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On a similarity solution for lock-release gravity
currents affected by slope, drag and entrainment
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We consider the long-time propagation of a Boussinesq inertia–buoyancy (large-Reynolds-
number) gravity current released from a lock over a downslope of angle γ , affected by
entrainment and drag. We show that the shallow-water (depth-averaged) equations with
a Benjamin-type front-jump condition admit a similarity solution xN(t) = Kt2/3 while
h, φ, u change like t to the power of 2/3, −4/3, −1/3, respectively; here xN, h, φ, u and t
are the position of the nose (distance from backwall), thickness, concentration of dense
fluid, velocity and time, respectively, and K is a constant. Assuming that γ and the
coefficients of entrainment and drag are constant, we derive an analytical exact solution for
the similarity profiles and show that K ∝ (tan γ )1/3; the driving of the slope is balanced by
entrainment and/or drag. The predicted t2/3 propagation is in agreement with previously
published experimental data but a conclusive quantitative assessment of the present theory
cannot be performed due to various uncertainties (discussed in the paper) that must be
resolved by future work.

Key words: gravity currents

1. Introduction

The propagation of a lock-release gravity current (GC) over a downslope is a topic of
active investigation (Maxworthy 2010; Dai 2013; van Reeuwijk, Holzner & Caulfield 2019;
Zemach et al. 2019; Gadal et al. 2023; Han et al. 2023). The counterpart propagation over
a horizontal surface has been successfully covered by the classical shallow-water (SW)
model (with no entrainment and zero drag) which predicts analytically the important stages
of slumping (xN ∝ t, i.e. a constant speed of propagation uN) and large-time self-similar
behaviour (with xN ∝ t2/3), as summarized by Ungarish (2020); here xN is the position of
the nose, and t the time. The use of the SW formulation for the inclined GC is more
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problematic because (a) there is an additional (slope-driving) term in the momentum
equation, and (b) the modelling of a realistic flow in this case must take into account
entrainment and drag from an early stage (see Zemach et al. 2019). These additional effects
have defied reliable analytical solutions of the SW equations.

An analytical propagation formula of the inclined GC was derived by Beghin, Hopfinger
& Britter (1981). This approximation, called thermal theory, postulates that the GC is
a self-similar box of oval shape. Entrainment and drag are taken into account as global
contributions to the box balances, but a front-jump condition (which is an essential
component in the flow of the inertia–buoyancy GC, see Benjamin (1968)) is not, and
cannot be, imposed. The solution predicts a t2/3 propagation for large time, but the
quantitative result depends on adjustable constants that must be calibrated for each
individual system. In any case, the xN ∝ t2/3 trend has been confirmed by reliable
experiments (e.g. Maxworthy 2010; Dai 2013), and seems to describe a physical pattern
of the GC on a slope. This raises the question if the more reliable SW formulation also
predicts this type of behaviour in analytical form.

Here we attempt to close this gap of knowledge by developing and testing a self-similar
solution for the large-time GC inclined flow with drag and entrainment. The conclusion is
that, under some plausible simplifying assumptions, a closed solution exists that displays
physically acceptable profiles for the flow-field variables and xN ∝ t2/3 propagation.

The structure of the paper is as follows. The formulation of the SW equations and
boundary conditions is presented in § 2. The self-similarity solution is developed in § 3. In
§ 4 we show some test-case comparisons with experimental data, and discuss the insights
of the results and the need for future work for a sharper assessment of the predictions.

2. Formulation

We use dimensional variables unless stated otherwise. The variables of the ambient fluid
are denoted by the subscript a, while those of the current are without subscript (or with
subscript c when emphasis is needed).

