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Abstract

Genomic epidemiology is routinely used worldwide to interrogate infectious disease dynamics.
Multiple computational tools exist that reconstruct transmission networks by coupling genomic
data with epidemiological models. Resulting inferences can improve our understanding of
pathogen transmission dynamics, and yet the performance of these tools has not been evaluated
for tuberculosis (TB), a disease process with complex epidemiology including variable latency
and within-host heterogeneity. Here, we performed a systematic comparison of six publicly
available transmission reconstruction models, evaluating their accuracy when predicting trans-
mission events in simulated and real-worldMycobacterium tuberculosis outbreaks.We observed
variability in the number of transmission links that were predictedwith high probability (P≥ 0.5)
and low accuracy of these predictions against known transmission in simulated outbreaks. We
also found a low proportion of epidemiologically supported case–contact pairs were identified in
our real-world TB clusters. The specificity of all models was high, and a relatively high
proportion of the total transmission events predicted by some models were true links, notably
with TransPhylo, Outbreaker2, and Phybreak. Our findingsmay inform the choice of tools in TB
transmission analyses and underscore the need for caution when interpreting transmission
networks produced using probabilistic approaches.

Introduction

Tuberculosis (TB), predominately caused by infection with Mycobacterium tuberculosis (Mtb),
remains a major global public health concern, with an estimated 10.6 million people developing
disease and around 1.5 million deaths in 2021 [1]. Accelerating the reduction in TB burden to
meet the World Health Organization’s TB elimination goals will require improvements in our
understanding of Mtb transmission dynamics within different population settings. This infor-
mation is critical to informing management of local epidemiology and developing data-driven
prevention and control strategies based on an understanding of the clinical, social network, and
environmental factors that drive onward transmission.

At the individual and population levels, identifying linked cases and broader transmission
clusters has traditionally been done through a combination of DNA fingerprinting techniques
and field-based epidemiological methods, such as contact tracing [2].While this approach can be
effective in well-resourced settings with low TB burden, it can be prohibitively labor-intensive in
high transmission settings with limited laboratory and field epidemiology capacity, as well as
inherently subjective when tracing relies on interviewee recall, which can be particularly
problematic for an illness with such a prolonged infectious period. This can limit epidemiologists’
ability to accurately reconstruct full transmission histories.

Whole genome sequencing (WGS) has enabled finer-scale resolution of Mtb transmission
events. However, relating genomic variation to direct transmission can be complex when
clinical and epidemiological information, such as symptom onset date, infectious period, and
contact history, are incomplete. Simplistic methods, such as setting a threshold of single
nucleotide polymorphism (SNP) differences to define recent transmission, have been applied
successfully in multiple settings to draw insights into transmission dynamics [3, 4]. This,
though, often lacks sufficient resolution to determine the direction and timing of individual
transmission events [5, 6], and is further complicated by the lack of consensus on appropriate
SNP thresholds [3, 7–9]. A more sophisticated approach to transmission reconstruction using
genomic data relies on phylogenetic trees, named phylodynamics [10]. This characterises
macro-scale network patterns [11] and can be used to accurately estimate transmission events
and timings for some pathogens, such as RNA viruses [12, 13]. Multiple factors can complicate
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the use of phylodynamics in TB transmission reconstruction,
including within-host evolution with long and variable latency
periods and low sequence divergence due to a relatively low
mutation rate [12, 14, 15]. Indeed, it has been previously suggested
that sequencing data can provide limited information about
person-to-person transmission in Mtb [13].

Several computational tools have been developed that combine
genomic variation with an underlying epidemiological model
(e.g., susceptible-infected-recovered (SIR) [6, 16] or stochastic
branching process [15, 17]) to estimate the probability of
individual-level transmission events from genomic data. These
tools mainly employ a Bayesian Markov Chain Monte Carlo
(MCMC) framework to account for the high dimensionality and
computational complexity of the resulting models, as well as
incorporating other epidemiologically derived parameters.
Recently, multiple computational approaches were evaluated for
reconstructing transmission in foot-and-mouth outbreaks [18],
and while many of these tools have been used inMtb transmission
studies [19–21], their performance has not been systematically
compared in TB. In this study, we evaluate and compare six
model-based transmission inference approaches for reconstruct-
ing transmission networks using genomic data from real-world
Mtb isolates collected in British Columbia (BC), Canada, and
simulated TB outbreaks.

