}(r)$. Now for all l and m_{1}, \cdots, m_{n}

$$
\begin{gathered}
\Phi_{m_{1}, \cdots, m_{n}}(l, \cdots, l)=\left(\log \alpha_{1}\right)^{m_{1}} \cdots\left(\log \alpha_{n}\right)^{m_{n}} \sum_{\lambda=0}^{L} p(\underline{\lambda}) \alpha_{1}^{\lambda_{1} l} \cdots \alpha_{n+f}^{\lambda_{n+7} l} \\
\times e^{-\beta_{1} \lambda_{n+1} l} \cdots e^{-\beta_{t} \lambda_{n+1} l} \gamma_{1}^{m_{1}} \cdots \gamma_{n}^{m_{n} .}
\end{gathered}
$$

We use $e^{-\beta_{i} \lambda_{n+i} l}=1+\gamma_{i}^{\prime} \beta_{i}$ with $\left|\gamma_{i}^{\prime}\right| \leqq e 2^{\lambda_{n+i} l}$ and so since $\left|\beta_{i}\right| \leqq(1 / e)$, we have for natural numbers N_{1}, \cdots, N_{f}

$$
\begin{aligned}
\mid e^{\beta_{1} N_{1}+\cdots+\beta_{f} N_{f}-1}-1 & =\left|\prod_{i=1}^{k}\right|\left(\left(e^{\beta_{i} N_{i}}-1\right)+1\right)-1 \mid \\
& =\sum_{\substack{e_{1}, \cdots, e_{e}=0,1 \\
\text { not all the } e^{\prime} \mathrm{s}=0}}\left|\prod_{i=1}^{f}\left(e^{\beta_{i} N_{i}}-1\right)\right|^{e_{i}} \leqq \sum_{\substack{e_{1}, \cdots, e_{e}=0,1 \\
\text { not all the } e^{\prime} \mathrm{s}=0}} \prod_{i=1}^{f}\left(\left|\beta_{i}\right| e 2^{N_{i}}\right)^{e_{i}} \\
& \leqq \beta \prod_{i=1}^{f}\left(1+e 2^{N_{i}}\right) \leqq \beta \times 7^{N_{1}+N_{2}+\cdots+N_{f}}
\end{aligned}
$$

where $\beta=\max _{i=1 \text { to } f}\left|\beta_{i}\right|$.
Hence (5) gives for $1 \leqq r \leqq h_{1}$ and $0 \leqq j_{1}+\cdots j_{n} \leqq k_{1}-k_{2}$,

$$
\begin{aligned}
& \left|\Phi_{m_{1}+j_{1}, \cdots, m_{n}+\xi_{n}}(r, \cdots, r)\right| \\
& \quad=\mid\left(\log \alpha_{1}\right)^{m_{1}+j_{1}} \cdots\left(\log \alpha_{n}\right)^{m_{n}+j_{n}} \sum_{\lambda=0}^{L} p(\lambda) \alpha_{1}^{\lambda_{1} r} \cdots \alpha_{n+f}^{\lambda_{n+\prime} r} \\
& \\
& \quad \times\left(e^{\left.-\beta_{1} \lambda_{n+1} r-\cdots-\beta_{r} \lambda_{n+f} r-1\right) \gamma_{1}^{m_{1}+j_{1}} \cdots \gamma_{n}^{m_{n}+\xi_{n}} \mid}\right. \\
& \quad \leqq \beta(L+1)^{n+f} C_{3}^{L h+k}(S L)^{2 f k} C_{1}^{L h_{1}} 7^{f L h_{1}}\left(C_{2} S L\right)^{f k_{2}} C_{4}^{k_{1}}
\end{aligned}
$$

where $\quad C_{4}=\max _{i=1, \cdots, m}\left(1+\left|\log \alpha_{i}\right|\right)$,

$$
\leqq \beta C_{6}^{L h_{1}+k}(S L)^{f k_{1}+2 f k} \quad \text { where } \quad C_{6}^{L h_{1}+k} \geqq C_{2}^{f k_{1}} C_{3}^{L h_{1}+k} C_{4}^{k} C_{5}^{L h_{1}} 2^{L(n+f)},
$$

$$
C_{5}=7^{f} C_{1} \text { i.e. we may set } C_{6}=2^{n+f} C_{2}^{f} C_{3} C_{4} C_{5}
$$

