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p-TORSION POINTS ON ELLIPTIC CURVES DEFINED
OVER QUADRATIC FIELDS

FUMIYUKI MOMOSE*

Let p be a prime number and %2 an algebraic number field of finite
degree d. Manin [14] showed that there exists an integer n = n(k, p) (=0)
which satisfies the condition

E(k),-» < ker (p": E— E)

for all elliptic curves E defined over k. Here, E,. =|J.s:E,» and
E,. =ker(p™: E— E). We denote by n = n(k, p) the least non-negative
integer satisfying the above condition. For k = @, we know that n(Q, 2) =
3, n(Q,3) =2, n(Q,5 =n(Q,7 =1 and n(Q, p) =0 for p = 11 (cf. [10],
[16, 171, [20], [22]). For quadratic fields k, Kenku [6, 8,9] showed that
nk,2) < 4, n(k,3) = 2, n(k,5) = n(k,7) =1, n(k,17) = n(k,19) = n(k,23) =0
and n(k, p) = 0 for the primes p; p = 181, p # 191 and #J;(P)NQ) < .
Here Jy(p) is the jacobian variety of the modular curve X(p), w, is the
automorphism of Jy(p) induced by the fundamental involution w,: (E, A) —
(E/A, E,[A) of X,(p) and J;(p) = Jy(p)/(1 + w,)J|(p) (see [17]). Our result
for quadratic fields % is the following.

THEOREM A. Let k be any quadratic field and n = n(k, p) as above.
Then

n(k, 11) < 1
n(k,13) < 1

and n(k, p) = 0 for the primes p = 17 satisfying the condition § J;(p)XQ) < oo.

For p = 2,11 and 13, n(k, p) depends on k (see (3.3)). For the primes
p, 17 < p < 300, except for p = 151, 199, 227 and 277, the condition
¥ Jo(p)Q) < oo is satisfied ([17] p. 40, [35] Table 5 pp. 135-141). We con-
jecture n(k, p) = 0 for p > 17. Our method used for quadratic fields can
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be applied to some other number fields. For example we get the following.
THEOREM B. Let k te any cubic field and n = n(k, p) as above. Then

nk,2) <5
n(k, 3) = 2
n(k, 17 < 1

and n(k,p) =0 for p =19, 23, 41, 47, 59, 71 and the primes p; p =79,
p#19, p+ 109 and #J5(p)(Q) < oo.

We here give a sketch of the proof of Theorem A above for the case
p =23, p #+ 37. Suppose that there exists a non cuspidal k-rational point
x on X,(p). Under the condition as in Theorem A, one gets a rational
function g on X,(p) defined over @ such that

(8) = (®) + (&) + 2(c0) — (wy(x)) — (W,(x7)) — 2(0),

where 1 #+ ¢ € Gal(k/Q) and 0, oo are the cusps on Xy(p), Section 2. For
p =181 (p # 191), Kenku [9] proved that such function g does not exist,
using an Ogg’s idea [22,24]: The upper semicontinuity gives a non
constant rational function A(/F,) on %\(p)® F, with (h).< an effective
divisor of degree 4, which leads the inequality # Z'(p)(F,) < 10. For the
remaining p, we use the following two methods: (1) The condition
(wkg) =—(g) (+ 0) shows that wj(g) =a/g for ac@*. Let y, be the
fixed points of w, on X,(p) and put D = 3 ,(y;). Then one sees that
(g —va)> 2"(y) and (g ++/a), > 3"(y;) with D = 3"(y,;) + 2”(y,). This
notion and a study on y; give the inequality that the degree of D < 4,
(2.3). This criterion gives the proof, except for p = 43, 67, 73, 97 and
163. (2) The upper semicontinuity and a study on the action of w, on
Z(p) ® F, give a non constant rational function A(/F,) on &'{(p) ® F, with
(M) < 2(cusp) (2.4), where Z'7(p) = Z(p)/[{w,). Then §Z(p)(F) =<5 and
t Z$(p)F) £ 9, which complete the remaining case. For p =13 and 37,
we apply other methods.

For the case p < 300, we get an estimate of n = n(k, p) by an integer
which depends only on %k and p (see §2). We add the table in Section 4.

The author thanks to B. Mazur, T. Sekiguchi and K. Cho for their
useful remarks on curves.

Notation. For a prime number g, Q" denotes the maximal unramified

extension of @, Let K be a finite extension of @, @, or @, and A an
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abelian variety defined over K. Then 0, denotes the ring of integers of
K, A,,, denotes the Néron model of A over the base 0.

§1. Preliminaries

Let p be a prime number, X,(p") (resp. Xy(p")) the modular curve
(defined over Q) which corresponds to the modular group I'(p”) (resp.
I'(p"). For pr = 5, X\(p") is the coarse moduli space (/Q) of the isomor-
phism classes of the generalized elliptic curves E with a torsion point P
of order p” up to the isomorphism (—1);: E = E. We denote by Y,(p"),
Yi(p") the affine open subschemes X,(p")\{cusps} and X (p")\{cusps}, respec-
tively. Let k2 be a number field and x a k-rational point on Y,(p") (resp.
Y, (p"). Then there exists an elliptic curve E defined over £k with a
torsion point P of order p™ (resp. a cyclic subgroup A of rank p”) defined
over k (see [2] VI Proposition (3.2)). Let f: X\(p") — X(p") be the natural
morphism: (E, £+ p) — (E, (P)), where (P) is the cyclic subgroup gener-
ated by P. Then fis a Galois covering with the Galois group I'(p") =
L'(p")+£ I'(p") (= (Zp"Z)*|+ 1). For an integer i prime to p, [i] (= [— i])

denotes the element of I'(p”) respresented by ge '(p"), g = (5 :) mod p”.

The action of [i] is defined by (¥, = P)—>(E, +=i-P). Let w = w,. be
the fundamental involution of X(p"): (E, A) — (E/A, E,./[A) and X;(p")
the quotient Xy(p")/<{w). For a point on a modular curve, — Xy (1) (= the
projective j-line/@), j(x) denotes the modular invariant of x. We here
explain the fixed points of w, on X(p) and add a table of the Mordell-
Weil groups of subcoverings X: Xi(p") — X — X\(p"). Further we discuss
the fixed points of w, on Z(p) ® Z, and prepare some lemmas on curves,

which will be used in Section 2.

(1.1) The ramification points of Y,(p") —> Y, (p) (p” = 5).

j(x) # {ramification points}
1728 2 if p = 1mod 4
0 2 if p=1mod3.

(1.2) The ramification points of X(p) —> X{(p) (p = 5) and X,(11°) —>
X;(11).