The system is sketched in figure 1. We use a Cartesian xz two-dimensional (2-D) system
with x horizontal and z vertically upward, and corresponding u, w velocity components.
Gravity g acts in the −z direction. For simplicity, and in accord with typical laboratory
systems, the slope γ of the bottom is constant. The lock is defined by the backwall x = 0,
dam (gate) at x = x0 and is of height h0 above the bottom. The height of the ambient is
H(x), assumed large as compared with h0. Consequently (a) the return flow ua = −uh/H
in the ambient is negligible, which justifies the use a one-layer SW model, and (b) the
details of the top (open surface or solid lid) are unimportant. (We consider the propagation
in the horizontal x direction. The switch to the slope-aligned ground coordinate (subscript
S is (xS, uS) = (x, u)/ cos γ and the corresponding perpendicular height of the GC is hS =
h(x, t) cos γ . The change is typically small because we assume that γ is small (tan γ � 0.2,
say) otherwise Dw/Dt violates the hydrostatic approximation used in the SW model.) In
these cases 1 − cos γ < 2 %. The experimental data of Maxworthy (2010), Dai (2013),
Gadal et al. (2023) and Han et al. (2023) satisfy this restriction.

The ambient fluid is of constant density ρa. The current is, initially, of homogeneous
density ρc(t = 0) > ρa. Due to entrainment this is diluted to ρc(x, t). The dilution is
expressed by the concentration function

φ(x, t) = ρc(x, t) − ρa

ρc(t = 0) − ρa
, (2.1)

990 R3-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

52
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.522


A similarity solution for lock-release gravity currents
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Figure 1. Sketch of the system. The GC is initially (t = 0) in the lock (dashed line) of dimensions x0, h0. Here
xS = x/ cos γ is the along-slope coordinate. (The top is usually a free surface; in the present analysis this detail
is unimportant.)

with the initial condition φ = 1 in the lock. After release, φ(x, t) ≤ 1. The initial reduced
gravity is g′ = [ρc(t = 0)/ρa − 1]g and the effective reduced gravity is g′

e = φg′, where g
is the gravity acceleration.

We consider a Boussinesq inertial–buoyancy (large-Reynolds-number) GC, affected by
entrainment (of rate E|u|) and drag (of form cDρcu|u|) where E and cD are dimensionless
coefficients, typically small.

The equations for the volume of the current, mass of the dense component (represented
by g′

e) and momentum of the current (see Ungarish (2020), § 11.2) in dimensional form are

∂h
∂t

+ ∂

∂x
(uh) = E|u|, (2.2)

∂g′
eh

∂t
+ ∂

∂x
(g′

euh) = 0, (2.3)

∂

∂t
(uh) + ∂

∂x

(
u2h + 1

2
g′

eh2
)

= g′
eh tan γ − cDu|u|. (2.4)

The calculation of g′
e(x, t) is a part of the problem. The condition at the nose x = xN(t) is

uN = ẋN = Fr[(g′
e)NhN]1/2 = Fr[g′φNhN]1/2, (2.5)

where the upperdot denotes time derivative and the subscript N denotes the nose (front)
position. Here Fr is the nose-jump Froude number, whose value is expected to be close to√

2. (Actually, slightly smaller. This is justified by a control-volume analysis, e.g. Ungarish
(2020), § 4.3, for an inclined channel. In a deep ambient, the thin jump is dominated by
the instantaneous driving force g′

ehN and dynamic reaction (uN/ cos γ )2/2. The details are
cumbersome and outside the scope of this paper.)

To facilitate the analysis, hereafter we switch to dimensionless variables: x is scaled
with x0, h with h0, velocity with Uref = (g′h0)

1/2 and time with Tref = x0/Uref . Next, we
introduce the stretched horizontal coordinate

ξ = x/xN(t) (0 ≤ ξ ≤ 1) (2.6)
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M. Ungarish

and transform the flow-field variables to dependency on ξ, t (instead of x, t) (see Ungarish
2020). The transformed system of equations, in dimensionless form reads

⎡
⎣ h

φ

u

⎤
⎦

t

+ 1
xN

⎡
⎢⎣

u − ẋNξ 0 h
0 u − ẋNξ 0

φ
1
2

h u − ẋNξ

⎤
⎥⎦

⎡
⎣ h

φ

u

⎤
⎦

ξ

= λ

⎡
⎢⎢⎢⎣

E|u|
−φE

|u|
h

φ tan γ − (cD + E)
u|u|

h

⎤
⎥⎥⎥⎦ , (2.7)

where λ = x0/h0 is the lock aspect ratio of the order of unity. The system is subject to

ẋN = Fr(φNhN)1/2 and xN

∫ 1

0
φ(ξ, t)h(ξ, t) dξ = 1. (2.8a,b)

The first equation of (2.8a,b) is the nose-jump condition and the second equation expresses
the global conservation of the dense component (and hence of the initial buoyancy). The
position of the nose is ξ = 1. We keep in mind that E and cD are small (of the order of
0.01), γ � 0.2, Fr ≈ √

2, and λ is of the order of unity. These values are not relevant for
the derivation of the mathematical solution, but are important for the interpretation of the
results.

