
F. Momose
Nagoya Math. J .
Vol. 96 (1984), 139-165

p-TORSION POINTS ON ELLIPTIC CURVES DEFINED

OVER QUADRATIC FIELDS

FUMIYUKI MOMOSE*

Let p be a prime number and k an algebraic number field of finite

degree d. Manin [14] showed that there exists an integer n = n(k,p) (^0)

which satisfies the condition

E(k)p- c ker (pn: E • E)

for all elliptic curves E defined over k. Here, Ep«> = {Jm>ιEpm and

Epm = ker (pm :E-+E). We denote by n = n(k, p) the least non-negative

integer satisfying the above condition. For k = Q, we know that n(Q, 2) =

3, n(Q, 3) = 2, n(Q, 5) = n(Q, 7) - 1 and n(Q, p) = 0 for p ^ 11 (cf. [10],

[16, 17], [20], [22]). For quadratic fields k, Kenku [6, 8,9] showed that

n(k, 2) ^ 4, n(fe, 3) = 2, n(fe, 5) = n(k, 7) = 1, n(ife, 17) = n(k, 19) = n(k, 23) = 0

and n(k,p) = 0 for the primes p; p ^> 181, p ^ 191 and # J V ( P X Q ) < °°

Here J0(p) is the jacobian variety of the modular curve X0(p), wp is the

automorphism of J0(p) induced by the fundamental involution wp: (E, A) ι->

(ElA, EJA) of X0(p) and J0-(p) = J0(p)/(l + u)p)JQ(p) (see [17]). Our result

for quadratic fields k is the following.

THEOREM A. Let k be any quadratic field and n = n(k,p) as above.

Then

n(k, 11) £ 1

n(k, 13) ^ 1

and n(k9 p) = 0/or ίΛe primes p ^ 17 satisfying the condition # Jo(p)(Q) < oo.

For p = 2,11 and 13, n(k,p) depends on A (see (3.3)). For the primes

p, 17 <I p < 300, except for p = 151, 199, 227 and 277, the condition

#^o~(p)(Q) < co is satisfied ([17] p. 40, [35] Table 5 pp. 135-141). We con-

jecture n(k,p) ~ 0 for p ^ 17. Our method used for quadratic fields can
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140 FUMIYUKI MOMOSE

be applied to some other number fields. For example we get the following.

THEOREM B. Let k te any cubic field and n = n(k, p) as above. Then

n(k9 2) £ 5

n(k, 3) = 2

n(k, 17) ^ 1

and n(k,p) = 0 for p = 19, 23, 41, 47, 59, 71 and the primes p; p ^ 79,

Pφ79, pφ 109 and # J0"(p)(Q) < °°.

We here give a sketch of the proof of Theorem A above for the case

p ^> 23, p Φ 37. Suppose that there exists a non cuspidal ^-rational point

x on Xi(p). Under the condition as in Theorem A, one gets a rational

function g on X0(p) defined over Q such that

(g) = (*) + (**) + 2(oo) - (wp(x)) - (wp(x°)) - 2(0),

where 1 Φ σ e Gal(£/Q) and 0, oo are the cusps on X0(p), Section 2. For

p ;> 181 (p Φ 191), Kenku [9] proved that such function g does not exist,

using an Ogg's idea [22,24]: The upper semicontinuity gives a non

constant rational function h(/F2) on &o{p)®F2 with (/ι)°o< an effective

divisor of degree 4, which leads the inequality % %Ό(p)(Fp) < 10. For the

remaining p, we use the following two methods: (1) The condition

(w*g) = — (g) (φ 0) shows that w*(g) = a\g for α e Q x . Let yt be the

fixed points of wp on X0(p) and put D = Σt(y^. Then one sees that

(g -V~^)o> Σ\Vi) and (£ + V^)o > ^"(30 with D = Σ'(y%) + Σ"(yί). This

notion and a study on yt give the inequality that the degree of D ^ 4,

(2.3). This criterion gives the proof, except for p = 43, 67, 73, 97 and

163. (2) The upper semicontinuity and a study on the action of wp on

&0(p)(g)F2 give a non constant rational function h(/F2) on &o(p)®F2 with

(Λ)oo< 2(cusp) (2.4), where %t(p) = ^ 0 (p)/<^>. Then #^o+(p)(^) ̂  5 and

# ̂ o+(p)(^) ^ 9? which complete the remaining case. For p = 13 and 37,

we apply other methods.

For the case p < 300, we get an estimate of n = τι(β, p) by an integer

which depends only on k and p (see § 2). We add the table in Section 4.

The author thanks to B. Mazur, T. Sekiguchi and K. Cho for their

useful remarks on curves.

Notation. For a prime number q, QY denotes the maximal unramified

extension of Qq. Let if be a finite extension of Q, Qq or Q£r, and A an
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P-TORSION POINTS ON ELLIPTIC CURVES 141

abelian variety defined over K. Then Oκ denotes the ring of integers of

K, A/Gκ denotes the Neron model of A over the base Θκ.

§ 1. Preliminaries

Let p be a prime number, X^pO (resp. X0(pr)) the modular curve

(defined over Q) which corresponds to the modular group /\(pr) (resp.

Γo(Pr)) For pr ^ 5, Xi(pr) is the coarse moduli space (/Q) of the isomor-

phism classes of the generalized elliptic curves E with a torsion point P

of order pr up to the isomorphism (—1)^: E >̂ E. We denote by Yi(prX

Yo(jPr) the affine open subschemes ,XΊ(pr)\{cusps} and J?"0(pr)\{cusps}, respec-

tively. Let k be a number field and x a ^-rational point on Yi(pr) (resp.

Yo(Pr)) Then there exists an elliptic curve E defined over k with a

torsion point P of order pr (resp. a cyclic subgroup A of rank pr) defined

over k (see [2] VI Proposition (3.2)). Let /: Xx{pr) -> X0(pr) be the natural

morphism: (E, ± p) —• (£7, <P)), where <P> is the cyclic subgroup gener-

ated by P. Then / is a Galois covering with the Galois group Γ(pr) =

Γo(Pr)l± Γι(Pr) ( - (Z/prZ)x/± 1). For an integer i prime to p, [i] ( = [- i])

denotes the element of Γ(pr) respresented by geΓ0(pr), g = ί i *j modp7".

The action of [ί] is defined by (E, ± P) -> (.E, ± ί P). Let M; = wpr be

the fundamental involution of X0(pr): (E, A) ^ (E/A, Epr/A) and X0

+(Pr>

the quotient X0(pr)l(w}. For a point on a modular curve, -+ X0(ΐ) (= the

projective j-line/Q), j(x) denotes the modular invariant of x. We here

explain the fixed points of wp on X0(p) and add a table of the Mordell-

Weil groups of subcoverings X: Xι(pr) -> X -> X0(pr). Further we discuss

the fixed points of Wp on «̂ o(p) ® Z2 and prepare some lemmas on curves,

which will be used in Section 2.

(1.1) The ramification points of Yί(pr) > Y0(p) (pr ^ 5).

j(x) % {ramification points}

1728 2 if p ΞΞ 1 mod 4

0 2 if p = 1 mod 3 .