Let h = h(— p) be the class number of Q(/—p), and A’ = h'(p) the
class number of the order Z[,/—p] for p = 1mod4. Then ' =hifp =—1
mod 8, #’ = 3h if p = 3mod 8 (see e.g., [12] Part 8). Denote by s = s(p)
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the number of the ramification points of X(p) — X7 (p) (p = 5). Then

B h if p =1mod4
5= h+ K if p=1mod4

(loc. cit.). Let H (resp. H’) be the Hilbert class field of Q(y/ —p) (resp.
of the order Z[,/—p] if p=1mod4) and x,, ---, x,, - - -, X, the ramifica-

tion points. Let H =‘sc (resp. H"——l,—>C) be an embedding, p the complex
conjugation of H (resp. H’) induced by this embedding, and H* (resp. H'*)
the fixed field by p. For i, 1 <i < h, x, is defined over H and cojugate
over Q(4/—p). One of them, say x,, is defined over H*. (Under the em-
bedding ¢ of H into C, x, is represented by the elliptic curve C/a for an
ideal a of the ring of integers of Q(y/ —p) which satisfies (a*) ~ (a) in the
ideal class group of Q(/—p). If p=—1mod4, x, ,(1<i<A) are
defined over H’ and conjugate over Q(/—p). One of them, say x,.,, is
defined over H’*. (Under the embedding ¢ of H’ into C, x,.,, is repre-
sented by the elliptic curve C/Z + Z,/ —p).

There are six ramification points of X,(11%) — X#(11?), which are con-
jugate over @, and the set of the ramification points is a disjoint union
of two orbits of Gal(Q/Q(v—1)) of length three.

(1.3) The cuspidal sections of X, (p) ([2]) .

For integers k2, 1 < k2 < r, and i prime to p, let (I;k> be the cuspidal

section of Xy(p") represented by the pair (G, X Z/p"*Z, Z|p"Z({', p")).
Here, Z[p"Z((%, p*) is the cyclic subgroup of p,» X Z/p"Z generated by

€, p"), =C, is a primitive p’-th root of 1. We denote 0= ((1)) and

o = <(1)> The ramification index of the covering X,(p") — Xy(p") at ( plk>
ismin{p*, p"*}. Let 0, 1< i< p~(p — 1), be the cuspidal sections of
X.(p") lying over 0 = (?), which are Q-rational. We call them the 0-cusps.

(1.4) We will use the following coverings. Here 7 is the generator of
I'(p") = (Z|p'Z)*|+ 1, s = s(p) is the number of the ramification
points of X — Y, and g(X) and g(Y) are respectively the genuses
of X and Y. If X = X(p) and Y = X7 (p), put g(p) = g(X), &.(p) =
g(Y).
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Table 1.

Cprimep  covering s &X) &)

2 X = X,(32)/(r"> —2> ¥ = X((32)/<r% 8 5 1

3 X=X@0) —¥=X@)r 12 13 1

5 X = X2 —> ¥ = X,(25) 4 4 0

(7 X = X9/ ——> ¥ = X,(49) 2 3 1

11 X = X(121) —2> Y = X:(121) 6 6 2

13 X=X(13) —2» Y= X313 6 2 0

17 X=X17) Y= XA 8 5 1

19 X=X(19 —o Y= X1A9Kr 6 7 1

23 X=X(23 L y=Xx(23) 0o 12 2

or X=2X,23) —2>Y= X293 6 2 0

PEY X=Xm  HY=X0p

For p = 37, let (X,(37) —2—>) X Py — X,(37) be the double covering.
Then s = 2, g(X) = 4 and g(Y) = 2.

(1.5) Let J = J(X) be the jacobian variety of the modular curve X above.
On the Mordell-Weil groups of J or J;(p) (p = 11), we know the
following (Kenku [6, 8, 9], Mazur and Tate [20], Mazur [17], [35]
Table 1, 3, 5).

Table 2

p $J@ or #JIS (D)@
2 2:5|3JQ)|2F

3 3-19|#J(Q)|3*-19-307

5 JQ) = Z[T1Z

7 J(Q) = Z/14Z

11 2-5|4J57(121)(Q)|2*-5° for an integer a =1
13 J(Q) ~ Z/19Z
17 2-73|#J(Q)|2°-73
19 3| #J(Q)| 3% 387
23 11]% J(23)(@)|11-37181

p=z11  J7(D)Q)w: = Z/mZ, where m = num ((p — 1)/12).
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For p = 37, we will see that the Mordell-Weil group of Coker (Jy(37) — J(X))
is isomorphic to Z/5Z. (The double covering X — X (37) has two ramifica-
tion points with the modular invariant j = 1728).

(1.6) Let Z(p"), Z(p") be the normalizations of the projective j-line
Z(1) =P, in X(p") and X (p"), respectively. These are smooth
over Z[1/p] ([2]VI Proposition (6.7)). The special fibre Z(p")QF,
(also Z'y(p") ® F,) has r + 1 irreducible components E,, - - -, E,. The
O-cusps ® F, are the sections of the smooth component E} = E)\
{supersingular points on Z'(p") ® F,}. Put v"(p") = Z(p")\2, 2t E;\1,
which is smooth over Z. The O-cusps are the sections of ¥ |(p”)
(21 V §2, §4, VI).

N.B. (loc. cit.). Let ¢’ = %i(p") be the algebraic stack which repre-
sents the functor: for a scheme S/Z, ¥’(S) is the set of the isomorphism
classes of the generalized elliptic curves C with a S-section P of order
p” such that (P) = (Z/p"Z)/S, isomorphic locally for the étale topology.
Here (P) is the finite étale subgroup generated by the section P (see
loc. cit. V §2, §4). Let 7" (p") be the scheme induced by %’ (= “schéma
grossier”, loc. cit. VI, VII p. 300). Then ¥ (p") is an open subscheme of
Z(p") and smooth over Z (see loc. cit. V §2, §4, I (8.22)). The 0-cusps
are the sections of ¥ "|(p") represented by the pairs (G, X Z/p'Z, + P) for
PeZp'Z.

Let % be an algebraic number field of degree d, % the smallest Galois
extension of @ containing k. For a rational prime g, let q be a prime
of £ lying over g. We denote by f,, e, the degree of q and the ramifica-

tion index of g in %, vespectively. Let C = C(k, p) be the set of rational
primes ¢ as follows:

Ck,p) ={g+#2,ptU{g=p ife,<p-—1}

1. .
U{g=2 if p=+2, 11, 17 or p =1 mod 8} .

Define an integer n’ = n'(k, p) as the least non-negative integer subjects

to

(1.8) p” > min {1 4 ¢’ 4 2V¢’%
qeC(k,p)

and

>4 ifp=2,n>2 ifp=3, n>1 ifp=5,T1T.
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For p = 23, let n” = n'/(k, p) be the least integer such that n” > n’ and
p¥ > 1+ 271 + 2427 For the prime p = 1mod 8 (p > 23), n’ =n" (see
@a.mn).

For a E-rational point x on X,(p") (resp. Xy(p"), by x we denote the
O-section: Spec 0 — Z(p") (resp. — Z'(p7)) which is the unique exten-
sion of x. Let E be an elliptic curve defined over k& with a k-rational

point P of order p’, and x the point on Y,(p’) represented by the pair
(E, + P).

LemMA (1.9). Let q be a rational prime such that q #p, or q =p
and e, <p — 1, and q a prime of k lying over q. If p” > 1+ ¢’« + 2v/q’s,
then x° ® Ofp is a O-cusp for any o € Isomy(k, Q), where O is the ring of
integers of k.