So we have

$$
\begin{align*}
\left|f^{(m)}(r)\right| & \leqq n^{m} \beta C_{6}^{L n_{1}+k}(S L)^{f\left(k_{1}+2 k\right)} \\
& \leqq \beta C_{7}^{L h_{1}+k}(S L)^{3 / k} \quad \text { with } \quad C_{7}=n C_{6} . \tag{9}
\end{align*}
$$

2. Estimate for max $|f(z)|$ on $|z|=4 h_{2}$

$$
\begin{aligned}
f(z) & =\left(\log \alpha_{1}\right)^{m_{1}} \cdots\left(\log \alpha_{n}\right)^{m_{n}} \sum_{\underline{\lambda}=0}^{L} p(\underline{\lambda}) \alpha_{1}^{\lambda_{1} z} \cdots \alpha_{n+f}^{\lambda_{n+1}^{z}} \\
& \times e^{-\beta_{1} \lambda_{n+1} z \cdots e^{-\beta_{f} \lambda_{n+1} z} \gamma_{1}^{m_{1}} \cdots \gamma_{n}^{m_{n}}}
\end{aligned}
$$

and so

$$
\begin{align*}
\max _{|z|=4 h_{2}}|f(z)| & \leqq(L+1)^{n+f} C_{3}^{L h+k}(S L)^{2 f k} C_{8}^{L h_{2}}\left(C_{2} S L\right)^{f k_{2}} C_{4}^{k_{2}} \text { with } C_{8}=C_{1}^{8}, \\
& \leqq C_{9}^{L h_{2}+k}(S L)^{3 f k} \quad \text { where } \tag{10}\\
C_{9}^{L h_{2}+k} & \geqq\left(C_{3} C_{8}\right)^{L h_{2}+k}\left(2^{n+f} C_{2}^{f} C_{4}\right)^{L h_{2}+k}
\end{align*}
$$

We fix $C_{9}=2^{n+f} C_{2}^{f} C_{3} C_{4} C_{8}$.
3. Lower estimate for $|f(l)|$ on the assumption that

$$
\theta=\sum_{\underline{\lambda}=0}^{L} p(\underline{\lambda}) \alpha_{1}^{\lambda_{1} l} \cdots \alpha_{n+f}^{\lambda_{n+f}} \gamma_{1}^{m_{1}} \cdots \gamma_{n}^{m_{n}} \neq 0 .
$$

we have

$$
\begin{aligned}
\mid\left(\log \alpha_{1}\right)^{-m_{n}} \cdots & \left(\log \alpha_{n}\right)^{-m_{n}} f(l)-\sum_{\lambda=0}^{L} p(\underline{\lambda}) \alpha_{1}^{\lambda_{1} l} \cdots \alpha_{n+f}^{\lambda_{n+} l} \gamma_{1}^{m_{1}} \cdots \gamma_{n}^{m_{n}} \mid \\
& \leqq \sum_{\underline{\lambda}=0}^{L}\left|p(\underline{\lambda}) \alpha_{1}^{\lambda_{1} l} \cdots \alpha_{n+f}^{\lambda_{n+f}^{l}} 7^{\lambda_{n+1} l+\cdots+\lambda_{n+f}^{l}} \gamma_{1}^{m_{1}} \cdots \gamma_{n}^{m_{n}}\right| \beta \\
& \leqq \beta(L+1)^{n+f} C_{3}^{L h+k}(S L)^{2 f k} C_{1}^{L h_{2}}\left(7^{f}\right)^{L h_{2}}\left(C_{2} S L\right)^{f k_{2}} \\
& \leqq \beta C_{6}^{L h_{2}+k}(S L)^{3 f k}
\end{aligned}
$$

since

$$
h_{1}<l \leqq h_{2} \text { and } m_{1}+\cdots+m_{n} \leqq k_{2}\left(<k_{1} \leqq k\right)
$$