Methods

Mycobacterium tuberculosis isolates from British Columbia

Study data were collected in BC, a low TB burden region with a
population of 5 million people and a TB incidence of six cases per
100,000 population [22, 23]. Mtb samples were obtained from the
Public Health Laboratory (PHL) of the BC Centre for Disease
Control (BCCDC). From 2,915 culture-positive TB cases diagnosed
between 2005 and 2014, genomic DNA was extracted from 2,290
isolates, one sequence per person, and analysed using MIRU-
VNTR genotyping. Sample preparation, DNA extraction, and
genotyping methods are described elsewhere [24]. Ethics were
obtained from the University of BC (certificate H12-00910) and
informed consent for participation in the study was not required, as
determined by institutional REB review.

WGS was performed at the BC Genome Sciences Centre on the
Illumina HiSeq platform on all isolates with a sharedMIRU-VNTR
genotyping pattern. This resulted in 1,014 high-quality whole
genomeMtb sequences of 125 bp paired-end reads, with an average
depth of coverage of >100×. Reads were mapped to the H37Rv

reference strain (NC_000962.3) using BWA mem [25]. Variant
calling was conducted using GATK [26] programsHaplotypeCaller
and GenetypeGVCFs, with SNPs used in the subsequent analysis.
Low confidence variants (phred quality score Q < 20, read depth
DP < 5) and sites with a missing call in >10% of isolates were
removed. Heterozygous sites were called as the consensus allele if
≥80% of mapped reads corresponded at these positions or an
ambiguous call ‘N’. Variants in repetitive regions, in PE/PPE genes,
and at known resistance-conferring genes were removed from
subsequent analysis.

Twelve putative transmission clusters were identified by group-
ing isolates with a shared MIRU-VNTR pattern where contract
tracing data linked at least two cases in the cluster, categorised as
either small (four clusters between five and nine isolates) or large
(eight clusters with ≥10 isolates). Timed phylogenies were pro-
duced as a maximum clade credibility (MCC) tree for each
MIRU-VNTR cluster separately with BEAST2 v2.6.3 [27], cali-
brated at the tips by collection date. Full details of the phylogenetic
tree construction pipeline can be found in the Supplementary
Methods. For analysis of multiple phylogenetic trees simultan-
eously with TransPhylo, a random selection of 50 trees was drawn
from the posterior selection of 10,000 trees, discarding the 50%
burn-in.

Transmission network reconstruction models

We tested six tools for reconstructing transmission networks:
seqTrack [28], TransPhylo [15], Outbreaker2 [29], Phybreak
[17], SCOTTI [30], and BEASTLIER [16]. Table 1 shows the
specific model features and input data types. An extension of
TransPhylo to allow for parameter sharing and transmission
inference from multiple input phylogenies was also tested, which
we refer to here as TransPhyloMT [31]. In addition, we applied
BEASTLIER using two approaches; jointly inferring the phylo-
genetic and transmission tree and fixing the phylogeny using the
MCC timed tree for each cluster, only estimating the transmis-
sion tree (referred to here as BEASTLIER_fixed). We also
attempted to run BadTrIP [32], though it failed to converge for
most clusters. All approaches use genomic data, either from a
multiple sequence alignment directly or from a timed phylogen-
etic tree indirectly (Table 1), and sampling dates. Priors chosen
for each method reflect those previously used in transmission
analysis of this TB population and in other settings with effective
active case-finding strategies [15, 33, 34]. Full model-specific
inputs and prior parameter estimates are found in the Supple-
mentary Methods.