3. Similarity solution

For progress we assume that Fr, E, cD and γ are constants. For brevity of notation, we
shall use γ instead of tan γ (this can be corrected in the final results if needed).

We seek a similarity solution of the form xN = Ktβ while the h, φ, u fields vary
as ta, tb, tc, where K, β, a, b, c are constants (see also Ross, Dalziel & Linden (2006),
appendix B). After some algebra we find that the only non-trivial solution requires
β = 2/3, a = 2/3, b = −4/3, c = −1/3. It is convenient to express this dependency as
follows:

xN = Kt2/3, ẋN = 2
3 Kt−1/3, h = H(ξ) · ẋ−2

N , φ = P(ξ) · ẋ4
N, u = U(ξ) · ẋN,

(3.1a–e)

with the boundary condition U(0) = 0, U(1) = 1. The task is to calculate the profile
functions H,P,U and the value of K. To this end, we substitute these relationships into
the governing equations (2.7). We obtain, after some algebra, the reduced equations of
volume continuity, dense mass continuity and momentum, as follows:

H + (U − ξ)H′ + HU ′ = λΩEU , (3.2)

−2P + (U − ξ)P ′ = −λΩEPU/H, (3.3)

−1
2
U + (U − ξ)U ′ + H′P + 1

2
HP ′ = λΩE

[
P γ

E
−

(cD

E
+ 1

) U2

H
]

, (3.4)

where the prime denotes ξ derivative, and

Ω = (2/3)2K3. (3.5)
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A similarity solution for lock-release gravity currents

Equations (2.8a,b) yield

Fr2P(1)H(1) = 1, (3.6a)

Ω

∫ 1

0
P(ξ)H(ξ) dξ = 1. (3.6b)

For the verification of the reduction note the relations: xNẋ2
N = Ω and ẍN = −(1/2)ẋ4

N/Ω .
By inspection we find that the volume and mass continuity equations (3.2) and (3.3) are

solved by

U = ξ, H = 1
2λΩEξ, (3.7a,b)

and this solution reduces (3.4) to

P̂ ′ξ + σ P̂ = −(6 + 8cD/E)ξ, (3.8a)

where

P = 1
λΩE

P̂(ξ), σ = 2 − 4γ /E. (3.8b)

Assume σ < 0, i.e. γ > E/2, which is a plausible and mild restriction. This restriction is
necessary because for γ ≤ E/2 the solution P̂ diverges at ξ = 0. The solution of (3.8),
subject to the boundary condition (3.6a) (i.e. P̂(1) = 2/Fr2), is as follows:

(a) for σ /=−1 (i.e, γ /= (3/4)E)

P̂ = −6 + 8cD/E
1 + σ

(ξ − ξ−σ ) + 2
Fr2 ξ−σ , (3.9)

(b) for σ = −1 (i.e, γ = (3/4)E)

P̂ = −(6 + 8cD/E)ξ ln ξ + 2
Fr2 ξ. (3.10)

We note that (3.10) is a good approximation to (3.9) in the interval ±0.02 about σ = −1
which means that max P̂ is bounded by (3 + 4cD/E), roughly, in spite of the large leading
coefficient in (3.9) near σ = −1. In other words, σ = −1 is not a problematic point in this
solution.