Also $A \theta \neq 0$ is an algebraic integer for some natural number A,

$$
A \leqq C_{10}^{L h_{2}} S^{f k_{2}} \text { with } C_{10}=\left(\text { size } \alpha_{1}\right) \cdots\left(\text { size } \alpha_{n+f}\right)
$$

and

$$
|\theta| \leqq(L+1)^{n+f} C_{3}^{L h+k}(S L)^{2 f k} C_{10}^{L h_{2}}\left(C_{2} S L\right)^{f k_{\mathrm{e}}}
$$

Thus we have as usual (here d denotes the degree of θ)

$$
|\theta| \geqq A^{-d}|\theta|^{-(d-1)} \geqq A^{-d}\left\{(L+1)^{n+f} C_{3}^{L h+k}(S L)^{2 f k} C_{10}^{L h_{2}}\left(C_{2} S L\right)^{\left.f k_{2}\right\}^{-(d-1)}}\right.
$$

and so

$$
\begin{aligned}
|\theta| & \geqq\left\{C_{10}^{L h_{2}} S^{k_{2} f}(L+1)^{n+f} C_{3}^{L h+k}(S L)^{2 f k} C_{10}^{L h_{2}}\left(C_{2} S L\right)^{f k_{2}}\right\}^{-d} \\
& \geqq\left\{D_{11}^{L h_{2}+k}\right\}^{-1}(S L)^{-4 k f d} \text { where } D_{11}^{L h_{2}+k} \geqq\left(C_{3} C_{10}^{2} 2^{n+f} C_{2}^{f}\right)^{d\left(L h_{\mathbf{2}}+k\right)}
\end{aligned}
$$

and we may set $D_{11}=\left(C_{2}^{f} C_{3} C_{10}^{2} 2^{n+f}\right)^{d}$.
So we have the inequality

$$
\left|\left(\log \alpha_{1}\right)^{-m_{1}} \cdots\left(\log \alpha_{n}\right)^{-m_{n}} f(l)\right|>\left\{D_{11}^{L h_{2}+k}\right\}^{-1}(S L)^{-4 k f d}-\beta C_{6}^{L h_{2}+k}(S L)^{3 f k}
$$

and here the L.H.S. being $\leqq f(l)\left(1+\max _{i=1 \text { to } n}\left|\log \alpha_{i}\right|^{-1}\right)^{k}$ we can wite $C_{11}=D_{11}\left(1+\max _{i=1 \text { to } n}\left|\log \alpha_{i}\right|^{-1} \mid\right)$ and thus

$$
\begin{equation*}
|f(l)|>\left\{C_{11}^{L h_{2}+k}\right\}^{-1}(S L)^{-4 k f d}-\beta C_{6}^{L h_{2}+k}(S L)^{3 f k} \tag{11}
\end{equation*}
$$

4. An upper estimate for $|f(l)|$ in (8)

$$
\begin{aligned}
|f(l)|< & \frac{1}{2 \pi} \frac{2 \pi \cdot 4 h_{2}}{4 h_{2}-2 h_{2}} C_{9}^{L h_{2}+k}(S L)^{3 f k}\left(\frac{h_{2}}{4 h_{2}-2 h_{2}}\right)^{\left(k_{1}-k_{2}+1\right) h_{1}} \\
& +\frac{1}{2 \pi} h_{1}\left(k_{1}-k_{2}+1\right) \beta C_{7}^{L h_{1}+k}(S L)^{3 f k} 2 \pi \cdot \frac{1}{2}\left(2 h_{2}\right)^{h_{1}\left(k_{1}-k_{2}+1\right)} \cdot 2
\end{aligned}
$$