Table 1. The transmission network reconstruction tools evaluated in this study, detailing the epidemiological features and input data type for each tested approach

Transmission
reconstruction
model Input data type

Prior
generation
time
distribution

Prior
mutation
rate
estimate

Can use
spatial
data

Can use
contact-tracing
data

Within-host
evolution

Unsampled
hosts

Estimates
infection
times

BEASTLIER SNP alignment Yes Yes Yes No Yes No Yes

Outbreaker2 SNP alignment Yes Yes No Yes Yes Yes Yes

Phybreak SNP alignment Yes Yes No No Yes No Yes

SCOTTI SNP alignment No Yes No No Yes Yes No

seqTrack SNP distance matrix No Yes Yes No No No No

TransPhylo Timed phylogenetic tree(s) Yes Yes No No Yes Yes Yes
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Simulated transmission clusters

We simulated a total of 20 TB outbreak clusters using two simulation
approaches. Ten clusters were using the ‘sim.phybreak’ function in
Phybreak [17], which produces simulated sequence data and trans-
mission networks, including the timing and direction of transmis-
sion. Ten outbreaks were simulated using the TransPhylo
‘simulateOutbreak’ function to obtain simulated transmission trees.
The underlying phylogeny was extracted with the branch lengths
converted to substitutions at a rate of 0.5 SNPs per genome per year,
and sequence data simulated along the phylogeny using SeqGen
[35]. Simulated clusters were produced with parameters to reflect
the epidemiology and sampling strategy in the real-world Mtb
clusters used in this study, including accounting for unsampled hosts.
Full details of the simulation methods and parameters are presented
in the Supplementary Methods. Simulated genome sequences and
sampling dates of observed hosts were used as input for each tested
method. Predicted transmission events were compared against the
known transmission network to evaluate model sensitivity (the
proportion of the true transmission links correctly identified), spe-
cificity (pairs that were correctly predicted not to be linked as a
proportion of all truenegative links), and thepositive predictive value
(PPV; the correct transmission links as a proportion of the total
inferred transmission links (true positives + false positives)). Add-
itionally, simulated transmission networks included information on
who-infected-whom, so measures were also calculated when
accounting for the correct direction of transmission.

Model performance of Mycobacterium tuberculosis from British
Columbia

In the absence of a gold standard for confirmed transmission in our
real Mtb clusters, the performance of each tool was evaluated by
determining the number of epidemiologically linked case–contact
pairs that were correctly identified by each model (Supplementary
Table S2). Case–contact pairs were characterised as two hosts found
in the same MIRU-VNTR cluster where one host has named the
other as a contact in contact-tracing questionnaires conducted after
TB diagnosis. Correct predictions were considered as an inferred
link between a known case–contact pair identified with a probabil-
ity of ≥0.5. Where multiple donor hosts were predicted for a
recipient strain, the highest probability link was considered.

Additionally, we compared posterior estimates of transmission
parameters to evaluate the credibility of the predicted links. Previ-
ous work has reported that a signal of direct transmission inMtb is
low divergence between sequences, with most transmission pairs
differing by fewer than five SNPs [3, 5, 36]. While there may be
some cases of sequences differing by more than five SNPs in direct
transmission events, we assumed that most transmission will be
between isolates with few SNP differences and an abundance of
links between highly diverged sequences may indicate erroneous
inferences. Four of the tested approaches, excluding seqTrack and
SCOTTI, inferred an infection time for each host. From these
estimates, we calculated transmission intervals as the time between
donor and recipient host infection.

Results

Simulated TB transmission clusters

Figure 1 shows the sensitivity, specificity, and PPV of each tested
approach from 20 simulated Mtb clusters, 10 each from two

different simulation approaches. Transmission links with a prob-
ability of ≥0.5 were considered. Figure 1a,b show the results irre-
spective of the direction of the inferred transmission (i.e., if host i
transmitted to host j in the true transmission network, a prediction
of i -> j or j -> i would be scored as correct), and Figure 1c,d show the
results when only links with the correct direction of transmission
are predicted.