The boundary conditions U(0) = 0, U(1) = 1 and (3.6a) are satisfied, and P̂ is positive
for ξ ∈ (0, 1]. To close the solution we must calculate the constants Ω and K. The values
are provided by (3.6b) and (3.5). After some algebra we obtain, for γ > E/2,

Ω = 4
γ

E

(
1 + 1

Fr2 + 4
3

cD

E

)−1

, (3.11)

K =
(

9
4
Ω

)1/3

=
(

9
γ

E

)1/3
(

1 + 1
Fr2 + 4

3
cD

E

)−1/3

. (3.12)

We recall that γ stands for tan γ . Since K and Ω are positive, the results (3.7a,b) and
(3.9)–(3.10) for the profiles U ,H and P are physically acceptable. The solution satisfies
the equations of motion, boundary conditions at ξ = 0 and 1, and conservation of the
dense component.
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Finally, the solution must satisfy the condition φ ≤ 1 which reads

max φ = (λΩE)−1 max[P̂(ξ)] · ẋ4
N =

(
2
3

)2 K
λE

max[P̂(ξ)] · t−4/3 ≤ 1. (3.13)

The leading coefficient K/E behaves like (γ /E4)1/3, which is typically a large number.
Therefore, the condition (3.13) provides an estimate for the time tmin (of the order of
γ 1/4E−1 � 1) after which the similarity solution is physically acceptable. As expected,
this is a long-time behaviour. The volume of the GC is

V = V(t) = xNẋ−2
N

∫ 1

0
H(ξ) dξ = 1

4
λEK2t4/3. (3.14)

We expect V(t) > 1. This is fulfilled when φ < 1 (i.e. t > tmin) because the
volume-integral of the diluted dense fluid is conserved (equals 1) according to the imposed
condition (b) of (2.8a,b). The entrainment which causes the decay of φ increases the
volume of the GC.

4. Discussion

The similarity solution derived here is meaningful for propagation downslope, γ > E/2 >

0. The solution is clearly non-physical for γ ≤ E/2. This explains why the analysis of
Johnson & Hogg (2013) for a horizontal (γ = 0) GC with entrainment and drag did not
indicate this type of long-time pattern.

The profiles U and H are simple lines. Typical profiles of P̂(ξ), which represent the
concentration of the dense component, are shown in figure 2. The prediction is that P̂(ξ)

depends on Fr2, γ /E and cD/E. In the figure, all lines are for Fr2 = 2, and various pairs
of γ /E, cD/E as shown on the lines. All the profiles (for γ > E/2) vary from 0 to 1
at the edges of the GC, but in some cases with large cD/E a pronounced maximum is
attained. The dilution is a complex process, dominated by entrainment and convection,
and constrained by the conservation of the dense component. This explains why P̂ is a
non-linear function of the input parameters. Since H = cξ it is evident that, typically, the
mass of the dense component is concentrated in the frontal part of the GC, ξ > 0.6, say.

We think that the major importance of the results is the propagation behaviour
xN = Kt2/3. First, we emphasize that this is a rigorous (exact solution) prediction of
the SW equations. Second, we give a simple and insightful analytical result for the
dimensionless coefficient K. The driving effect is γ 1/3. When the drag is not large
(cD/E < 10, say), the slope driving is balanced by entrainment, K ∝ (γ /E)1/3. When the
drag is more significant than entrainment, K ∝ (γ /cD)1/3. The dimensionless propagation
coefficient K is of the order of unity for typical cases (γ ∼ 0.1, E ∼ 0.01, cD/E ∼ 1).
For dimensional x∗

N and time t∗ the similarity propagation is

x∗
N = K(g′x0h0)

1/3(t∗)2/3. (4.1)

As expected, at large times only the buoyancy g′x0h0 of the initial lock determines the
coefficient of the t2/3 propagation, for any aspect ratio λ. The result (4.1) is formally the
same as for the classical horizontal GC, but (a) the coefficient K is of course different
([27Fr2/(6 − Fr2)]1/3, see Ungarish (2020) § 3.4.1), and (b) the classical similarity
appears soon after the slumping stage (during which the nose velocity uN is constant).
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A similarity solution for lock-release gravity currents
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Figure 2. P̂ vs ξ for (γ /E, cD/E) pairs shown on the lines. Here Fr2 = 2.