Proof. We denote f, by f, and ¢* the ring of integers of k® Qv
The point x° is represented by (E°, P°) which is defined over %2 By the
universal property of the Néron model E,, there exists a homomorphism
f: ZIp'Z),, — E,, such that f® %k is an isomorphism into E. Let A be
the flat closure of f(Z/p"Z),, ® k) in the Néron model E,, which is a
finite flat group scheme of rank p’. If ¢ # p, f is an isomorphism. If
g =p and e, <p — 1, by the fundamental property of the finite flat group
schemes ([26] § 3 Proposition (3.3.2)), f is also an isomorphism (: f® O™
is an isomorphism, then ker (f® F,;) ={0}). Since p" > 1+ ¢’ + 2/q”
(=5), E has semistable reduction at q (Tate [35] p. 46), and has multi-
plicative reduction (e.g., [16] Lemma 2). Fix an embedding of % into @,.
Then the connected component (E?, ® F,;)° of the unity is a torus T
and T Qg Fpr = Guppse So if x° ® F;; is not a 0-cusp, then Zp’Z C
T(F,;), ~ Z|(¢ — 1)Z or ~ Z|/(¢’ + 1)Z. Therefore the condition p" >
14 ¢’ + 2+/¢° shows that x° ® F,; is a 0-cusp. []

(1.10) Now we describe the fixed points of w = w, of Z'|(p)® Z[1/p]
(p = 5).

Let Z§(p) be the quotient Z'|(p)/{w), which is smooth over Z[1/p].
(Z(p) is smooth over Z, and the action of w on %Z(p) ® F, is generi-
cally étale of degree two, see [2] VI Proposition (6.7)). Let q, # p, be a
rational prime, y a fixed point of w on %(p) ® F,. Then y is represented
by an elliptic curve (/F,) with a subgroup A of rank p such that (E, A) ~
(E/A, E,|A) (see [2]). There exists an endomorphism « of E such that
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a(A) = {0} and o =-— p. The pair (E, @) is lifted to characteristic zero
(over a finite extension of QY), see e.g., [12] Part 12 §5 Theorem 14).
Thus y is the special fibre of a fixed point x; for an integer i, 1 <1
< s = s(p) (see (1.2)). Let x be a fixed point of w on X(p) and O the ring
of integers of QY. Let @/,;),x = O[[t]] be the completion along the
O-section x ([2] VI Proposition (6.7)). Then, ¢ = w* is of the form
ot) =—t+ af*+ --- for a,€ 0 and a; € 0° for some j if ¢ =2. If q¢ # 2,
p, it is easily seen that x, ® F, # x, ® F, for x, # x,.

Now assume g =2 (p=5). The double covering Z(p)® F, —
Zi(p) ® F, has wild ramifications at the fixed points of w = w @ F, (see
e.g., [29] Chapitre IV). By the Riemann-Hurwitz formula, 2g,(p) — 2 =
2(2g.(p) — 2) + 22,1 + i(y)), where y are the ramification points and i(y)
is the index of wild ramification at y (see loc. cit., [17] Chapter II).
Therefore, there are at most s(p)/2 ramification points on &4(p) ® F,. Let
v = v, be the normalized valuation of @, such that v(2) = 1.

SUBLEMMA. Let x, ¢ and O be as above, and n a prime element of 0.
Let @' be the ring of integers of the cyclic extension of Qi (x) of degree
three, and 7’ a prime element of ¢'.

(i) If v(z) = 1(0 = W(F,)), there are at most two solutions t = a € 0
of t = o(t), and at most three solutions t = aen’® of the same equation.

(i) If v(z) = 1/2, t = o(t) has at most two solutions in z0.

Proof. The relation ¢ = 1 implies @; = — ai. The remaining part is
elementary. []

Case p = 1mod 8. The ramification index of the rational prime 2 in
His 2 (see (1.2)). By (il) above we see that the map {x;} — {x; ® F,} is
two to one. Two of x;, ® F, are F,-rational (see [24] Theorem 3).

Case p = 5mod 8. By the same reason as above, the map {x]} —
{x; ® F,} is two to one. One of x, ® F, is F,rational (loc. cit.).

Case p =— 1mod8. In this case H = H’ (see (1.2)), the rational
prime 2 splits in Q(y/—p) and x; ® F, are not the supersingular points
(e.g., [13] Chapter 8, [30]). By the uniqueness of the Deuring lifting (e.g.,
[12] Part 13, §4 Theorem 18), {x.}<icr — {x: ® F,} is injective. Hence (i)
above shows that the map {x;}i<icon — {x; ® F;} is two to one. Let p = p,
be a prime of H lying over 2. Then these {x, ® F,} is the disjoint union
of orbits of the action of Gal(H,/Q(v/ —p)) =~ Gal(k(p)/F,). Here H, is the
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p-adic completion of H and x(p) = O,/p. Note that the degree of p is
odd = 3 for p = 23, p =— 1mod 8.

Case p = 3mod 8. The rational prime 2 does not ramify in H and
the degree of the prime p|2 of H is two. H’ is a cyclic extension of H
of degree 3, which ramifies totally at the primes lying over 2 (e.g., [12]
Part 8 Theorem 7). Then x,® £(p) = x, ® (p') for a prime p’'|2 of H'
and ¢ ¢ Gal (H'|H), where £(y') = Oy [p’. Let E/F, be a supersingular el-
liptic curve. Then x,® F, is represented by the pair (E, A) for A =
ker (a: E— E), & =— p. Under the isomorphism

End (E)—= {a+ bi—;cj-{—gj@ a,b,c,deZ,aEbEczdmodZ}
(e.g., [35] §7), « is represented by ai + bj + ck for a,b,cc Z. Then, as
p=3mod8, a, b, c must be odd. Therefore A is invariant under the
action of (1 + «)/2 € End (E). Let (£, §) be a lifting of (E, (1 + )/2) (e.g.,
[12] Part 13, §5 Theorem 14). Then x; ® F, is the special fibre of x; for
aj,1<j<h, see (1.2). x; is represented by (E, ker (26 — 1)). Thus we
see that the map {x}i;<, — {x; ® F;} is one to one (see (i) above), and
{x; nh<igan — {x; ® F;} is three to one. One of x, ® F, is F,rational ([24]
Theorem 3).

Let y; be the fixed point of w =w®F, on Z(p)RF, (p =5), i(y)
be the index of the wild ramification at y; of the natural morphism

'%‘o(p)@Fz_’g‘;(p)@Fz-
Table 3.
pmod8 i(y,) #{F,rational fixed points} #{non F,-rational fixed poi;s}:
1 1 2 7 nj2 — 2
5 1 1 nj2 —1
-1 1 0 (p=23) h (p = 23)
3 3 1 h—1

Let K be a field, X a proper smooth curve defined over K. Let ¢+ 1
be an automorphism of X defined over K, {x}.;,c, the set of the fixed
points of ¢, and set D = >3 _,(x;) a divisor of X. It is easy to see the
following.

LemmA (1.11). If g is a rational function on X of degree m defined
over K such that (¢*g) + (g) (= the divisor of g) and g(x;) # 0, co. Then
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(o*glg — 1)y > D.

In particular, s £ 2m. 1If, moreover, ¢* = 1,

(o*glg — 1)y = 23ioamy(x) + 25{(y) + (oy,)}

for some positive integers m; such that >:_,m(x;) is K-rational and
Y; + ay;.