and so

$$
\begin{align*}
|f(l)|<2 C_{9}^{L h_{2}+k}(S L)^{3 f k} 2^{-h_{1}\left(k_{1}-k_{2}+1\right)} & +h_{1}\left(k_{1}-k_{2}\right) \beta C_{7}^{L h_{1}+k}(S L)^{3 f k} \\
& \times\left(2 h_{2}\right)^{h_{1}\left(k_{1}-k_{2}+1\right)} . \tag{12}
\end{align*}
$$

We now set $k_{2}=\left[k_{1} / 2\right]$ and so $2^{-h_{1}\left(k_{1}-k_{9}+1\right)}<2^{-\frac{1}{2} h_{1} k_{1}}$,

$$
\left(2 h_{2}\right)^{h_{1}\left(k_{1}-k_{2}+1\right)}<\left(2 h_{2}\right)^{n_{1}\left(\left(k_{1} / 2\right)+2\right)} \text { and } k_{1}-k_{2}<\frac{k_{1}}{2}+1
$$

5. Final step. In order to ensure that (6) holds we have to see that (11) and (12) contradict, i.e.

$$
\begin{aligned}
\left\{C_{11}^{L h_{2}+k}\right\}^{-1}(S L)^{-4 f k d} \geqq & 2 C_{9}^{L h_{2}+k}(S L)^{3 f k} 2^{-\frac{1}{2} h_{1} k_{1}}+\beta C_{8}^{L h_{2}+k}(S L)^{3 f k} \\
& +h_{1}\left(\frac{k_{1}}{2}+1\right) \beta C_{7}^{L h_{1}+k}(S L)^{3 f k}\left(2 h_{2}\right)^{h_{1}\left(\left(k_{1} / 2\right)+2\right)}
\end{aligned}
$$

i.e.

$$
\begin{aligned}
2^{\frac{1}{2} h_{1} k_{1}} \geqq & \left(2 C_{9} C_{11}\right)^{L h_{2}+k}(S L)^{(4 d+3) f k} \\
& +\beta\left(C_{6} C_{11}\right)^{L h_{2}+k}(S L)^{(4 d+3) f k} 2^{\frac{1}{2} h_{1} k_{1}} \\
& +\beta h_{1}\left(\frac{k_{1}}{2}+1\right)\left(C_{7} C_{11}\right)^{L h_{2}+k}(S L)^{(4 d+3)}\left(2 h_{2}\right)^{h_{1}\left(\left(k_{1} / 2\right)+2\right)} 2^{\frac{1}{2} h_{1} k_{1}}
\end{aligned}
$$

i.e. we have to satisfy some thing like

$$
\begin{equation*}
2^{\frac{1}{2} h_{1} k_{1}} \geqq C_{12}^{L h_{2}+k \log (S L)}\left\{1+\beta C_{13}^{h_{1} k_{1} \log h_{2}}\right\} \tag{13}
\end{equation*}
$$

where

$$
C_{12}^{L h_{2}+k \log (S L)} \geqq\left(C_{11} \max \left(3 C_{9}, C_{6}, C_{7}\right)\right)^{L h_{\mathbf{2}}+k+(4 d+3) f k \log (S L)}
$$

and since if

$$
L \geqq 2, k+(4 d+3) k f \log (S L) \leqq 2(4 d+3) k f(S L)
$$

we can take for example

$$
C_{12}=\left(C_{11}\left(3 C_{9}+C_{6}+C_{7}\right)\right)^{(4 d+3)(2 f)}
$$

Now C_{13} has to satisfy

$$
C_{13}^{h_{1} k_{1} \log h_{2}} \geqq 2^{\frac{1}{h_{1} h_{1}}}+h_{1}\left(\frac{k_{1}}{2}+1\right) 2^{\frac{1}{2} h_{1} k_{1}}\left(2 h_{2}\right)^{h_{1}\left(\left(k_{1} / 2\right)+2\right)}
$$

i.e.