Another interesting result is the angle α of the triangle profile of the current. We note
that in dimensional form (3.7a,b) yields

h∗ = 1
2 Ex∗, (0 ≤ x∗ ≤ x∗

N). (4.2)

Surprisingly, α is independent of γ, cD and Fr.
The self-similar solutions of the classical lock-release GCs display a virtual-origin

difficulty, which also shows up in the present solution. Indeed, our solution does not
satisfy initial conditions at t = 0, and the solution remains valid when we shift t by
an arbitrary time-shift constant, τ , to t + τ . This gives rise to the question which
initial conditions will produce convergence of the solution of the SW system to the
similarity solution. There is no formal answer (to our knowledge) but various tests indicate
that numerical (finite-difference) solutions for lock-release from rest in simple-shaped
reservoirs approach the self-similar behaviour for large t (see Ungarish 2020). This is
supported by experimental evidence that the long-time propagation of GCs is in accord
with the similarity-solution predictions, for various systems; this is also valid for the
present configuration, as shown below. Consequently, in spite of the mathematical rigour,
this solution is not a self-contained quantitative prediction tool. On the other hand, this
undetermined time-shift constant τ can be used to match xN(tm) of a realistic GC to
the self-similar K(tm + τ)1/3, under the expectation that this is a good approximation for
t > tm. Since a realistic GC at a given t after release is bound to be influenced (to some
degree) by the initial conditions, the value of τ is expected to depend on the aspect ratio
of the lock λ and on the initial depth of the lock.

The mathematical rigour does not guarantee physical accuracy. The assumption of
constant E and cD for the entire process lacks physical justification, but we argue that the
use of some proper representative values is expected to produce a good approximation
to the more complex behaviour. The verification requires accurate experimental or
Navier–Stokes simulation data, which is presently unavailable.

Published experimental studies for lock-release GCs over a slope (e.g. Maxworthy
2010; Dai 2013) have reported the tendency for t2/3 propagation at long times after
release (typically t > 20, dimensionless). These qualitative agreements are an encouraging
support to the SW similarity solution. However, it is not possible to make a sharp
comparison of our results with the data, because there are too many uncertainties, in
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(a) (b)

Figure 3. The xN vs t experiment (symbols) and prediction (line) for (a) γ = 9◦ and (b) γ = 6◦. The
matching point is marked by X. Here cD/E = 7 for green lines, cD/E = 5 for the dash-dot black line in (b).

particular, the adjustable time-shift τ of the virtual time origin, and the values of cD and E.
Moreover, the available data cover only a limited distance of propagation in the validity
domain of our solution (because experiments with long slopes require deep and expensive
tanks). We illustrate this with the following test case.

We consider the experiments of Dai (2013) for propagation on slopes of Boussinesq
GCs with the following properties: x0 = 10 cm, h0 = 8 cm, g′ = 17.11 cm s−2. The data
used here, shown by the symbols in figure 3, were taken by digitization and scaling of
the figures 4(a) and 9(b) of Dai (2013). For the SW predictions (green lines) we use
the theoretical Fr = √

2 and the experimentally based tentative estimates E = 0.015 and
cD/E = 7 (Negretti, Flor & Hopfinger 2017; Gadal et al. 2023).

First, we consider the slope γ = 9◦. This yields K = 2.06, see (3.12). We fit the
prediction xN(t) = K(t + τ)2/3 to the measured point xm = 14.0 at tm = 20.53, and we
obtain τ = −2.84. We see in figure 3(a) a remarkably good agreement between data and
theory for this case for 10 < t < 36 (end of available data). Surprisingly, the agreement
starts well before the matching point. This is most likely just a coincidence, because at
t = 10 the experimental GC is barely at the end of the slumping stage (the transition from
the initial stagnant rectangle into a long moving current), and we do not expect this type
of agreement in general. Next, we consider the slope γ = 6◦. We obtain K = 1.80, and
matching at xm = 17.47, tm = 27.1 yields τ = 2.45 We see in figure 3(b) a fair-to-good
agreement. However, the discrepancy is larger than for the γ = 9◦ case. Since the green
line is systematically below the symbols as t increases, we infer that a smaller cD may
improve the result. We change to cD/E = 5, obtain the new K = 1.98 and τ = −1.53.
The corresponding prediction, displayed as the black dash-dot line in figure 3(b), is in
good agreement with the data. Figure 4 shows the log–log plots of the propagations of the
previous figure, and also the 2/3-slope line. The slight deviation from the ideal slope is
due to the virtual-origin shift τ .