While there were differences in the overall performance of all
tested methods between the two different simulation approaches,
there were similarities in the relative performance of the tools across
all simulations. Outbreaker2, Phybreak, TransPhylo, and Trans-
PhyloMT correctly predicted the highest proportion of true trans-
mission events in all simulations. In simulated outbreaks produced
using Phybreak, Outbreaker2 achieved the highest sensitivity when
not considering the direction of the transmission link (median
0.425, IQR 0.33–0.52), followed by Phybreak (sensitivity 0.40,
IQR 0.36–0.49) (Figure 1a). For TransPhylo+SeqGen simulated
outbreaks, TransPhyloMT had the highest sensitivity (median
0.26, IQR 0.2–0.31), followed by TransPhylo (median 0.23, IQR
0.19–0.31) (Figure 1b). BEASTLIER, BEASTLIER_fixed, seqTrack,
and SCOTTI correctly predicted very few links between transmis-
sion pairs in all simulated clusters, resulting in low sensitivity when
using these models (Supplementary Table S1). When the direction
of transmission between host pairs was considered, the sensitivity of
all models reduced compared to the sensitivity in predicting trans-
mission links in either direction (Figure 1c,d). The relative accuracy
of the testedmodels remained similar when predicting the direction
of transmission, with the highest sensitivity in Phybreak simula-
tions now achieved in Phybreak (median 0.33, IQR 0.275–0.42) and
by TransPhyloMT in the TransPhylo+SeqGen simulated outbreaks
(median 0.16, IQR 0.11–0.20).

There were marked differences in the PPV of each tested model.
When not accounting for the direction of transmission, TransPhy-
loMT achieved the highest PPV (median 0.68, IQR 0.62–0.78) in
the simulated outbreaks produced using Phybreak, and Phybreak
had the highest PPV in outbreaks simulated using TransPhylo
+SeqGen (median 0.57, IQR 0.37–0.71). The same models had
the highest PPV scores when the direction of transmission was
considered. We found the specificity of all tested models to be high
in the simulated clusters. Only BEASTLIER had a median specifi-
city of lower than 0.95 in all simulations, with and without consid-
ering the direction of transmission, due to the high number of
transmission links predicted with this tool with a probability of≥0.5
(Supplementary Table S1).

Mycobacterium tuberculosis clusters from British Columbia,
Canada

We observed a high degree of variation in the number of high-
likelihood transmission events (posterior probability of ≥0.5) that
were predicted using each method, reflecting the different under-
lying model algorithms and parameters. Example transmission
networks produced by each method for cluster MCLUST006
(N = 6 cases) are shown in Figure 2.

Table 2 shows the results from each model for predicting
transmission events in the 12 real-world Mtb clusters from BC,
Canada. Overall, the number of the epidemiologically linked case–
contact pairs identified by all methods was low and there was
considerable variability in the number of these links that were
identified within the different clusters (Supplementary Table S2).
The model that predicted the highest number of transmission links
supported by case–contact data was Phybreak (17/120; 14%). This
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Figure 2. Example transmission networks predicted by each tested method for cluster MCLUST006 (n = 6) of Mycobacterium tuberculosis strains from British Columbia. Nodes
represent sampled hosts and edges are the highest probability transmission link between hosts. Edgewidths areweighted by the SNPdistance between connected hosts, and edges
are coloured black if the posterior probability of direct transmission ≥0.5 and grey if <0.5.

Figure 1. Boxplots showing the sensitivity (green), specificity (blue), and PPV (red) of each transmission reconstruction model for predicting known transmission events in
20 simulated tuberculosis outbreaks. Links with a probability of ≥0.5 are considered. The results when transmission links between pairs in any direction are shown for Phybreak
simulations in (a) and TransPhylo+SeqGen simulations in (b). The results when transmission links are predicted with the correct donor–recipient direction are shown for Phybreak
simulations in (c) and TransPhylo+SeqGen simulations in (d).
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was followed by TransPhylo, Outbreaker2, and BEASTLIER, all
detecting 14 of the 120 case–contact pairs (12%). Considering the
number of identified case–contact pairs as a percentage of the total
high-likelihood transmission links predicted by each model, the
highest-tested model was TransPhyloMT, with 31% of the total
transmission links supported by case–contact data. This suggests
that although fewer case–contact pairs were identified with this
model, there were also a lower proportion of spurious links pre-
dicted. SCOTTI and BEASTLIER_fixed inferred very few high-
likelihood transmission events overall, which resulted in a low
number of predicted links that were validated by case–contact data.