Now let K be a finite extension of @, R the ring of integers of K
with the residue field F, for ¢ = 2. Suppose that X is the generic fibre
of a smooth projective curve Z — Spec R, and ¢ an involution of &
defined over R such that %4, = £ /{c) — Spec R is smooth and that the
natural morphism f: & ® F, > % ® F, is not radicial. Let E = > my(2)),
m; > 0, be a K-rational divisor of X such that 1 < dimH%X, O(E)). Then
we have

LemMma (1.12). Assume further that ¢ = ¢ @ F, has fixed points, z; ® F,
are not fixed points and that *C,m(z;, @ F,)) = >, m(z;,®F,). Then
there exists a covering g: ¥ ® F, — P',p, defined over F, such f*((g).)>
2 my(z;, @ F,).

Proof. Let K’ be a finite extension of K over which the z,’s are
defined, and R/, F,, the ring of integers of K’ and the residue field of R/,

respectively. Let & = C;Q 0(z;)®™ be the Cartier divisor of £ ® R’. Then
dimy HYZ ® F,,, &) > 1 by the upper semicontinuity ([34] (7.7.5)1). Then
dimy, H(Z ® F,, O(E)) > 1, because ¥ ~ O(E) ® R’ over Z ® R’. By the
assumption ¢*(E ® F,) = E® F,, there exists a non-constant section s of
HYZ ® F,, O(E)) such that F, ® F,h is a o-invariant subspace. So ¢*h =
h+ a for an aeF, The proof is completed if @ = 0 is shown (because
Z @ F,— % & F, is generically étale of degree 2). Suppose a # 0. For
each point x on & ® F,\Supp (E ® F,), h € Oygr,.. The covering ¥ & F, —
% ® F, is then factored by Spec Uygr, ;) [] at x:

f
Spec Osor,c —> Spec Osor s

G
Spec Oypr,, s Ml

The morphism f is finite of degree 2, and Spec Oygr,, ;) [A] = Spec Oygr,, )
is étale of degree 2, since ¢*h(2) #+ h(z) for any point z on Z @ F,\
Supp (E® F,). Therefore f is étale at any point x € & ® F,\Supp (E ® F,).
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This contradicts to our assumption. []

§2. The rational points on Y,(p")

Let k be an algebraic number field of degree d; %, e, f,, C = C(k, p),
n' = n/(k,p) and n” = n”’(k,p) be as in the last section. Assuming the
existence of a k-rational point on Y(p") with r > n(k, p), we here intro-
duce a rational function g on a modular curve whose divisor is deter-
mined by the k-rational point as above. Further we prepare propositions
which concern g and the fixed points of w, (p = 23). Let x be a k-rational
point on Y (p") = X(p")\{cusps} for r = n'/(k, p). By x we denote also the
image of x by the natural morphism X,(p") — X, see (1.4). We consider
only the primes p with p < 23 or (p = 29 and) # J;(p)(Q) < . For each
g € Isomy(k, @), Lemma (1.9) shows that x° ® £(q) = 0,, ® £(q) for an integer
i, and a prime q of % lying over the rational prime g e C = C(k, p) which
attains the minimal value of 1 + ¢/« + 2+/¢’<, where #(q) = 0;/q. Consider
the @Q-rational section

i(x) = cl . (x) — 22.(0.,))
of A =dJ(X) for p < 23, p + 11; of A = Coker (J,(37) — J(X)) for p = 37T;
of A =dJ;(121) for p = 11; and of A = J;(p) for p = 29 (see (1.4)). Let
% be the normalization of the projective j-line Z4(1) in X (see (1.4)). Let
Z, be the localization of Z at the prime q and ¢, = 0; ® Z,. Then
% ® 0,0, ® Oy are the sections of the smooth part of Z ® Z,, see
(1.6), (1.9). Let

i(x"): Spec 0O, 57, grsmoon RZy—> Ay, z2—>cl@)—0,).
Then by our assumptions on ¢ and r (see (1.8), (1.9)), i(x,) ® «(q) = 0.
Then i(x) ® x(q) = C,i(x7) @ x(q) = 0, i.e., i(x) ® F, =0. The Q-rational
section i(x) ® Z,, is of finite order for p + 37, see (1.5). The specializa-
tion lemma of the finite flat group schemes ([26] Proposition (3.3.2), [18]
Proposition (1.2)) leads that i(x) = 0forp 37 (, note: 1 <3 —-1<Z¢q — 1,
(1.7)). Then there is a rational function g on X such that (see (1.4)

21(x7) —21(0,) forp=23 p+11
j}:‘, (x) — d(0) for p = (23), 29, 31, 41, 47,59, 71
(Case X{(p) =~ PY);
> (x7) + d(o0) — >3 (r(x%)) — d(0) for p =11, p > 29
with #J5(p)(Q) < oo .

@2n (8=
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For p =37, we will show Coker (J(387) - J(X)Q) ~ Z/5Z, see (3.4.2).
Then we get a rational function g on X such that

@1y (& = 22 (x) + 2 (1(0,)) — 22 (7)) — 22(0s,),

where 1 # 7 € Aut (X/X,(37)), see (1.4). As (g) is @Q-rational, we may as-
sume that g is defined over Q. If p = 11 or p is the last case in (2.1),
(w*g) =— (g) (= 0); and if p = 37, (r*g) =— (g). So we may assume

(2.2)

for a square free integer @ (# 0). For p + 37, as Q(x;) is not totally
imaginary (see (1.2)), a > 0.

ProposITION (2.3). Let x be a k-rational point on Y(p"), g the rational
function as above and p = 2, 3,11, 17, or p = 23, + 87, with # J;(p)(Q) < .
In the case p = 5mod 8 and the class number h = W(— p) of Q(+/—Dp) is
divisible by 4, we further assume p” > 1+ q’« + 24/q’c for an odd prime
q + p. Then we have

s=s(p)<2d.

Proof. Case p = 23 and X;(p) ~ P
The rational function g is of degree d and (g) # (w*g). So the con-
ditions of Lemma (1.11) are satisfied.

Case p = 23, + 37, and X;(p) # P

Let xy, - - -, x5, - - -, x, be the fixed points of w = w,. Then g(x)==++a
(see (2.2)). We may assume g(x,) =-+ 4/ a. First, we consider the case
p=—1mod4. Then s =s(p) = h + A’ (see (1.4)) is even, and A(Z A) is
odd. x, is defined over H* (see (1.4)) and [H*: Q] is odd, so that a =1
(by our choice of a, see (2.2)). The points x,, - - -, x, (resp. Xn.1, = =+, Xpenr)
are conjugate to each other over @, so that

(8 — 1) > 2ol

and
&—1, > Z Yoa(%h40) or (g + 1), > Z;L;l(xh+i) .
In the first case s = A + W' < 2d. In the second case, Lemma (1.11) and
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and the fact that A and A’ are odd integers show

(g - 1)0 > 22 l(xz

and

(g+ 1)0 > 2Z (xh+z .
Thus 2d = 2k’ = s.