The long-time t2/3 propagation has also been detected by the experiments of Maxworthy
(2010), but the data have been reported in an implicit form that precludes a detailed
comparison. Moreover, the experiments of Dai (2014) demonstrate that the t2/3 pattern
applies also to non-Boussinesq systems.

These comparisons are encouraging, but not sharp. The values of E and cD/E are
uncertain (these coefficients are expected to depend on a local Richardson number,
and perhaps also on a Reynolds number, but the details are still under investigation,
e.g. van Reeuwijk et al. (2019)). We note in passing that the bulk Richardson number,
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Figure 4. The xN vs t experiment (symbols) and prediction (line) log–log plot. Details as in caption of
figure 3.

g′
eh/u2 (dimensional variables), is a function of ξ only, which may facilitate the choice

of the averaged constant E and cD when more information becomes available. The choice
of the matching point (time tm or distance xm) is debatable. The experimental data cover a
non-large length of propagation, and some disagreements at larger propagation cannot be
ruled out. Special care may be needed to separate the drag and entrainment contributions
from the hindering effect of the viscous terms (discarded in the SW equations) which is
also enhanced with propagation. Johnson & Hogg (2013) emphasize that the effects of
turbulent entrainment (essential in the present solution) occur at long times, which are of
relevance in large-scale flows in nature and environment, but cannot be well reproduced in
typical laboratory experiments before the flow becomes contaminated by viscous effects.
The conclusion is that the present theory can be used for tentative predictions, but
conclusive tests must wait for future work. In any case, the long-time similarity solution
is expected to point out a tendency to an asymptotic behaviour also for small-scale GCs.
There may be some hybrid cases in which the similarity solution and the viscous effects
coexist, resulting in a t2/3 propagation although the other details of the similarity solution
(such as the triangular height profile) are obscured by viscous smoothing.

The present similarity solution indicates a non-physical behaviour of P(ξ) for γ < E/2.
The reason is unclear. The experiments of Dai (2013) show a change of long-time
behaviour for γ = 2◦ (as compared with the 6◦ and 9◦ cases) which may be a manifest
of the failure of the present similarity balances for small slopes. We keep in mind that for
γ = 0 the SW equations admit a xN ∝ t2/3 similarity based on different balances (zero
entrainment and drag). The gap 0 < γ � 2◦ between these different balances may defy a
similarity approach.

The xN ∝ t2/3 long-time propagation is also predicted by the ‘thermal theory’ (Beghin
et al. 1981). This approximation models the dense fluid as a box of oval shape, and does not
use the front-jump condition. It is therefore interesting that, nevertheless, there are some
agreements between this solution and the SW rigorous result, in particular, the propagation
is with t2/3 and admits a virtual-origin time-shift, and the coefficient of t2/3 is ∝ γ 1/3.
However, the thermal theory xN(t) formula contains some postulated shape-factors and
x-virtual-origin adjustable parameters that preclude a conclusive comparison. We argue
that the SW similarity solution is a more reliable prediction. First, it has been derived
from a clear-cut set of governing equation; the only additional restrictions are that E and
cD are constants, which are clear-cut physical assumptions. Second, the profiles of h, u
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and φ have been calculated, not postulated. Third, the self-similar solution is a generic
tool in the theory of GCs, which works well for many different systems (with and without
stratification, in Cartesian and cylindrical geometries), while the thermal theory is an ad
hoc patch. We hope that future work will provide more information about the merits and
deficiencies of the SW exact solution, and also theoretical or empirical improvements.
A formally straightforward assessment of the analytical solution can be achieved by the
numerical integration of the SW equations with plausible initial conditions. This is a
non-trivial task because small parameters (E, cD, γ ) and long times are involved, and
hence special high-accuracy codes (e.g. Skevington & Hogg 2024) must be employed.
We hope that this paper will motivate such studies.
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