Posterior estimates of SNP distance and transmission interval
between hosts in predicted direct transmission events revealed
differences between tested approaches. The median SNP distance
in high-probability transmission links between observed hosts was
low for all models, ranging from zero SNPs (IQR 0–0 SNPs) in
seqTrack, which only predicted transmission events between iden-
tical sequences, to five SNPs (IQR 2–12 SNPs) for BEASTLIER_-
fixed (Figure 3a). BEASTLIER, BEASTLIER_fixed, and Phybreak,

which do not consider unsampled hosts, predicted several trans-
mission events between relatively divergent isolates (>30 SNP
differences), which is likely due to inferred direct transmission
between sampled hosts when there may be unobserved cases in
the real transmission chains.

Figure 3b illustrates the differences in the transmission interval
between observed hosts in direct transmission events for all models
that estimated an infection time for hosts. All tested models esti-
mate that most secondary cases are within the first 2 years after
donor host infection, ranging from a median interval of 0.2 years
(IQR 0.2–0.5) with BEASTLIER to 1.2 years (QR 0.5–2.4 years) with
TransPhyloMT. BEASTLIER predicted some high-probability
transmission events between hosts where the infection time ismany
years, with a maximum value of 8.8 years between host infection
times. While long periods between transmission events have been
observed inMtb due to latency of disease onset [37], these predicted
transmission links with a large interval were not supported by
epidemiological evidence and, again, are likely due to this model
not accounting for unsampled hosts in the transmission network.

Table 2. The results of predicted transmission reconstruction model for identifying transmission links in real-world Mtb clusters in BC that are supported by case–
contact data. Bolded values are the best performing models.

Transmission
reconstruction
model

Number of high-likelihood
transmission links (P ≥ 0.5)

Number of high-likelihood
transmission links supported by

case–contact data

Percentage of
case–contact links
identified (N = 120)

Percentage of high-likelihood
transmission links supported by

case–contact data

BEASTLIER 320 14 12% 4%

BEASTLIER_fixed 15 2 2% 13%

Outbreaker2 133 14 12% 11%

Phybreak 142 17 14% 12%

SCOTTI 4 1 1% 25%

seqTrack 80 8 7% 10%

TransPhylo 81 14 12% 17%

TransPhyloMT 26 8 7% 31%

Figure 3. Boxplots of the transmission parameters estimated by each tested method from high-probability (P ≥ 0.5) transmission events between sampled Mycobacterium
tuberculosis isolates from British Columbia. (a) The SNP distance between observed hosts, and (b) the transmission interval between infection times of observed hosts. Note that
SCOTTI and seqTrack do not estimate infection times.
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Sensitivity analysis

To assess the impact of setting the accepted probability threshold of
transmission links at P ≥ 0.5, we re-calculated the number of
transmission links that were supported by case–contact data in
the BC Mtb clusters at probability thresholds of P ≥ 0.75 and
P ≥ 0.25. As expected, we found an increase in the number of these
links that were with most models at the lower probability threshold
of ≥0.25, and a decrease in the number of pairs identified at P ≥ 0.75
(Supplementary Figure S1A). These differences were most pro-
nounced in SCOTTI and BEASTLIER_fixed, where lowering the
probability threshold allowed for a greater number of case–contact
pairs to be identified. Lowering the probability threshold also
increased the overall number of transmission links that were pre-
dicted with each tested model, which in turn, increased the per-
centage of predicted links that were not supported by case–contact
data with most approaches (Supplementary Figure S1B). Interest-
ingly, this was not seen in seqTrack where the percentage of links
that were supported by case–contact data remained similar at all
thresholds, though the percentage of epidemiologically supported
links increased markedly at the lower threshold. This was also seen
in BEASTLIER, though approximately the same number of links
were predicted with all probability thresholds with this model.