Next, we consider the case p = 1mod4. If 2d < h = s, then

(8 —va)>2(x)
(8 +va)> 2" (x)

where > + > = >¥_, and @ > 1 (because x; are conjugate to each other
over Q). If h = 0mod4, our assumption and Lemma (1.11) show (g —+/ @), >
2>V(x;) and (g +4/ @), > 22 (x;). This contradicts that s > 2d. If h=0
mod4, a =p. Set D' = > /(x,). D’ is a divisor of degree s/2 and

(8 —vp) =D+ E — X (w(x)) — d0),

for an effective divisor E. We have w*E = E. By the assumption, there
is an odd prime q # p such that p” > 1 + q’« + 24/¢’«. Using the upper

semicontinuity ([34] (7.7.5), 1), we get a rational function f on Z'\(p) ® F,
such that

(f) =D + E — d(c0) — d(0) .

Then (w*f) = (f) so w¥f =+ f If w¥f=+f E>D. If wf=—F (>
D = > _(x) (see (1.11)). Thus s < 2d.

Case p = 11. The number of the fixed points of w = w;, on X, (121)
is six. Using g in (2.1), (2.2), we get d = 3 = s/2 by the same way as
above.

Case p=2,17. Let f=7r*g/g for 1 7 e Gal (X]Y) (see (1.4)). Then
r*f = 1Jf and (f) = 2 ("(=)) + 2(0,,) — X (x) — 200,). If (7g) = (g),
then 7(x’) = x for an ¢eIsomy(k, Q) and any o ¢ Isomy(k, Q). If d =2,
we see that {x, x° = 7(x)} defines a Q-rational point on Y. But we know
that the Q-rational points on X;(32), and on X(17) are the cuspidal points
([35] table 1). If d =3, one of the x° becomes a fixed point of 7. But
we know that a ramification point of X — Y is either a cuspidal point or
a point with the modular invariant j = 1728, see (1.1), (1.4). Therefore

https://doi.org/10.1017/5S0027763000021206 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021206

152 FUMIYUKI MOMOSE

(r*g) # (g) for d = 2 and 3. The rest then follows from Lemma (1.11).

Case p=3. Let f=7*g/g for 1 #7eGal(X]/Y) (see (1.4)). Then
(N = 20N + 2 0.) — 5 () — X (70,). For d < 6 = sf2, if () =
(8), 7(x°) = x** for an ¢eIsomy(k, @) and any o eIsomy(k, @). Any fixed
point of 7 is a cuspidal point or a point with the modular invariant j = 0,
so that 7(x°) # x° for any ¢ € Isomgy(k, Q), see (1.4). Then {x°}, is a disjoint
union of (r)-orbits of length 3. If d = 3, {x°}, = {x, 7(x), *(x)} defines a
Q-rational point on Y. But a Q-rational point on X (27) is a cuspidal
point or a point with the modular invariant j = 0 (see (1.4), [35] table 1).
Therefore (7*g) #+ (g) for d < 6. Then by Lemma (1.11) we get the result.[]

Let &+ = %;(p) be the quotient Z(p)/{w,), which is smooth over
Z[1/p] (see (1.10)).

ProposiTiON (2.4). Let p = 23, #+ 37 be a prime number satisfying
the condition ¥ J;(p)Q) < oo, g the rational function on Xy(p) in (2.2). If
pT > 1+ 27 + 2427, then there is a covering f defined over F,,

Z+®F,—> P,
such that (f). = d’ (cusp) for an integer d’, 1 < d’ < d.

Proof. Let Z = (®° 0(x°)) ® O(d(0)) be the Cartier divisor on Z'(p) ® O;,
where 0 is the ring of integers of 2. By our assumption, dim z, HY(Z (p)®F,, %)
> 1 (see [34] (7.7.5), 1), and £ ® F, = O(d(0) + d(oo)), see (1.9). The cusps

=0Q®F, and oo = oo Q@ F, are not the fixed points of w = w® F,, while
Z,Q F,—>Z* ® F, has ramifications points. The divisor d(0) + d(co) is
F,-rational, and is w-invariant. So Lemma (1.12) yields the desired covering

o O
CoROLLARY (2.5). Under the assumption of (2.4),
$ (D) (F) < 1+ 27d
$Z(p)F) <2+ 8d — s(p) .

ProprosITION (2.6). Let p = 23, + 87, be a prime number such that
£J5(p)NQ) < . Assume that r = n” = n”(k, p) (see (1.8)) and let g be the
rational function on Xy(p) in (2.2). Then we get the following estimates of
$ 25 (D)(Fom).

(i) p=1mod8; ¥27(p)F) =2+ 2d — h/4.
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(ii) p=5mod8 and h = h(— p) = 0 mod 4;
$2(p)F,) <2+ 2d — h/2
or
$Zr(p)F) <1+ 4d — (h — 2)/4.
(i) p=—1mod8; 42 (p)F)<1+2d—h
and
BZiPNF) <=1+ 4d—h.
iv) p=3mod8; ¥ & (p)F,) <2+ 2d — 2h
and .
FXi(pF)=1+4d —h.

Proof. Let x, ---,x, (resp. ¥, =%, @ F,, ¥y, -+, ¥ne if p=1mod4;
Y1y ¥ ¥, if p=—1mod4) be the fixed points of w = w, on X,(p)
(resp. Zo(p) ® F,), see (1.10). Then g(x,) ==x+a (see (2.3)). We may
assume g(x,) =+4+/a € H* (see (1.2)). As in the proof of (2.3), a =1, or
a=pif p=1mod4. Set D = > ,(x,).

Case p =1mod4 and ¢ = 1. The divisor of g — 1 is
g—1)=D+E— 2 (wx)) — d0),

for a w-invariant @-rational divisor E > 0 (see (1.11)). Let ¥ = 0(D + E)
® 0] (wx") + d(0))®" be the invertible sheaf on Z(p) ® O for a finite
extension K of Q. By the upper semicontinuity ([34] (7.7.5), 1), there is
a rational function f on Z(p) ® F, such that

(H =22300) + E — d(0) — d(e0) (+ 0)

for the effective divisor E = E ® F, (see (1.10)). The divisor (f) is Fy-rational
and w-invariant. Then w*f = f and we may assume that f is defined over
F,. Then we get a covering f* defined over F,:

3{6'(19)®F2—f—) Py,
such that (f*) = > M4 (y,) + E’ — d’ (cusp) for an effective divisor E’ and
an integer d’, 1 < d’ < d. Here by y, we denote the images of y;, by the
natural morphism of Zy(p) ® F, to Z{(p) ® F,, Then # X (p)(F,) < 3+ 2d
—h/2if p=1mod8; <2+ 2d — h/2 if p = 5mod 8 (see (1.9)).

Case p=1mod8 and a =p. Let D= D,+ D, D,> (x), be the
decomposition into the sum of Gal(H/Q(y/ p))-orbits D, of length A/2. Then
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(g —v/p) =D, + E, — 3 (w(x")) — d(0)
(g ++/Dp) =D, + E, — 3 (w(x)) — d(0),

for Q(4/ p)-rational, w-invariant divisors E,>0. Let 1 # ¢ be an element
of the inertia subgroup of a prime of H lying over 2, and H* = H” the
fixed field of (o) (=Z/2Z). Then ¢*D, = D, for i = 1,2. There are only
two fixed points of w defined over H* (see (1.10)). Therefore D,® F, =
2>7(y,). In the same way as above, we get a rational function f* on
Zi(p) ® F, defined over F, such that (f*) = >)(y:) + E’ — d’ (cusp), for
an effective divisor £’ and an integer d/, 1< d' £d. So $Z5(p)F) <
2 + 2d — h/4 (see (1.10)).