(1.2) The ramification points of X0(p) • X£(p) (p ^ 5) and X0(H2) >•

Let h = h(— p) be the class number of QW~-p)9 and /ι' = /^(p) the

class number of the order Z[ΛJ — p] for p ~ 1 mod 4. Then hf — h iίp = — 1

mod 8, /*/ ΞΞ 3Λ if p = 3 mod 8 (see e.g., [12] Part 8). Denote by s = s(p)
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142 FUMIYUKI MOMOSE

the number of the ramification points of X0(p) -> Xo(p) (P ^ 5). Then

if p = 1 mod 4

[h + h! if p = 1 mod 4

(loc. cit.). Let if (resp. HO be the Hubert class field of QW^p) (resp.

of the order ZJV^p] if p = 1 mod 4) and x1? , xΛ, ••-,*, the ramifica-

tion points. Let H<=—>C(resp. H/c=—>C) be an embedding, p the complex

conjugation of H (resp. HO induced by this embedding, and H + (resp. H / +)

the fixed field by p. For i, 1 rgl i <I Λ, x* is defined over H and cojugate

over β(V — p). One of them, say x1? is defined over H + . (Under the em-

bedding c of H into C, #i is represented by the elliptic curve C/a for an

ideal a of the ring of integers of Q(V—p) which satisfies (ap) ~ (α) in the

ideal class group of Q(V"~P) If p=— Imod4, xh+ί(l <L i <^ h') are

defined over H ; and conjugate over Q(Λ/~P) One of them, say xh + u is

defined over H / + . (Under the embedding cr of H r into C, xh+ί is repre-

sented by the elliptic curve C/Z + ZΛ/ —p).

There are six ramification points of -XΌ(H2) —* ̂ o+(H2)> which are con-

jugate over Q, and the set of the ramification points is a disjoint union

of two orbits of Gal(Q/Q(/-l)) of length three.

(1.3) The cuspidal sections of X0(pr) ([2]) .

For integers k, 1 ^ k <̂  r, and i prime to p, let ( \ ) be the cuspidal

section of XQ(pr) represented by the pair (Gm X Zjpr~kZ, ZjprZ{ζ\pk)).

Here, ZjprZ(ζ\pk) is the cyclic subgroup of μpr X ZjprZ generated by

(ζ\pk),ζ = ζpr is a primitive pr-th root of 1. We denote 0 = ί- j and

oo = ί^j. The ramification index of the covering Xγ{pr) -> X0(pr) at ( ιΛ

ismin{p fc,pr" fc}. Let 0u 1 <̂  i ^pr~\p — 1), be the cuspidal sections of

^i(P r) lying over 0 = L j , which are Q-rational. We call them the 0-cusps.

(1.4) We will use the following coverings. Here ϊ is the generator of

Γ0(pr) ~ (ZjprZYJ± 1, s = s(p) is the number of the ramification

points of X-> Y, and g(X) and g(Y) are respectively the genuses

of X and y. If X = Z0(p) and Y = Z0

+(p), put
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Table 1.

prime p

2

3

5

( 7

11

13

17

19

23

or

=£37

covering

X = X,(32)/<r<> -

X = X,(27)

X = X,(25)/<r5> -

X = X1(49)/<r3> -

X = X1(121) -

"V Ύ /I O\
-Λ — Λ ^ I ΰ j

•Λ. — •Λ-iV-l-1 /

X = X,(19)

X = X,(23)

X = X0(23)

X = XO(P) -

2
>

3
>

b
)

8
)

2
)

2
->

2
)

3
)

11
>

)

2
>

•Y=XJ(32)/<r2>

- Y = X,(27)/<r3>

• Y = X 0 ( 2 5 )

• Y = X 0 ( 4 9 )

• Y = X 0

+ ( 1 2 1 )

- Y = x1(i3)/<r3>

- Y = Xl(l7)l<r>

- Y = X0(23)

• Y = X 0

+ ( p )

s

8

12

4

2

6

6

8

6

0

6

g(X)

5

13

4

3

6

2

5

7

12

2

g(Y)

1

1

0

1)

2

0

1

1

2

0

For p = 37, let (X,(37) - ί U ) X -^-> Y = X0(37) be the double covering.

Then s = 2, g(X) = 4 and g(Y) = 2.

(1.5) Let J = J(X) be the jacobian variety of the modular curve X above.

On the Mordell-Weil groups of J or JQ{P) (p ^ 11), we know the

following (Kenku [6, 8, 9], Mazur and Tate [20], Mazur [17], [35]

Table 1, 3, 5).

P

2

3

5

7

11

13

17

19

23

Table 2.

#J(Q) or tJ0

+(p)(Q) t o r

2 5 | | J ( Q ) | 2 9 52

3 19|#J(Q)|3 4 19 307

J(Q) ~ Z/71Z

J(Q) ~ Z/14Z

2 5 | | J0-(121)(Q)|2α 52 for an integer α

J(Q) ~ Z/19Z

2 73|#J(Q)|2 3 73

3|#«/(Q)|32 387

11 |ttJ,(23)(Q) |11-37181

Jo(p)(Q)tor — ZjmZ, where m = num ((p

^ 1

- D/12).
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144 FUMIYUKI MOMOSS

For p = 37, we will see that the Mordell-Weil group of Coker (J0(37) -> J(X))

is isomorphic to Z/5Z. (The double covering X—• X0(37) has two ramifica-

tion points with the modular invariant j = 1728).

(1.6) Let &ι(pr), ^o(Pr) be the normalizations of the projective /-line

^o(l) ~ Pι

z in Xχ(pr) and X0(pr), respectively. These are smooth

over Z[l/p] ([2]YI Proposition (6.7)). The special fibre ^(pOΘFp

(also %Ό(Pr) ® Fp) has r + 1 irreducible components JB0, , 2£r The

0-cusps ® F p are the sections of the smooth component E\ = EQ\

{supersingular points on ^,(pr) <g> Fv}. Put r,(pr) = ^ ( p ' ^ Σ ϊ:J Ei+U

which is smooth over Z. The 0-cusps are the sections of ^ i(p r )

([2] V §2, §4, VI).

N.B. (loc. cit.). Let <gf = ^ί(pr) be the algebraic stack which repre-

sents the functor: for a scheme S/Z, &'(£>) is the set of the isomorphism

classes of the generalized elliptic curves C with a S-section P of order

pr such that <P> ~ (Z/prZ)/S, isomorphic locally for the etale topology.

Here <P> is the finite etale subgroup generated by the section P (see

loc. cit. V §2, §4). Let Ψ*lpr) be the scheme induced by <T ( = "schema

grossier", loc. cit. VI, VΠ p. 300). Then ir

x{pr) is an open subscheme of

%x(pr) and smooth over Z (see loc. cit. V § 2, § 4, I (8.22)). The 0-cusps

are the sections of irι(pr) represented by the pairs (Gn X ZjprZ, ± P) for

PeZjprZ.

Let k be an algebraic number field of degree d, k the smallest Galois

extension of Q containing k. For a rational prime q, let q be a prime

of k lying over q. We denote by fq, eq the degree of q and the ramifica-

tion index of q in k, respectively. Let C — C(k, p) be the set of rational

primes q as follows:

C(k,p) = {qφ 2,p} U{q=p if ep < p - 1}

U {q = 2 if p ^ 2, 11, 17 or p = 1 mod 8} .

Define an integer nf = n\k,p) as the least non-negative integer subjects

to

(1.8) p71' > min {1 + q** + 2VVq}
qeC(Jc,p)

and

τι7 > 4 if p = 2, 7i' > 2 if p = 3, 7i' > 1 if p = 5, 7.
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For p ;Ξ> 23, let n" — n"(k, p) be the least integer such that n" ^ nf and

pn" > 1 + 2' + 2V2^. For the prime p = 1 mod 8 (p ^ 23), n' = n" (see

(1.7)).

For a ^-rational point JC on Xι(pr) (resp. X0(pr)), by x we denote the

0 rsection: Spec ΦB -> 3Γi(pr) (resp. -> %Ό(pr)) which is the unique exten-

sion of x. Let E be an elliptic curve defined over k with a ^-rational

point P of order pr, and x the point on Yi(pr) represented by the pair

(E, ± P).