$$
C_{13}^{h_{1} k_{1} \log h_{2}} \geqq 2^{3 h_{1} k_{1}} h_{2}^{h_{2}\left(k_{1}+4\right)} \quad \text { if } \quad h_{1} \geqq 2 \quad \text { and } \quad k_{1} \geqq 2
$$

i.e. $\quad C_{13}^{h_{1} k_{1} \log h_{2}} \geqq h_{2}^{16 h_{1}\left(k_{1}+1\right)} \quad$ i.e. $\quad C_{13}^{h_{1} k_{1} \log h_{2}} \geqq h_{2}^{32 h_{1} k_{1}}$.

Hence we can take $C_{13}=e^{32}$.
Let C_{14} and C_{15} be large constants and E a small positive constant. We set

$$
\begin{align*}
& h=\left[C_{14} \log (3 S)\right], L=\left[h^{(1+n E) / f}\right], k=\left[\frac{1}{D} h^{E+(1+n E) / f}\right], D=3^{n+1} d^{2} \tag{14}\\
& \left\{\begin{array}{l}
h_{1}=h, k_{1}=k ; h_{2}=\left[\frac{h_{1} k_{1}}{C_{15} L}\right], k_{2}=\left[\frac{k_{1}}{2}\right], \cdots \\
h_{r}=\left[\frac{h_{r-1} k_{r-1}}{C_{15} L}\right], k_{r}=\left[\frac{k_{r-1}}{2}\right], \cdots \quad(r=2, \cdots, \tilde{r}) \quad \text { where } \\
\tilde{r}=\left[\frac{(n+f)((1+n E) / f)+E-1}{E}\right]+2 .
\end{array}\right.
\end{align*}
$$

We choose C_{14}, C_{15} to satisfy

$$
\begin{equation*}
2^{\frac{1}{2} h_{r} k_{r}} \geqq C_{12}^{L h_{r+1}+k \log S L}\left\{1+\beta C_{13}^{h_{r} k_{r} \log h_{r+1}}\right\} \quad(r=1,2, \cdots, \tilde{r}-1) \tag{16}
\end{equation*}
$$

where we fix β to be so small as

$$
\begin{equation*}
\beta \leqq C_{13}^{-h_{\tilde{r}-1} k_{\tilde{r}-1} \log h_{\tilde{r}} .} \tag{17}
\end{equation*}
$$

We have also to satisfy (3). It is easy to see that all these are satisfied by making C_{14}, C_{15} large in (14) and (15). Also we fix \tilde{r} and see that $h_{r-1} k_{r-1} \log h_{r}$ is an increasing function of r by making C_{14} and C_{15} large. It is also easy to see that $h_{\tilde{r}-1} k_{\tilde{r}-1} \log h_{\tilde{\gamma}}$ lies between two constant multiples of $(\log (3 S))^{1+\varepsilon}$. Thus we see that (17) is false, i.e. the theorem is proved with S in place of H. The passage to H is trivial.

Added in proof. When this note was in the course of publication Prof. N. I. Fieldman has proved much more than what is conjectured in the introduction.

References

[1] A. Baker, 'Linear forms in the logarithms of algebraic numbers', Mathematika, Vol. 13 (1966), pp. 204-216.
[2] C. L. Siegel, Transcendental numbers (Annals of Maths., Studies Number 16, Princeton University Press, 1949).
[3] N. I. Feldman, 'Улучщение оценки линеинои формы от логарифмов алгебраических чисел', Math. Sbornik, 77 (1968), pp. 423-436.

Tata Institute, Bombay, India

[^0]: ${ }^{1}$ The sum is over all $\lambda_{1}, \cdots, \lambda_{n+\rho}$ running independently from 0 to L.