Case p=5mod8 and ¢ =p. Let D= D, + D,, D, > (x,), be the de-
composition into the sum of Gal(H/Q(4/ p))-orbits D, of length h/2. Here
we assume A = h(— p) # O0mod 4. Then by Lemma (1.11)

(8 —v/p) =2D, + E, — 7 (w(x*)) — d(0)

(g ++p)=2D,+ E, — 3 (w(x)) — d(0),
for Q(y/ p)-rational, w-invariant divisors D, >0. Let ¢ = ¢, be the Frobenius
element of the rational prime 2. Then o(D)) = D,, ie.,, (D,Q F)® =
D,®F,. By (1.10), we see that D, ®F, = (y) + >.{"3**(y,), ¥, 1is the
F,-rational fixed point of w (see (1.10)). By the same way as above, we get
a rational function f* on & (p) ® F, such that (f*) = (y,) + 2 >3y, +
E’ — d’ (cusp), for an effective divisor E’ and an integer d’, 1< d' < d
(see (1.10)). Then 2 (p)F) <1 + 4d — (h — 2)/4.

Case p =— 1mod8. Set D, = > " (x), D, = > (x,.;). Then
D+ E— ¥ () — d0)

(8—1 =4 or
2D, + E, — 2 (w(x7) — d(0)

for Q-rational, w-invariant divisors £ > 0, E; > 0. In both cases, by the
same way as above, we get a rational function f* on Z';(p) ® F, defined
over F, such that (f*) = >..,(y) + E’ — d’ (cusp) for an effective divisor
E’ and an integer d’, 1<d’'<d. Then $#Z}(p)F) <14+ 2d — h and
227 (p)F) =1+ 4d — h (see (1.10)).

Case p=3mod8. Set D, = > (x), D, = >3",(x;). Then
(8—1) =D+ E — 3 (w(x)) — d0)
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or
(g +1)=2D, + E, — 2 (w(x)) — d(0) ,

for Q-rational, w-invariant divisors £ > 0, E, > 0. In the first case, the
same argument as above shows that there is a rational function f* on
ZH(p) ® F, defined over F, such that (f*) =2>%.(y;) + E’ — d’ (cusp),
for an effective divisor E’ and an integer d’, 1 < d’ < d. Then # 27 (p)F)=
24 2d — 2h, and $ Z;(p)NF) <1+ 4d — h (see (1.10)). The second case
yields better estimates. [ ]

§3. Rational points on Y,(p") defined over quadratic fields

In this section we prove Theorem A in the introduction. Let % be
a quadratic field, x a k-rational point on Y(p") for r = n’ = n”(k, p) (see
(1.8)). In this case, it is easy to see that n'(k,p) = n"(k, p) (see (L.7),
(1.8)). So we can apply the propositions in Section 2. Moreover, we see
that we have only to show n(k,p) < n'(k, p) (see Section 0). Applying
Proposition (2.3), we get the result of the theorem except for p = 13, 37,
43, 67,97, 163 and 193 (p < 300, + 5, 7, 151, 199, 227, 277). See table (4.3).

(8.1). Proof for p = 43,67,73,97,163 and 193. We can apply (2.4),
(2.5) and (2.6) in the last section to these cases. Wada [32] shows that
the characteristic polynomials of the Hecke operator T, on the C-vector

space of holomorphic cusp forms of weight 2 belonging to <F0(p), (g —01)>
for p < 250. According to his table, we get

Table 4.

p characteristic polynomial of T, ~#.%; 0+ (p)(Pr‘z)rm #73&” J(p)(FJWi;(’ — p)ri

43 x+2 5 5 1
67 x*4+3x+1 6 6 1
73 x*+3x+1 6 6 4
97 x4 4x® 4 3x — 1 7 7 4
163  x(x® + 5x* + 3x° — 15x* — 16x + 3) 8 10 1
193 (of + 8x + 1) 8 12 1

(€ + 2x* — Bx® — Tx* + Tx 4+ 1)

With these and Proposition (2.6), we get the proof.
(3.2). Proof for p = 13.
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(3.2.1). Rational points on Y,(13) defined over quadratic fields k.

Let x be a k-rational point on Y;(13). There is an elliptic curve E
defined over k with a k-rational point P of order 13 such that the pair
(E, + P) represents x ([2] VI Proposition (3.2)). By (1.5), (1.7), we can
apply Lemma (1.9). So there is a rational function g (defined over Q)
on X (13) such that

8) = (@) + (x) — (0) — (0,,) (++0)

for 1 # o e Gal(k/Q) see (2.1). g defines an involution 7 of X,(13) such
that X;(18)/{r> ~ P. The automorphism [5] e I'(13) (see § 1) of X(13) is
of degree 2, and X,(13)/([5]> ~ P' (see (1.4)). Hence 7 = [5], and so x* =
7(x), 0,, = 7(0;) (+0,). (Note that if a proper smooth curve X defined
over a field is hyperelliptic of genus = 2, the involution 7 satisfying
X/{ry =~ P' is unique.) Then {x, x* = 7(x)} defines a Q-rational point on
Y,(18)/<r> and 0, F, ++ 1(0,) ® F, for any rational prime g. There exists
an elliptic curve F defined over @ such that the image of G, = Gal (Q/Q) of
the Galois representation on Fy,(Q) is contained in {<<(5)> I)} (C GL(Fy,)),
and F ~ E over C.

(3.2.2). Suppose that there is a k-rational point x on Y,(169). There
is an elliptic curve E defined over k with a k-rational point P of order
13* such that the pair (E, + P) represents x ([2] VI Proposition (38.2)).
Let x’ be a k-rational point on Y,(13) which is represented by the pair
(E, —_FP'),kdﬁl(E/(B-P), + P mod (13- P)),,, and p’ the Galois representation

on E’ (k). Then
01— {(9).

As was seen in (3.2.1), there is an elliptic curve F' defined over @ such
that the image of G, under the Galois representation p on Fi(Q) is con-

ES
tained in {(<g> *>} and E' =~ F over C. Since F has multiplicative re-

duction at g = 2 (see (1.9)), there exists a quadratic extension K of &

over which E’ ~ F. Thus
oG =—{(5 9)}-

So o(Gy) = {(; 2)}, which contradicts to the fact that X, .(13)(@Q)
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consists of the cusps 0, oo(; X, c..(p) = Xi(p%), see [7], [21)]).

Remarks (3.3). (3.3.1). The modular curve X = X (16) is of genus 2

and #J,(16)(Q) = 20 (see [6]). Let X -ia Y——2——> X,(16) be the natural
covering, 7 the generator of Gal(X/Y). Then Y = X/{7> ~ P'. Let x be
a k-rational point on Y(16). If ¢ = 3 (resp. =5) does not remain prime in
k, then x ® #(q) and x° ® £(q) are O-cusps for a prime q of % lying over g
(see (1.9)). Then we get a rational function g on X, defined over Q, such
that (g) = (%) + (x°) — (0,) — (0,) (see (2.2)). Thus x° = 7(x) and 0,, = 7(0,)
(# 0, (see (3.2)). Therefore if ¢ = 3 or 5 ramifies in %, Y;(16)(k) = ¢. Let
k be an imaginary quadratic field such that the class number of % is prime
to 5 and that the rational prime 2 does not split in 2. Then the fact that
Z[5Z  J\(16)(@) and the descent ([17] Chapter III) show #J,(16)(k) < co.
Moreover, if 3 splits in 2 or 5 does not remain prime in %, using Mazur’s
idea “formal immersion” [18], we see Y,(16)(k) = ¢.