LEMMA (1.9). Let q be a rational prime such that q Φ p, or q = p

and eq < p — 1, α^d q α prime o/ β ίymg oi βr q. If pr > 1 + g/β + 2 ^ ^ ,

ίΛβλi xσ (x) ίP/p is α 0-cusp for any σ 6 IsomQ(^, Q ) , where Θ is the ring of

integers of k.

Proof. We denote fq by /, and Θuτ the ring of integers of k ® Q™.

The point xσ is represented by (E% Pa) which is defined over k. By the

universal property of the Neron model E/Θ9 there exists a homomorphism

/: (ZlprZ)/β -»E/Θ such that / ® ^ is an isomorphism into E. Let A be

the flat closure of f{{Z\prZ)!o ® k) in the Neron model E/β9 which is a

finite flat group scheme of rank pr. If q Φ p, f is an isomorphism. If

q — p and ep < p — 1, by the fundamental property of the finite flat group

schemes ([26] §3 Proposition (3.3.2)), / is also an isomorphism (:/(x)0ur

is an isomorphism, then ker (/® Fqf) = {0}). Since pr > 1 + qf + 2vV

( ^ 5), E has semistable reduction at q (Tate [35] p. 46), and has multi-

plicative reduction (e.g., [16] Lemma 2). Fix an embedding of k into Qq.

Then the connected component (E*/β ® Fqf)° of the unity is a torus T

and T®FqfFq2f ~ Gm/Fq2f. So if xσ ® Fqf is not a 0-cusp, then Z\prZ C

T{Fqf\ ~ Z/te' - Ϊ)Z or - Z/(^/ + Ϊ)Z. Therefore the condition pr >

1 + qf + Zjψ shows that x° ® Fqf is a 0-cusp. •

(1.10) Now we describe the fixed points of w = wp of &0(p) ® Z[l/p]

(P ^ 5).

Let &o(p) be the quotient %Ό(p)l(w), which is smooth over Z[l/p],

(&Ό(p) is smooth over Z2 and the action of w on &0(p) ® F2 is generi-

cally etale of degree two, see [2] VI Proposition (6.7)). Let q, Φ p, be a

rational prime, y a fixed point of K; on &0(p) ® Fβ. Then y is represented

by an elliptic curve (/Fq) with a subgroup A of rank p such that (E, A) ^

(ElA, EJA) (see [2]). There exists an endomorphism a of E such that
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a(A) = {0} and a2 == — p. The pair (E, a) is lifted to characteristic zero

(over a finite extension of Q*r), see e.g., [12] Part 12 §5 Theorem 14).

Thus y is the special fibre of a fixed point xt for an integer ί, 1 <̂  i

<Ξ s — s(p) (see (1.2)). Let x be a fixed point of z# on X0(p) and 0 the ring

of integers of Q*r. Let Ox^p),χ = 0[M] be the completion along the

^-section x ([2] VI Proposition (6.7)). Then, σ = w* is of the form

σ(t) = — t + a2t + for Άi 6 0 and α, e Θx for some j if q = 2. If ςr =£ 2,

p, it is easily seen that xt Θ Fq Φ xs ® Fq for xt Φ xd.

Now assume q = 2 (p 2> 5). The double covering &0(p) (x) F2 ->

«̂ o+(p) ® ̂ 2 has wild ramifications at the fixed points oΐ w = w ® F2 (see

e.g., [29] Chapitre IV). By the Riemann-Hurwitz formula, 2go(p) — 2 =

2(2g+(p) — 2) + 2]v(l + ί(y))> where y are the ramification points and ι"(y)

is the index of wild ramification at y (see loc. cit., [17] Chapter II).

Therefore, there are at most s(p)j2 ramification points on $>Ό(p) ® F2. Let

v = v2 be the normalized valuation of Q2 such that v(2) — 1.

SUBLEMMA. Let x, σ and Θ be as above, and π a prime element of Θ.

Let Θr be the ring of integers of the cyclic extension of QY(x) of degree

three, and πf a prime element of Θ\

(i) // v(π) = 1 (Θ ~ W(F2)), there are at most two solutions t = aeπO

oft — σ(t), and at most three solutions t = ae π'Θr of the same equation,

(ii) // υ(π) = 1/2, t — σ(t) has at most two solutions in πΘ.

Proof. The relation σ2 = 1 implies α3 = — a\. The remaining part is

elementary. •

Case p = 1 mod 8. The ramification index of the rational prime 2 in

H is 2 (see (1.2)). By (ii) above we see that the map {xt} -> {xt ® F2} is

two to one. Two of xt ® F2 are F2-rational (see [24] Theorem 3).

Case ] J Ξ 5 mod 8. By the same reason as above, the map {x J ->

{x̂  (x) F2} is two to one. One of xt ® F2 is F2-rational (loc. cit.).

Case p = — 1 mod 8. In this case H = £P (see (1.2)), the rational

prime 2 splits in Q{ΛJ —̂ p) and Xi (x) F2 are not the supersingular points

(e.g., [13] Chapter 8, [30]). By the uniqueness of the Deuring lifting (e.g.,

[12] Part 13, § 4 Theorem 13), {xι)1^i^h -> {xt ® F2} is injective. Hence (i)

above shows that the map {xji^*^ —> {#* ® ̂ 2} is two to one. Let p = pz

be a prime of H lying over 2. Then these [xt ® F2} is the disjoint union

of orbits of the action of Gsi(HJQ(</~=p)) ~ Gal(φ)/F2). Here Hp is the
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p-adic completion of H and tc(p) = ΘH\p. Note that the degree of p is

odd ^ 3 for p ^ 23, p = - 1 mod 8.

Case ] ) Ξ 3 mod 8. The rational prime 2 does not ramify in H and

the degree of the prime p 12 of ϋΓ is two. if' is a cyclic extension of if

of degree 3, which ramifies totally at the primes lying over 2 (e.g., [12]

Part 8 Theorem 7). Then x/ ® κ(p') = xt® tc{pf) for a prime J/12 of ί Γ

and σ e Gal (H'/H), where κ(p') = ΘH,\pr. Let E\F2 be a supersingular el-

liptic curve. Then xt ® F2 is represented by the pair (2?, A) for A =

ker (a: E -> 2£), a2 = — p. Under the isomorphism

End(£)-^>(- α + ^ + c> α, 6, c, d e Z, α = b = c = d mod 2 >
J

(e.g., [35] § 7), α is represented by ai + 6/ + ck for a,b,ce Z. Then, as

P Ξ 3 m o d 8 , α, 6, c must be odd. Therefore A is invariant under the

action of (1 + α)/2 e End (£). Let (E, β) be a lifting of (E, (1 + α)/2) (e.g.,

[12] Part 13, § 5 Theorem 14). Then xt ® F2 is the special fibre of xs for

a j , 1 ̂  j ^ h, see (1.2). x7 is represented by (E, ker (2/3 — 1)). Thus we

see that the map {xji^^ -> {̂ i ® F2} is one to one (see (i) above), and

{Xi+h}i<ii&h-+{Xi®F2} is three to one. One of xt (x) F2 is F2-rational ([24]

Theorem 3).

Let yό be the fixed point of w = w ® F2 on %Ό(p) ® F2 (p ^ 5), i(j')

be the index of the wild ramification at yό of the natural morphism

#Ό(P) ® F2 -> ̂ 0

+(p) (x) F2.

Table 3.

j9 mod 8 ί{y3) # {F2-rational fixed points} # {non F2-rational fixed points}

1

5

- 1

3

1

1

1

3

2

1

0 ( P ^

1

23)

hfi-
h/2-

h (ί
h-

2

1

>^23)
1

Let if be a field, X a proper smooth curve defined over K. Let a Φ 1

be an automorphism of X defined over K, {xji^^ the set of the fixed

points of σ, and set D = Σli-ι(χi) & divisor of X. It is easy to see the

following.