Discussion

Wepresent the first systematic comparison of tools for reconstruct-
ing TB transmission from WGS data in simulated and real-world
Mtb transmission outbreaks. Our results demonstrate that the
choice of tool can impact the number and accuracy of predicted
transmission links. We found the accuracy of all tested models was
relatively low for reconstructing transmission links using only
genomic and temporal data, though some approaches can lend
evidence to potential transmission between hosts and confirm the
absence of transmission. As such, the results presented here can
help to guide the choice of tool forMtb transmission investigations
and highlight potential areas of development when using genomic
data to reconstruct transmission in these populations.

We found that Phybreak, Outbreaker2, and TransPhylo per-
formed better in predicting true positive transmission links with the
fewest false positive links in simulated TB outbreaks. TransPhylo
and Phybreak performed best on simulations produced by their
respective tools, although both performed higher than most other
tools across all simulations. Notably, the specificity of all models
was high, suggesting these tools may be most useful to refute
transmission between hosts. To accurately assess model perform-
ance, the PPV and specificity should be taken in context with the
sensitivity. In examples where few transmission links are predicted,
the contribution of correctly predicted links to increasing the PPV
will be higher than when many links are predicted. There were
differences in model performance between the outbreaks produced
using the two simulation methods that can be explained by differ-
ences in the underlying transmission networks. Simulated out-
breaks with TransPhylo had more cases where a single host
infected many individuals (Supplementary Figure S2). Though this
is seen in real Mtb outbreaks, accurately reconstructing transmis-
sion in these circumstances can be difficult as descendant hosts will
be genetically close and may be spuriously linked by direct trans-
mission. Therefore, this suggests that the epidemiology of TB
outbreaks can also influence the accuracy of these tools.

This study was limited by the absence of gold-standard con-
firmation of transmission between individuals in our real-world

Mtb clusters. We were able to provide evidence of potential trans-
mission between sampled hosts by including case–contact data in
our analysis. These links would not fully account for all transmis-
sion between sampled hosts as contacts would be routinely missed
in this form of data collection. In addition, the size of our clusters
varied considerably so it was not possible to calculate meaningful
statistics for our BC TB clusters that included a measure of true
negatives or false positives, such as the specificity. Nonetheless, we
hypothesised that the presence of epidemiological and genomic
linkage between hosts increased the likelihood of these links being
true transmission events.

The number of case–contact pairs identified by all methods was
relatively low in our real-world TB clusters, with Phybreak achiev-
ing the highest sensitivity but only finding 17% of epidemiologically
supported links. TransPhyloMT had the highest proportion of
predicted transmission links that were supported by case–contact
data, though over two-thirds of these links did not match with a
case–contact pair. Most transmission links predicted by all models
were within realistic estimates of the SNP distance and time
between infection in Mtb transmission pairs. Most inferred trans-
mission was between pairs separated by five or fewer SNPs and
under 2 years between host infection times. While the transmission
interval can be highly variable in TB, evidence suggests that most
secondary transmission events occur within 2 years [34, 38], and
this should be reflected in the predicted transmission. There were
some transmission events predicted by BEASTLIER and Phybreak
between hosts separated by many SNPs and multiple years apart,
though these models do not allow for unsampled hosts and attempt
to reconstruct a full transmission network between all samples.