(3.3.2). The modular curve X,(11) is an elliptic curve with conductor
(11). The defining equation of X,(11) is

Y+y=x-—x

and X,(11)(Q) =~ Z/5Z (see [35] p. 82). The numbers of the F,rational
points for ¢ = 2,3 of & = &',(11) are as follows:

BZ(F) =5 §ZF)=5
FZ(F) =5 $2(F)=15

(loc. cit.). Therefore X,(11)(k). =~ Z/5Z for quadratic fields k. So we
have Y,(11)(k) = ¢ if and only if the rank of X;(11)(k) is 0. For example
if k& is an imaginary quadratic field such that the class number of % is
prime to 5 and the rational prime 11 does not split in &, then Y,(11)(k) = 4.
This can be shown by the descent; see [17] Chapter III

(3.3.3). By the argument in (3.2.1), we have already known that the
k-rational points on Y,(13) are parametrized by the @ U {co}-values of
a rational function on X,(13)/(7) =~ Py of degree 1. If the rational prime
q = 2 does not split in &k or ¢ = 3 ramifies in &, then x® £(q) = " ® £(q)
for a k-rational point x on X,(13) and a prime q of k lying over q.
Therefore by (3.2.1) in such a case Y(13)(k) = ¢.

9 2
(3.4). Proof for p = 37. Let X,(837) —> X —> X\(37) be the natural
coverings, J = J(X) the jacobian variety of X and A = Coker (Jy(37) — J)
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(see (1.4)). Then A has everywhere good reduction over Q(v/37) ([2] V).

LEmmMA (3.4.1). Let p be a prime number congruent to 1mod4,

X.(p) -@:%) X i) X,(p) the natural coverings, and J = J(X) the jacobian

variety of X. If thereis a prime factor of (1/4)B,, (2 which is prime to the
class number of Q(4/ D), then there is a factor ( [Q(y/ D)) of Coker (J(p) — <J)
with finite Mordell-Weil group ( |Q(y/ p)). Here B, (2) is the (second) gen-
eralized Bernoulli number associated to the quadratic residue symbol (2)
(see [13]).

Proof. Let 0/, 0” be the 0O-cusps of X. The order of cl((0') — (0")) is
(1/4)B,, @) [11]. Let g be a prime number which is prime to the class
number of Q(vp) and divides (1/4)B, (z). Let B be a quotient ( /Q) of
Coker (J(p) - J) such that B is @-simple and the order of the image
cl((0) — (0”")) on B is divisible by g, then Z/gZ c B. B has everywhere
good reduction over Q(4/p), see [2] V, and is isogenous to a product
C X C° of an abelian variety C over Q(4/p). Further C is isogenous
over Q(y/p) to C° for 1 #oe Gal (Q(4/ p)/Q), see [31] Chapter 7. Then B
is isogenous over @ to Regy ,7,0(C), where Rey 7,0 is the restriction of
scalars (see [4], [33]). Hence rk B(Q) = rk C(Q(+/p)). Applying the de-
scent to C ( [/Q(v/P)) (see [17] Chapter III), we have § C(Q(v D)) < oo.[]

LemMma (8.4.2). Let A = Coker (J,(37) —J) as above. Then A(Q) ~
Z/5Z.

Proof. (1/4)B,, ® = 5 and the class number of Q(w37)=1. A is

isogenous over Q(+/37) to a product of two elliptic curves, so that A is
Q-simple. Using the table of the characteristic polynomials of the Hecke
operators on the C-vector space S,(I'y(37), (¥)) of the holomorphic cusp
forms of weight 2 with the neben character (¥) belonging to I'(37), p.
207 of [31], we see that # A(Q)., = 5. Then Lemma (3.4.1) is applied to
yield A(Q) =~ Z/5Z. []

Suppose that there is a k-rational point x on Y,(37). Consider the
Q-rational section i(x) = c1((x) + (x*) — (0)) — (0,,)) of A, where 1+£o0¢
Gal(k/Q), see Section 2. Then i(x) ® F, =0 for ¢ = 2,3 and 5 (see (1.9)),
so we get i(x) =0, see (3.4.2). There is a rational function g on X
(defined over Q) such that (g) = (x) + (x°) + (¥(0.)) + (7(0,,)) — (r(x)) —
r(x°)) — (0,) — (0,,), where 1 ¢ e Aut (X/X,(37)), see (2.1).
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Claim. x + 1(x), # 7(x°).

Proof. If x = 7(x), then x is a fixed point of 7 with the modular
invariant j(x) = 1728. This contradicts that x ® x(q) = 0, ® (q) for the
primes q|2 of k. If x = 7(x°), then {x, x* = 1'(x)} defines a @Q-rational point
on (Y,(37)). But we know that the non-cuspidal @-rational points on X,(37)
have everywhere potentially good reduction, [19] Section 5, p. 32. []

Let & be the normalization of the projective j-line Z (1) ~ P, in X.
Then £ is smooth over Z[1/37], see [2].

Case 0, #+ 0,,. In this case 7(0;) =0, and (g) = (x) + (x°) — (r(x)) —
(r(x7)) (+0). Let E, =(x) + (x") and E be the flat closure of E, on
Z QZ, Then EQF, = (0, ®F,) + (7(0; ® F,)). The argument similar to
Lemma (1.11) shows that there is a rational function on Z(37) ® F, of
degree one. This is a contradiction.

Case 0, = 0,,. Let E, = (x) + (x°) + 2(7(0,)) and E be the flat closure
of E,on Z ® Z,, Then EQF, = 2(0,® F,) + 2(r(0, ® F,)). The argument
as in Lemma (1.11) shows that there is a double covering g’: £,37) ® F, —
Py, such that (g'). =20® F,). Then 0 = 0® F, is a fixed point of the
(unique) hyperelliptic involution S of %(37) ® F,. The hyperelliptic in-
volution S of X,(37) sends the cusp 0 = ((1)) to a non cuspidal @-rational

point, see [19] Section 5. As noted as before, S(0) ® F, is not a cusp
(see loc. cit.), so that S = S® F, does not fix 0 = 0 ® F,. Thus we get
a contradiction.

For an imaginary quadratic field &, Y,(p)(k) = ¢ if a rational prime
p remains prime in k, except for finitely many p ([18] §4). For a real
quadratic field k, we use Mazur’s idea “formal immersion” (loc. cit.) to
show the following. []

ProrosiTiON (3.5). Let p =17 be a rational prime ‘éongruent to
1mod 4. If there exists a prime factor of (1/4)B,, (z) which is prime to the

class number of Q(v'p), then Y, (p)Q(v/ D)) = ¢.

Proof. Let X,(p) (p_l)/4> X ——2—> X,(p) be the natural coverings, J =
J(X) the jacobian variety of X, and A = Coker (J,(p) —J). Then by
Lemma (3.4.1), there exists a quotient B ( /@) of A with finite Mordell-Weil
group over Q(vp). As p > (1+4 3)%, Lemma (1.8) is applied for g = 3.