LEMMA (1.11). If g is a rational function on X of degree m defined

over K such that (σ*g) φ (g) (= the divisor of g) and g(Xi) φ 0, oo. Then
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(σ*glg - l)o > D.

In particular, s ^ 2 m , If, moreover, σ2 = 1,

(σ*g/g - l)o = ΣUrriiiXi) + Σ

for some positive integers mt such that Σjί=imi(χί) is K-rational and

Now let K be a finite extension of Q2, R the ring of integers of K

with the residue field Fq for q = 2r. Suppose that X is the generic fibre

of a smooth protective curve X -> Spec R, and σ an involution of X

defined over R such that <^dfn = X\(σ) —> Spec i? is smooth and that the

natural morphism /: & ®Fq->(& ®Fq is not radicial. Let E = 2] m^Zi),

mi > 0, be a if-rational divisor of X such that 1 < dim^flr°(X, O(E)). Then

we have

LEMMA (1.12). Assume further that σ = σ ® Fq has fixed points, zt ® Fq

are not fixed points and that σ*(Σ m^Zi ® Fq)) = 2 mX î ® Fq). Then

there exists a covering g: & (g) Fq—> P\Fq defined over Fq such /*((g)oo) >

Σ mlzt <g> F g).

Proof. Let if/ be a finite extension of K over which the 2/s are

defined, and R, Fq* the ring of integers of Kf and the residue field of R',

respectively. Let J2? = ® ̂ fe)Θ m ί be the Cartier divisor of X ® i?7. Then

dimFβ/iBΓ0(^ ® Fβ/, «£?) > 1 by the upper semicontinuity ([34] (7.7.5)1). Then

dimFqH%& ® Fβ, (P(JE)) > 1, because J2f - (P(£) ® B7 over ^ ® R'. By the

assumption σ*(E(g)Fq) = E®Fq, there exists a non-constant section h of

J ϊ o ( ^ ® Fq, Θ(β)) such that Fq ® Fqh is a σ-invariant subspace. So σ*h =

Λ + α for an aeFq. The proof is completed if α = 0 is shown (because

X ® Fβ -> ̂  ® Fq is generically etale of degree 2). Suppose α Φ 0. For

each point x on «T ® F?\Supp (2? ® Fβ), Λ e <9χ®Fq,x- The covering «T ® Fq ->

W ® Fq is then factored by Spec 09l^Fqif{x) [h] at x:

Spec (P^F^a > Spec

The morphism / is finite of degree 2, and Spec 09<^FqJ{x) [h] -> Spec Θ^^FqJ{x)

is etale of degree 2, since σ*h(z) Φ h(z) for any point z on #* ® Fβ\

Supp (ίJ ® Fq). Therefore / is etale at any point x e % ® Fg\Supp (ίJ ® Fq).
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This contradicts to our assumption. •

§2. The rational points on

Let k be an algebraic number field of degree d; k> eqyfq, C = C(k,p),

nf = n\k,p) and n" — n"(k,p) be as in the last section. Assuming the

existence of a ^-rational point on Yx{pr) with r > n(k, p), we here intro-

duce a rational function g on a modular curve whose divisor is deter-

mined by the ^-rational point as above. Further we prepare propositions

which concern g and the fixed points of wp (p ̂  23). Let x be a /^-rational

point on Yx{pr) = X^pOUcusps} for r ^ n'(k, p). By x we denote also the

image of x by the natural morphism Xi(pr) -* X, see (1.4). We consider

only the primes p with p <̂  23 or (p ^ 29 and) # JQ(P)(Q) < oo. For each

<τ e IsomQ(&, Q), Lemma (1.9) shows that xσ ® *(q) = 0ίσ <g) /c(q) for an integer

ίσ and a prime q of k lying over the rational prime qeC = C(^,p) which

attains the minimal value of 1 + qfq + 2</qfq, where fc(q) = Θ^/q. Consider

the Q-rational section

i(χ) = d(ΣΛχσ)-ΣM)

of A = J(X) for p ^ 23, p ^ 11; of A = Coker (J0(37) -• J(X)) for p = 37;

of A = J0-(121) for p = 11; and of A = J0"(p) for p ^ 29 (see (1.4)). Let

& be the normalization of the protective J-line %Ό(Ϊ) in X (see (1.4)). Let

Z ( β ) be the localization of Z at the prime g and Θiq) = Θ& ® Z ( β ). Then

#σ ® ^(<z), 0ί<? ® Θ{q) are the sections of the smooth part of X ® Z ( 9 ), see

(1.6), (1.9). Let

i(* ): Spec ύ?(ί} - ^ > ar-™th ® Z{q) — • A/Z(q) z — • d((z) - (0 J ) .

Then by our assumptions on q and r (see (1.8), (1.9)), i(xσ) ® /c(q) = 0.

Then i(x) ® κ(q) = (Σ.i(^)) ® «(q) = 0, i.e., i(x) ® Fq = 0. The Q-rational

section i(x) ® Z ( ί ) is of finite order for p Φ 37, see (1.5). The specializa-

tion lemma of the finite flat group schemes ([26] Proposition (3.3.2), [18]

Proposition (1.2)) leads that i(x) = 0 forp Φ 37 (, note: 1 < 3 - I ^ g - 1 ,

(1.7)). Then there is a rational function g on X such that (see (1.4))

(2.1)

' Σ («*) - Σ (OJ for p ̂  23, p Φ 11
Σ (*') - dφ) for p = (23), 29, 31, 41, 47, 59, 71

(Case X0

+(p) ~ P1);

Σ (*•) + d(«>) - Σ (r(ac)) - d(0) for p = 11, p > 29

With jf JO-(
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For p = 37, we will show Coker (J0(37) -* J(X))(Q) ~ Z/5Z, see (3.4.2).

Then we get a rational function g on X such that

(2.iy (g) = Σ (χσ) + Σ (r(oJ) - Σ (r(*0) - Σ (<O,

where 1 Φ ϊ e Aut (X/X0(37)), see (1.4). As (g) is Q-rational, we may as-

sume that g is defined over Q. If p = 11 or p is the last case in (2.1),

(w*g) = — (g) (Φ 0); and if p = 37, (r*g) = — (g). So we may assume

(2.2)
γ*g = iL (for p - 37)

for a square free integer a (φ 0). For p Φ 37, as Q(JC )̂ is not totally

imaginary (see (1.2)), a > 0.

PROPOSITION (2.3). Let x be a k-rational point on Yi(pr), g the rational

function as above and p = 2, 3,11,17, or p :> 23, ^ 37, z îί/i # Jo~(p)(Q) < °°.

7τι the case p = 5 mod 8 α̂ xd ίΛe c/αss number h = h(— p) of Q(j — p) is

divisible by 4, we further assume pr > 1 + qfq + 2-\/g/2 /or an odd prime

q Φ p. Then we have

s = s(p) <L 2d .

Proo/. Case p ^ 23 and Z 0

+ ( P ) - ^ '

The rational function g is of degree c? and (g) Φ (w*g). So the con-

ditions of Lemma (1.11) are satisfied.

Case p ^ 23, Φ 37, and X^{p) Φ P\

Let x1? , xh9 - - -, xs be the fixed points of w — wv. Then g(Xi) — ± Λ/~CL

(see (2.2)). We may assume g(xd = + */~a. First, we consider the case

p = — 1 mod 4. Then s = s(p) = h + h; (see (1.4)) is even, and h(^ hf) is

odd. xt is defined over i ί + (see (1.4)) and [H+: Q] is odd, so that a = 1

(by our choice of α, see (2.2)). The points xu , xh (resp. Λ;Λ+1, , xh+h>)

are conjugate to each other over Q, so that

(g - l)o > Σ

and

fe - l)o > Σ fli(ΛΛ+*) or (g + l)0 > Σfli(*Λ +ι)

In the first case s = h + h' <L2d. In the second case, Lemma (1.11) and
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and the fact that h and h! are odd integers show

(?- i )o>2Σf- iW

and

(g + l)0>2Σ?l1fe+ i).