Poor model performance in the BC data appears to be driven
by the low number of case–contact pairs inferred in the
largest two transmission clusters, MCLUST001 and MCLUST002
(Supplementary Table S2). These clusters were part of two TB
outbreaks with complex demography that included people experi-
encing homelessness and poly-substance use [39, 40]. The disparity
between the inferred transmission networks and the reported case–
contact information may be due to difficulty in contact tracing in
these settings. Removing these large clusters from the analysis
increased the overall sensitivity of most models, although only
30% of the remaining case–contact pairs were identified using the
model with the highest sensitivity, Phybreak. Reducing the prob-
ability threshold to accept linkage between hosts improved model
sensitivity but led to a greater number of unsupported links pre-
dicted by most models. Given the low accuracy in predicting
transmission demonstrated in this study, it may be valuable to
provide the probability of linkage between hosts rather than a
binary classifier based on a probability threshold for accepting
transmission, which has been used previously in studies using these
tools to gain insights in the Mtb transmission dynamics (e.g., [19,
21, 31]).

The best-performing models in our study differed from those
identified by Firestone et al. from foot-and-mouth outbreaks [18],
with Outbreaker2 and TransPhylo performing markedly better in
our study. Here, we did not use any spatial or contact data to inform
our transmission inference and there are key epidemiological and
genetic differences between the pathogens tested. The sensitivity of
TransPhylo was far lower in our results than in simulated outbreaks
reported by the authors of the model, with the highest median
sensitivity in our simulated outbreaks at 0.26, compared to 0.72 in
the original paper. The difference in sensitivity between the ana-
lyses is likely due to the original study inferring the transmission
tree from a phylogeny produced directly from the simulations,
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while we reconstructed the phylogeny from the output sequence
data, increasing the phylogenetic uncertainty. While this study is
not an exhaustive analysis of all transmission network reconstruc-
tion models, we have presented results from selected methods that
have been used to reconstruct pathogen transmission and where
well-documented software packages were freely available. For this
reason, wewere unable to run the BORIS package based on the best-
performing model in Firestone et al. as there was no clear docu-
mentation supplied to apply this tool [18]. We did not fully explore
the impact of varying parameter distributions on the resulting
transmission inferences owing to the scale of this analysis, though
testing a range of parameter choices can also be important to
maximise the utility of the tested tools.

Developing computational models for transmission inference to
better reflect the characteristics of disease outbreaks and incorporate
more realistic epidemiological parameters may improve the predic-
tion of transmission networks in TB. This is reflected in the results
here, where the best-performing models, Phybreak, Outbreaker2,
and TransPhylo were developed to account for the complex epi-
demiology of infectious diseases like TB, accounting for within-host
evolution and incomplete sampling [15, 17, 29]. Approaches to
improve TB transmission reconstruction from genomic data should
include modifying existing tools to include other forms of observed
variation between strains, such as small insertions and deletions
(INDELs) and structural variants, as well as focusing efforts on
increasing the detectable variation between Mtb strains using long-
read sequencing and improving variant calling of minor frequency
SNPs. These strategies may improve resolution in outbreaks when
multiple isolates are separated by very few SNPs, which is common-
place inMtb populations with low genomic diversity.

A further consideration when choosing the transmission recon-
struction model is the processing complexity and runtime required,
particularly for real-time surveillance of Mtb transmission or in
settings with limited computational resources. The runtime of each
approach varied considerably (Supplementary Table S3), with seq-
Track computing the transmission network almost instantly for the
largestBCMtb clusterMCLUST002 (N=74cases). Tools that employ
a Bayesian framework must typically run over millions of MCMC
iterations for convergence and thus took considerably longer.

In conclusion, we have systematically compared six tools for
reconstructing transmission using genomic data to assess their
utility for TB transmission analysis. While there were limitations
in the accuracy of the transmission links predicted by all models, we
found that Phybreak, Outbreaker2, and TransPhylo identified the
highest number of true links in outbreak simulation. Moreover,
almost half of the high-probability transmission events predicted
using these models were true transmission links and all models had
a high specificity for refuting transmission between unlinked hosts.
These approaches could be applied to gain some insights intoMtb
transmission dynamics using sequence data in settings with limited
contact network information. These findings can improve investi-
gations into Mtb outbreaks and transmission dynamics and high-
light further areas of research to advance methods for transmission
network reconstruction.
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