The rest owes to [18] Section 4. []
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COROLLARY (3.6). Let p be a prime number congruent to 1modS8.

Then Y(p)XQW P)) = ¢.
Proof. (1/4)B,, (2) = 0mod 2 (see, e.g. [17] Chapter II §12). []

§4. Further results

Let k be an algebraic number field of degree d, n = n(k,p) and
n’ = n"(k,p) as in Section 1 (1.8). Applying propositions in Section 2,
we can estimate n in some cases.

THEOREM (4.1). Let k be any cubic field. Then

n(k, 2) < 5,
n(k, 3) = 2,
nk,1) < 1.

For p = 19, 23, 41, 47, 59, T1 and the primes p < 79, = 97, + 109, satisfying
#J7(p)XQ) < oo, we have n(k, p) = 0.

Proof. For p < 300, the result follows from Proposition (2.3), (1.4),
(1.8), Lemma (1.12), except for p = 19, 23, 157, 163, 193, (277) (see table
(4.3)). Using Corollary (2.5), we get the result for p = 157, 163, 193 (see
(8.1)). The characteristic polynomial of the Hecke operator T, on
S2<<I’0(157), [1(5)7 - (1)]>) (see (8.1)) is x° + 5x* 4 bx® — 6x2 — Tx + 1 (see
[82]). Thus #Z+(57)F,) =8 and #Z;(A57WF,) = 10. For p = 19,23, if
there exists a k-rational point x on Y,(p), then there exists a rational
function g on X = X(p), defined over @, such that (g) = > (x°) — >, (0,,),
see (1.9), (2.1)). For p = 23, we know # Z,(23)(F,) = 11 ([9] §4). Using
the upper semicontinuity (see [34] (7.7.1)1), we get a contradiction.

(4.1.1) Proof for p=19. Let 1#7ecAut(X/Y) (see (1.4)). If
(r*g) = (g), then 7(x) = x* for a reIsomy(k, Q). Then x is a fixed point
if =1, or {7}, = {r'(x)}i=0,1,» if © = 1. The fixed points of 7 have the
modular invariant j = 0 (see (1.1), (1.4)). So by Lemma (1.9) the first case
above does not occur. In the second Case, {x°}, defines a @Q-rational point
on Y, hence on X,(19). But the Q-rational points on X, (19) are the cusps
and the points represented by the elliptic curve C/ZI(1 ++— 19)/2]. So
(r*g) + (g) is shown. Let D = >%_,(x,) be the @Q-rational divisor of X,(19),
where x; are the fixed points of 7 on X;(19) (see (1.4)). Then by Lemma
(1.11), 1/(0r*glg — 1) e HY(X,(19), ®(D)). The Riemann-Roch theorem and a
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theorem of Clifford (see below) then show dimyH°(X;(19), ®(D)) < 1 + 3.

(4.1.2) TueeorEM (Clifford; see e.g. [6]). Let X be a proper smooth curve
/C of genus = 1, E an effective divisor such that dim H*(X, O(K — E))>0,
where K is the canonical divisor. Then

dimHY(X, O(E) < 1 + —]é-deg (E).

The equality holds if and only if E=0, E~K or E ~z*F if X is
hyperelliptic, where n: X — P! is a double covering and F is a divisor of P'.
It is easy to see the following.

(4.1.3). Let X be a proper smooth curve and ¥ an automorphism of
X of degree m (= 1) defined over Q. Let E be an effective, @Q-rational
divisor of X such that 7*E = E and 7* acts faithfully on H'(X, O(E)).
Then dim,H(X, O(E)) = 1 + ¢(m), where ¢(m) is the Euler number of m.

Let 7 be the generator of I'y(19) = I'(19)/% I';(19) (see (1.4)), which
is of order 9. Then D is §*-invariant and H°(X,(19), 0(D))% = Q-1. If
dimoH(X,(19), (D)) = 2, then §* acts faithfully on H°X,(19), (D)) and
dimo H(X,(19), O(D)) =1 + ¢(9) = 7 by (4.1.3). This is a contradiction.

(4.1.4) Proof for p > 300 (e.g. p = 383, 419, 429, 491, cf. [17] p. 151])
(and for p = 277if # J;(277)(Q) < o). By Corollary (2.5), if Y,(p)(k) # ¢, then
2 (p)(F) =21+ 4-3) —s < 24. But we know # Z(p)(F,) =2 + (p + 1)/12
(see [24] Theorem 3). Hence Y,(p)(k) = ¢ for p > 300 ( , and p = 277) if
$Jo(p) < 0. [J

Remark (4.2). The above method used for (p, d) = (19, 3) can be ap-
plied to some other cases. For example, it gives an alternating proof
for (p,d) = (5,2). In this case, under the notation in (4.1.1), (4.1.2)
and the Riemann-Roch theorem show dimoH°(X, ®(D)) <1 + 2. But if
dimoH(X, O(D)) = 2, then it must be =1 + 4 by (4.1.3).

(4.3). Table for p < 300.

Let & be an algebraic number field of degree d. For the pairs (p, d)
in the following table, we get n(k, p) < n'/(k,p). See (1.4), (1.8), [32], [35]
table 5, pp. 135-141.
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Table 5.
p d s(p) h(— p) (for p = 23)
2 2,3 8
3 2,3,4,5 12
5 2 4
7 2 2
11 2 6
13 2 6
17 2,3 8
19 2,3 8
23 2,3 6 3
29 2 6 6
31 2 6 3
37 2 2 2
41 2,3 8 8
43 2 4 1
47 2,34 10 5
53 2 6 6
59 2,8,4,5 12 3
61 2 6 6
67 2 4 1
71 2,3,4,5,6 14 7
73 2 4 4
79 2,34 10 5
83 2,3,4,5 12 3
89 2,3,4,5 12 12
97 2 4 4
101 2,3,4,5,6 14 14
103 2,34 10 5
107 2,3,4,5 12 3
109 2 6 6
113 2,8 8 8
127 2,8,4 10 5
131 2,3, .--,9 20 5
137 2,3 8 8
139 2,3,4,5 12 3
149 2,3,4,5,6 14 14
151 ? 14 7
157 2,3 6 6
163 2,8 4 1
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Table 5. Continued

p d s(p) h(— p) (for p = 23)
167 2,8,...,10 22 11
173 2,3,4,5,6 14 14
179 2,3, -.-,9 20 5
181 2,3,4 10 10
191 2,8, ...,12 26 13
193 2,3 4 4
197 2,3,4 10 10
199 ? 18 9
211 2,3,4,5 12 3
223 2,3,4,5,6 14 7
227 ? 20 5
229 2,8,4 10 10
233 2,3,4,5 12 12
239 2,3, ...,14 30 15
241 2,3,4,5 12 12
251 2,3, ...,13 28 7
257 2,3,4,5,6,7 16 16
263 2,3,-..,12 26 13
269 2,3,---,10 22 22
271 2,3,---,10 22 11
277 ? 6 6
281 2,3, --+,9 20 20
283 2,3,4,5 12 3
293 2,8,.-.,8 18 18
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