Thus 2d ̂  2hf ^ s.

Next, we consider the case p = 1 mod 4. If 2d < h = s, then

(* ~ V α )o > Σ'(*ι)

where Σ ' + Σ " — Σ*=i a n d 0 > 1 (because ^ are conjugate to each other

over Q). lί h^O mod 4, our assumption and Lemma (1.11) show (g — V^Oo >

2 £'(*<) and (g + ̂ ~a\ > 2 Σ"(s f ) . T h i s contradicts that s > 2d. If Λ = 0

mod 4, a = p. Set D' = Σ'(*<) ^ ^s a divisor of degree s/2 and

for an effective divisor E. We have w;*i? = E. By the assumption, there

is an odd prime q Φ p such that pr > 1 + g/s + 2Vqfq. Using the upper

semicontinuity ([34] (7.7.5), 1), we get a rational function / on ^Ό(p) ® ^

such that

(f) = D' + E- d(oo) - d(0) .

Then(w*f) = (f)8ow*f = ±f. Ίf w*f = +f, E> &. Ίf w*f = - f, (f)0>

D = Σ?=ife) (see (1.11)). Thus s ^ 2d.

Case p = 11. The number of the fixed points of w = wm on -X"0(121)

is six. Using g in (2.1), (2.2), we get cί ̂ > 3 = s/2 by the same way as

above.

Case p = 2, 17. Let / = r*£/g for 1 Φ ϊ e Gal (XIY) (see (1.4)). Then

r*/ - i// and (/) = Σ σ(^)) + Σ(0J - Σ (̂ σ) - Σσ«U). if (r*ί) = fe),
then Γ(xσ) = xίσ for an c e IsomQ(/2, Q) and any a e IsomQ(&, Q). If d = 2,

we see that {x, xσ = Γ(x)} defines a Q-rational point on Y. But we know

that the Q-rational points on X0(32), and on X0(17) are the cuspidal points

([35] table 1). If d = 3, one of the x° becomes a fixed point of T. But

we know that a ramification point of X —> Y is either a cuspidal point or

a point with the modular invariant j = 1728, see (1.1), (1.4). Therefore
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(ϊ*g) Φ (g) for d = 2 and 3. The rest then follows from Lemma (1.11).

Case p = 3. Let / = ϊ*g/g for 1 Φ T e Gal (X/Y) (see (1.4)). Then

(/) = Σ (r(*0) + Σ (OJ) - Σ (**) Γ Σ (r(<O). For d < 6 = */2, if (r**) =
(g ), λ(xσ) = x" for an * 6 ISOΠIQ(&, Q) and any σ e ϊsomQ(£, Q). Any fixed

point of ΐ is a cuspidal point or a point with the modular invariant j = 0,

so that T(xσ) Φ xσ for any σ e IsomQ(&, Q), see (1.4). Then {xσ}σ is a disjoint

union of <r>-orbits of length 3. If d = 3, {*'}, - {x, r(x), 7\x)} defines a

Q-rational point on Y. But a Q-rational point on X0(2Ί) is a cuspidal

point or a point with the modular invariant j = 0 (see (1.4), [35] table 1).

Therefore (J*g) Φ (g) for d < 6. Then by Lemma (1.11) we get the result. •

Let &+ = &o(p) be the quotient %Ό(p)Kwp}, which is smooth over

Z[l/p] (see (1.10)).

PROPOSITION (2.4). Lei p ^ 23, 9̂  37 be a prime number satisfying

the condition #c/0~(p)(Q) < °°, g the rational function on X0(p) in (2.2). If

pr > 1 + 2/2 + 2\/2/2, then there is a covering f defined over F2,

such that (/)«, = df (cusp) for an integer d\ l<Ld'<Ld.

Proof Let se = (®σ Θ(xσ)) (x) Θ(d(oo)) be the Cartier divisor on # 0(p) ® ̂ *?

where (̂ ^ is the ring of integers of k. By our assumption, dim JF2H°(&0(P)®F2, £?)

> 1 (see [34] (7.7.5), 1), and J2? <g> F2 = 0(d(O) + d(oo))9 see (1.9). The cusps

0 = 0 (x) F2 and co = 00 (x) F2 are not the fixed points of w = w (x) F2, while

^o®^2->«^ + ®^2 has ramifications points. The divisor d(0) + d(oo) is

F2-rational, and is w -invariant. So Lemma (1.12) yields the desired covering

/. D

COROLLARY (2.5). Under the assumption of (2.4),

PROPOSITION (2.6). Let p ^ 23, =£ 37, &e α prime number such that

%¥ό(p)(Q) < °° Assume that r^n" = n"(k,p) (see (1.8)) ami /eί g 6β ίAe

rational function on X0(p) in (2.2). 7%en it e ^βί ίΛβ following estimates of

= 1 mod 8; # ̂ 0

+(p)(^2) ^ 2 + 2d - Λ/4 .
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(ii) p ΞΞ 5 mod 8 and h — h{— p) ΞE 0 mod 4;

or

# %t(p)(Fύ £ 1 + Ad - (A - 2)/4.

(iii) p ΞΞ - 1 mod 8; # &ϊ(p)(F2) ^1 + 2d- h

and

W ( P X ^ ) ^ 1 + 4d - Λ .

(iv) p ΞΞ 3 mod 8; # &ϊ(p)(F2) ^ 2 + 2d - 2A

Proof. Let x1? , xs (resp. JΊ = xx ® F2, y2, , 3W2 if p ΞΞ 1 mod 4;

yu y2, * * , Jn if p ΞΞ — 1 mod 4) be the fixed points of w = wp on X0(p)

(resp. %Q{p)®F2), see (1.10). Then g(x%)=±J~a (see (2.3)). We may

assume g(x^) = + Λ/Ύ eH+ (see (1.2)). As in the proof of (2.3), a = 1, or

a - p if p ΞΞ 1 mod 4. Set D = Σ?βl(x*).

Case p ΞΞ 1 mod 4 and a = 1. The divisor of g — 1 is

(w(x*)) - d(0) ,

for a w-invariant Q-rational divisor E > 0 (see (1.11)). Let if = (Pφ + E)

® Θ(Σ (wxϋ) + dφ))®'-1' be the invertible sheaf on «"0(p) ® ^ for a finite

extension if of Q. By the upper semicontinuity ([34] (7.7.5), 1), there is

a rational function / on #Ό(p) ® 2̂ such that

(/) - 2 Σ?/2i(^) + E - d(0) - d(oo) {φ 0)

for the effective divisor E = E®F2 (see (1.10)). The divisor (/) is /γrational

and ztf-invariant. Then w*f = f and we may assume that / is defined over

F2. Then we get a covering /+ defined over F2:

such that (/+) - Σi-iOO + E' - d' (cusp) for an effective divisor Ef and

an integer d\ l<d'<id. Here by yt we denote the images of yt by the

natural morphism of aro(p) (x) F2 to ^0

+(p) ® F2, Then # ̂ 0

+(p)(F2) ^ 3 + 2d

- A/2 if p ΞΞ 1 mod 8; ^ 2 + 2<i - A/2 if p ΞΞ 5 mod 8 (see (1.9)).

Case p ΞΞ 1 mod 8 and a = p. Let D = A + D2, Di > (#0, be the

decomposition into the sum of Galίϋf/QίVp^-orbits Dt of length A/2. Then
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(g -<TP) = A + Eι - Σ (w(χσ)) - d(0)

(g +VP) = A + ^ - Σ (w(xσ)) - d(0) ,

for Q(v/"p)-rational, ^-invariant divisors i^>0. Let 1 Φ a be an element

of the inertia subgroup of a prime of H lying over 2, and H+ = H<σ> the

fixed field of <σ> (-Z/2Z). Then <τ*A = A for ί = 1, 2. There are only

two fixed points of w defined over H+ (see (1.10)). Therefore D2 ® F2 =

2 Σ'OO I n ^ e same w a Y as above, we get a rational function /+ on

^o(p) ® F2 defined over F2 such that (/+) = ΣI(y^) + E' - d' (cusp), for

an effective divisor Er and an integer d', 1 < df ^ d. So # ̂ 0

+(p)(F2) ^

2 + 2d - Λ/4 (see (1.10)).

Case ] ? Ξ 5 mod 8 and a = p. Let Z) = A + Z)2> Z>i > (x^, be the de-

composition into the sum of Galίif/QίV/^-orbits Dt of length h/2. Here

we assume h = h(— p) ^ 0mod4. Then by Lemma (1.11)

(g - V P ) = 2A + ^ - Σ Mr)) - d(0)
(g +VJ) = 2D2 + E2-Σ (ω(xσ)) - Φ) ,

for Q(«J p )-rational, ^-invariant divisors Dt > 0. Let σ = σ2 be the Frobenius

element of the rational prime 2. Then σ(A) = A , i ^., (ί>i ® F4)
(2) =

D2®F4. By (1.10), we see that A <g> F4 = ( y i) + Σf=22)/4(^X Λ is the

F2-rational fixed point of w (see (1.10)). By the same way as above, we get

a rational function /+ on ^0

+(p) ® ^ such that (/+) = (y2) + 2 Σ£ϊ 2 ) / 4OO +

£ 7 — d' (cusp), for an effective divisor Ef and an integer d', I <ί d' <, d

(see (1.10)). Then # ̂ 0

+(p)(^) ^ 1 + 4d - (Λ - 2)/4.

p = - 1 mod 8. Set ΰ i - Σ i i O Λ A = Σ t i f e + ί ) . Then

+ E-Σ (™(xσ))
(g - 1) = I or

for Q-rational, u -invariant divisors E > 0, £?! > 0. In both cases, by the

same way as above, we get a rational function /+ on «3Γ0

+(p) ® F2 defined

over F2 such that (/+) = Σ?=i(^i) + Ef — df (cusp) for an effective divisor

E' and an integer d', 1 ^ df ^ d. Then # ̂ 0

+ ( P ) ( ^ 2 ) ^ 1 + 2d - Λ and

l + 4d-h (see (1.10)).

Case p ΞΞ 3 mod 8. Set A = Σ t i O O , A -
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or

(g + 1) = 2A + E2 - Σ (ω(xσ)) ~ d(0) ,

for Q-rational, ^-invariant divisors E > 0, E2 > 0. In the first case, the

same argument as above shows that there is a rational function /+ on

^t(p)®F2 defined over F2 such that (/+) = 2 Σtiiyd + Er - d! (cusp),

for an effective divisor Er and an integer d', 1 <L dr <L d. Then # #O+(p)CF2)^

2 + 2d - 2h, and #^0

+(p)(^) ^ 1 + 4d — Λ (see (1.10)). The second case

yields better estimates. •

§3. Rational points on Yt(pr) defined over quadratic fields

In this section we prove Theorem A in the introduction. Let k be

a quadratic field, x a /^-rational point on Yi(pr) for r^in' — n"(k, p) (see

(1.8)). In this case, it is easy to see that n'(k,p) — n"(k,p) (see (1.7),

(1.8)). So we can apply the propositions in Section 2. Moreover, we see

that we have only to show n(k, p) < n'(k, p) (see Section 0). Applying

Proposition (2.3), we get the result of the theorem except for p — 13, 37,

43, 67, 97, 163 and 193 (p < 300, Φ 5, 7, 151, 199, 227, 277). See table (4.3).

(3.1). Proof for p = 43, 67, 73, 97, 163 and 193. We can apply (2.4),

(2.5) and (2.6) in the last section to these cases. Wada [32] shows that

the characteristic polynomials of the Hecke operator T2 on the C-vector

space of holomorphic cusp forms of weight 2 belonging to \Γ0(p), ( ~~Λ ) /

for p < 250. According to his table, we get

Table 4.

P

43

67

73

97

163

193

characteristic polynomial of T2 #

x + 2

x2 + 3x + 1

x2 + 3x + 1

x3 + 4x2 + 3x - 1

x(x5 + 5x4 + 3x3 — 15x2 — 16x + 3)

(x5 + 2x4 - 5x3 - 7x2 + 7x + 1)

5

6

6

7

8

8

5

6

6

7

10

12

h(-

1

1

4

4

1

4

With these and Proposition (2.6), we get the proof.

(3.2). Proof for p = 13.
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(3.2.1). Rational points on Yi(13) defined over quadratic fields k.

Let x be a /^-rational point on Yi(13). There is an elliptic curve E

defined over k with a ^-rational point P of order 13 such that the pair

(E, ± P) represents x ([2] VI Proposition (3.2)). By (1.5), (1.7), we can

apply Lemma (1.9). So there is a rational function g (defined over Q)

on Xj(13) such that

(g) = (*) + (*') - (0.) - ( 0 J (Φ 0)

for 1 φ a e Gal(A/Q) see (2.1). g defines an involution ϊ of X^IS) such

that X1(13)/<λ> ~ P\ The automorphism [5] 6 Γ(13) (see § 1) of X1(1S) is

of degree 2, and X1(13)/<[5]> ~ P1 (see (1.4)). Hence ϊ = [5], and so xσ =

Γ(x), 0ίσ = T(0i) (Φ 0i). (Note that if a proper smooth curve X defined

over a field is hyperelliptic of genus >̂ 2, the involution T satisfying

X/(J) ~ P1 is unique.) Then {x, xσ = T(x)} defines a Q-rational point on

yi(13)/<Γ> and 0f ® FQ Φ 7(0^) (x) F g for any rational prime q. There exists

an elliptic curve F defined over Q such that the image of GQ = Gal (QIQ) of

the Galois representation on Fί3(Q) is contained in | ( Λ *)\ ( c GL2(F13))9

and F ~ E over C.

(3.2.2). Suppose that there is a ^-rational point x on Y^lθθ). There

is an elliptic curve E defined over k with a /^-rational point P of order

132 such that the pair (E, ± P) represents x ([2] VI Proposition (3.2)).

Let xf be a ^-rational point on 7^13) which is represented by the pair

(E\ ±P/)/k~n(EI(13'P), ±Pmod<13 P» / f c, and p' the Galois representation

on E'n{k). Then

As was seen in (3.2.1), there is an elliptic curve F defined over Q such

that the image of GQ under the Galois representation p on Fί3(Q) is con-

tained in < ί ^r/ *) > and Er ~ F over C. Since F has multiplicative re-

duction at q = 2 (see (1.9)), there exists a quadratic extension K of k

over which Ef ~ F. Thus

So p(GQ) <=—> ί̂ Q 2))» which contradicts to the fact that Xsp.Car(13)(Q)
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consists of the cusps 0, oo(; Z s p C a r (p) ~ X0(p2), see [7], [21]).

Remarks (3.3). (3.3.1). The modular curve X = X1(16) is of genus 2

and #J1(16)(Q) = 20 (see [6]). Let X -?-> Y -?-> X0(16) be the natural

covering, r the generator of Gal(X/Y). Then Y = X/<r> - P1. Let # be

a ^-rational point on Yi(16). If q = 3 (resp. = 5) does not remain prime in

k, then x <g> A:(q) and x° ® κ(q) are 0-cusps for a prime q of & lying over q

(see (1.9)). Then we get a rational function g on X, defined over Q, such

that (g) = (*) + (*•) - (0,) - (0iσ) (see (2.2)). Thus ** = T(x) and 0,, = r(0t)

(Φ 0i) (see (3.2)). Therefore if q = 3 or 5 ramifies in jfe, Yi(16)(&) = 0. Let

& be an imaginary quadratic field such that the class number of k is prime

to 5 and that the rational prime 2 does not split in k. Then the fact that

Z/5ZC J1(16)(Q) and the descent ([17] Chapter III) show #j;(16)(fc) < oo.

Moreover, if 3 splits in k or 5 does not remain prime in k, using Mazur's

idea "formal immersion" [18], we see YΊ(16)(Jfe) = φ.

(3.3.2). The modular curve .Xi(ll) is an elliptic curve with conductor

(11). The defining equation of X,(ll) is

f + y = *8 - *2

and -Xχ(ll)(Q) ~ ZjbZ (see [35] p. 82). The numbers of the F^-rational

points for q = 2, 3 of X = ^Ί(ll) are as follows:

(loc. cit ). Therefore X;(ll)(^)tor ~ ZfiZ for quadratic fields k. So we

have Yi(ll)(&) = ^ if and only if the rank of Xt(H)(k) is 0. For example

if k is an imaginary quadratic field such that the class number of k is

prime to 5 and the rational prime 11 does not split in k, then Yi(ll)(£) = φ.

This can be shown by the descent; see [17] Chapter III.

(3.3.3). By the argument in (3.2.1), we have already known that the

^-rational points on YΊ(13) are parametrized by the Q U {oo}-values of

a rational function on -3Γ1(13)/<7'> ^ PQ of degree 1. If the rational prime

q = 2 does not split in k or q = 3 ramifies in k, then x ® κ(q) = #' ® Λ (q)

for a /^-rational point x on ^(13) and a prime q of k lying over q.

Therefore by (3.2.1) in such a case Yi(lS)(k) = 0.

(3.4). Proo/ /or p = 37. Let Xi(37) - ^ > X - ^ > X0(37) be the natural

coverings, J = J(X) the jacobian variety of X and A = Coker (J0(37) -> J )
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(see (1.4)). Then A has everywhere good reduction over Q(V37) ([2] V).

LEMMA (3.4.1). Let p be a prime number congruent to 1 mod 4,

Xi(p) > X > Xo(p) the natural coverings, and J = J(X) the jacobian

variety of X. If there is a prime factor of (l/4)2?2j (?) which is prime to the

class number of Q(J~p), then there is a factor ( IQ(*J~p)) of Coker (J0(p)-> J)

with finite Mordell-Weil group ( IQWJϊ)). Here B2(v\ is the {second) gen-

eralized Bernoulli number associated to the quadratic residue symbol (£)

(see [13]).

Proof. Let 0', 0" be the 0-cusps of X. The order of cl((0') - (0")) is

(1/4)JB2,(P) [11]. Let g be a prime number which is prime to the class

number of QWp) and divides (l/4)2?2) (?). Let B be a quotient ( jQ) of

Coker ( J 0 ( P ) -* J) such that B is Q-simple and the order of the image

cl((00 — (0")) on B is divisible by q, then Z/qZ c B. B has everywhere

good reduction over Q(V/^X see [2] V, and is isogenous to a product

C X Cσ of an abelian variety C over Q(«/J)). Further C is isogenous

over QW~p) to Cσ for 1 Φσ e Gal (Q(V P~)/Q), see [31] Chapter 7. Then B

is isogenous over Q to ReQ(Vp)/Q(C)9 where ReQ(V^)/Q is the restriction of

scalars (see [4], [33]). Hence rkB(Q) = rk C{Q(*J~p)). Applying the de-

scent to C ( IQUΊ?)) (see [17] Chapter III), we have # C(Q(VP")) < OO.Q

LEMMA (3.4.2). Let A = Coker (J0(37) -> J ) as a&oi e. Tfteπ A(Q) -
Z/5Z.

Proo/. (1/4)B2, (37) = 5 and the class number of Q(V§7) = 1. A is

isogenous over Q(V37) to a product of two elliptic curves, so that A is

Q-simple. Using the table of the characteristic polynomials of the Hecke

operators on the C-vector space S2(Γ0(37), (-)) of the holomorphic cusp

forms of weight 2 with the neben character (-) belonging to ^0(37), p.

207 of [31], we see that # A(Q)tor = 5. Then Lemma (3.4.1) is applied to

yield A(Q) ~ Z/5Z. Q

Suppose that there is a ^-rational point x on YX37). Consider the

Q-rational section i(x) = cl((*) + (xσ) - (0τ) - (0ίσ)) of A, where lφ σe

Gsl(klQ), see Section 2. Then ί(x) ® Fq = 0 for g = 2, 3 and 5 (see (1.9)),

so we get ί(x) — 0, see (3.4.2). There is a rational function g on X

(defined over Q) such that (#) = (x) + (**) + (r(0,)) + (r(0J) - (Γ(JC)) -

- (0,) - (0ίσ), where 1 Φa e Aut (Z/X0(37)), see (2.10.
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Claim, x Φ Y(x\ Φ ϊ(xσ).

Proof. If x = Γ(x), then x is a fixed point of Γ with the modular

invariant j(x) = 1728. This contradicts that x ® /c(q) = 0* ® /c(q) for the

primes q\2 oΐk. If x = 7(xσ), then {x, xσ = T(x)} defines a Q-rational point

on (yo(37)). But we know that the non-cuspidal Q-rational points on X0(37)

have everywhere potentially good reduction, [19] Section 5, p. 32. •

Let 9£ be the normalization of the protective j-line ^Ό(l) — P\ in X-

Then X is smooth over Z[l/37], see [2].

Case 0, Φ 0ίσ. In this case T(0t) = 0, and (g) - (x) + (xσ) - (T(x)) -

(r(xσ)) (Φ 0). Let Eη = (x) + (x") and £ be the flat closure of Eη on

X ® Z2. Then £ ® F2 = (0, ®F2) + (r(Ot ® F2)). The argument similar to

Lemma (1.11) shows that there is a rational function on X0(β7) (x) F2 of

degree one. This is a contradiction.

Case 0, - 0iff. Let Eη = (x) + (of) + 2(r(0<» and £J be the flat closure

of Eη on X (x) Z2. Then E ® F2 = 2(0, ® F2) + 2(r(0, ® F2)). The argument

as in Lemma (1.11) shows that there is a double covering gf: X0(S7) (x) F2 ->

Pι

Fi, such that (g% = 2(0 ® F2). Then 0 = 0 ® F2 is a fixed point of the

(unique) hyperelliptic involution S of ^0(37) ® F2. The hyperelliptic in-

volution S of X0(37) sends the cusp 0 = ί - 1 to a non cuspidal Q-rational

point, see [19] Section 5. As noted as before, S(0) ® F2 is not a cusp

(see loc. cit.), so that S = S ® F2 does not fix 0 = 0 ® F2. Thus we get

a contradiction.

For an imaginary quadratic field k, Y^pXk) = φ if a rational prime

p remains prime in k, except for finitely many p ([18] §4). For a real

quadratic field k, we use Mazur's idea "formal immersion" (loc. cit.) to

show the following. •

PROPOSITION (3.5). Let p ^ 17 be a rational prime congruent to

1 mod 4. If there exists a prime factor of (1/4)J32> (?) which is prime to the

class number of Q(yΓp), then Yi(p)(QWp)) = Φ

Op—1)/4 2
Proof. Let Xi(p) > X > XΌ(p) be the natural coverings, J —

J(X) the jacobian variety of X, and A = Coker (J0(p) -> J) . Then by

Lemma (3.4.1), there exists a quotient J3 ( /Q) of A with finite Mordell-Weil

group over Q(VP^) AS p > (1 + 3)2, Lemma (1.8) is applied for q = 3.

The rest owes to [18] Section 4. •
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COROLLARY (3.6). Let p be a prime number congruent to Imod8.

Then Yί(p)(QWp)) = φ.

Proof. (1/4)B2, (p) = 0 mod 2 (see, e.g. [17] Chapter II § 12). Π

§4. Fur ther results

Let k be an algebraic number field of degree d, n = n{k, p) and

n" = n"(k,p) as in Section 1 (1.8). Applying propositions in Section 2,

we can estimate n in some cases.

THEOREM (4.1). Let k be any cubic field. Then

n(k, 2) £ 5,

n(k, 3) = 2,

n(k, 17) ̂  1 .

For p = 19, 23, 41, 47, 59, 71 and the primes p ^ 79, Φ 97, Φ 109, satisfying

%Jό(P)(Q) < oo, we have n(k,p) = 0.

Proof. For p < 300, the result follows from Proposition (2.3), (1.4),

(1.8), Lemma (1.12), except for p = 19, 23, 157, 163, 193, (277) (see table

(4.3)). Using Corollary (2.5), we get the result for p = 157, 163, 193 (see

(3.1)). The characteristic polynomial of the Hecke operator T2 on

S2((ΓQ(157), [ ^ ~ J])) (see (3.1)) is x* + 5x* + 5xz - 6x2 - 7x + 1 (see

[32]). Thus #^0

+(157)(F2) = 8 and # ̂ 0

+(157)(F4) = 10. For p = 19, 23, if

there exists a /^-rational point x on Yi(p), then there exists a rational

function g on X = Xί(p), defined over Q, such that (g) = Σ (xσ) - Σ (0ίσ),

see (1.9), (2.1)). For p = 23, we know # ̂ (23)(F2) = 11 ([9] §4). Using

the upper semicontinuity (see [34] (7.7.1)1), we get a contradiction.

(4.1.1) Proof for p = 19. Let 1 ^ r e Aut (X/Y) (see (1.4)). E

(Y*g) = (g), then Γ(x) = Λf for a reIsomQ(£, Q). Then x is a fixed point

if τ = 1, or {xσ}σ = {r*(Λ;)}<βo,i,2 if r =£ 1. The fixed points of ϊ have the

modular invariant j = 0 (see (1.1), (1.4)). So by Lemma (1.9) the first case

above does not occur. In the second case, {xσ}σ defines a Q-rational point

on Y, hence on X0(19) But the Q-rational points on -Xo(19) a r e the cusps

and the points represented by the elliptic curve C/Z[(l +V— 19)/2]. So

(r*g) Φ (g) is shown. Let D = Σ?=i(*<) b e t h e Q-rational divisor of -XΊ(19),

where xt are the fixed points of T on -Xi(19) (see (1.4)). Then by Lemma

(1.11), ll(r*g/g - 1) e jff°(X;(19), 0(D)). The Riemann-Roch theorem and a
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theorem of Clifford (see below) then show dimQH°(Xί(19)9 Θ(D)) < 1 + 3.

(4.1.2) THEOREM (Clifford; see e.g. [5]). Let X be a proper smooth curve

\C of genus ^ 1, E an effective divisor such that dimcH°(X, Θ(K — E))>0,

where K is the canonical divisor. Then

dimcH°(X, Θ(E)) ̂  1 + 1 deg (E) .
Li

The equality holds if and only if E = 0, E ~ K or E ~ π*F if X is

hyper elliptic, where π: X—> P1 is a double covering and F is a divisor of P\

It is easy to see the following.

(4.1.3). Let X be a proper smooth curve and ϊ an automorphism of

X of degree m ( ^ 1) defined over Q. Let E be an effective, Q-rational

divisor of X such that Ϊ*E = E and r* acts faithfully on H°(X, Θ(E)).

Then άimQH\X, Θ{E)) > 1 + ψ{m), where φ(m) is the Euler number of m.

Let f be the generator of Γ0(19) = Γ0(19)/± J\(19) (see (1.4)), which

is of order 9. Then D is f*-invariant and H^X^S), Θ(D))<?*> = QΊ. If

), Θ(D)) ̂  2, then f* acts faithfully on ^ ( ^ ( l θ ) , Θ{D)) and

), (P(JD)) ^ 1 + y<9) = 7 by (4.1.3). This is a contradiction.

(4.1.4) Proof for p > 300 (e.g. p = 383, 419, 429, 491, cf. [17] p. 151])

(and for p = 277 if # J0"(277)(Q) < oo). By Corollary (2.5), if Yι(p)(k) Φ φ, then

# aro(pKFd ̂  2(1 + 4 3) - s £ 24. But we know # iT0(p)(F4) ̂  2 + (p + 1)/12

(see [24] Theorem 3). Hence YΊ(p)(^) = ^ for p > 300 ( , and p = 277) if

Remark (4.2). The above method used for (p, d) = (19, 3) can be ap-

plied to some other cases. For example, it gives an alternating proof

for (p, d) = (5,2). In this case, under the notation in (4.1.1), (4.1.2)

and the Riemann-Roch theorem show dimQlϊ0(X, Θ{D)) <Ξ 1 + 2. But if

άimQH°(X, Θ(D)) ̂  2, then it must be ^ 1 + 4 by (4.1.3).

(4.3). Table for p < 300.

Let k be an algebraic number field of degree d. For the pairs (p, d)

in the following table, we get n(k,p) < n"(k,p). See (1.4), (1.8), [32], [35]

table 5, pp. 135-141.
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Table 5.

s(p) H- p) (for p ̂  23)

2 2,3 8
3 2,3,4,5 12
5 2 4
7 2 2
11 2 6
13 2 6
17 2,3 8
19 2,3 8
23 2,3 6 3
29 2 6 6
31 2 6 3
37 2 2 2
41 2,3 8 8
43 2 4 1
47 2,3,4 10 5
53 2 6 6
59 2,3,4,5 12 3
61 2 6 6
67 2 4 1
71 2,3,4,5,6 14 7
73 2 4 4
79 2,3,4 10 5
83 2,3,4,5 12 3
89 2,3,4,5 12 12
97 2 4 4
101 2,3,4,5,6 14 14
103 2,3,4 10 5
107 2,3,4,5 12 3
109 2 6 6
113 2,3 8 8
127 2,3,4 10 5
131 2,3, -.,9 20 5
137 2,3 8 8
139 2,3,4,5 12 3
149 2,3,4,5,6 14 14
151 ? 14 7
157 2,3 6 6
163 2,3 4 1
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Table 5. Continued

P

167
173
179
181
191
193
197
199
211
223
227
229
233
239
241
251
257
263
269
271
277
281
283
293

d

2,3, •••,10
2, 3, 4, 5, 6
2,3, ...,9
2,3,4
2,3, -..,12
2,3
2,3,4

1
2, 3, 4, 5
2, 3, 4, 5, 6

1
2,3,4
2, 3, 4, 5
2,3, ...,14
2, 3, 4, 5
2,3, ...,13
2, 3, 4, 5, 6, 7
2,3, ...,12
2,3, ...,10
2,3, ..., 10

2,3,-..,9
2, 3, 4, 5
2,3, .-.,8

sip)

22
14
20
10
26
4
10
18
12
14
20
10
12
30
12
28
16
26
22
22
6
20
12
18

hi- p) (for p ̂  23)

11
14
5
10
13
4
10
9
3
7
5
10
12
15
12
7
16
13
22
11
6
20
3
18
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