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The problem of the assimilation of a cryogenic fuel pellet injected into a hot plasma is
considered. Due to the transparency to ambient particles of the plasmoid, the localised
region of high-density plasma created by ionisation of the ablated pellet material,
electrons reach a ‘quasiequilibrium’ (QE) state which is characterised by a steady-state on
the fastest collisional time scale. The simplified electron kinetic equation of the QE state
is solved. Taking a velocity moment of the higher-order electron kinetic equation, which is
valid on the expansion time scale, permits a fluid closure, yielding an evolution equation
for the macroscopic parameters describing the QE distribution function. In contrast to
the Braginskii equations, the closure does not require that electrons have a short mean
free path compared with the size of density perturbations, and permits an anisotropic and
highly non-Maxwellian distribution function. As the QE distribution function accounts
for both trapped and passing electrons, the self-consistent electric potential that causes
the expansion can be properly described, in contrast to earlier models of pellet plasmoid
expansion with an unbounded potential. The plasmoid expansion is simulated using both
a Vlasov model and a cold-fluid model for the ions. During the expansion plasmoid ions
and electrons obtain nearly equal amounts of energy; as hot ambient electrons provide this
energy in the form of collisional heating of plasmoid electrons, the expansion of a pellet
plasmoid is expected to be a potent mechanism for the transfer of energy from electrons
to ions on a time scale shorter than that of ion–electron thermalisation.

Key words: Fusion plasma, plasma nonlinear phenomena, plasma dynamics

1. Introduction

During a recent experimental campaign of the W7-X (Wendelstein 7-X) stellarator, fuel
pellet injection was found to be associated with a subsequent increase in the ion–electron
temperature ratio (Baldzuhn et al. 2019, 2020; Bozhenkov et al. 2020). Such an increase is
generally desirable, as a higher ion temperature results in a larger fusion cross-section. It
has been conjectured that this effect is due to stabilisation of the ITG modes, resulting in
better ion confinement (Xanthopoulos et al. 2020). However, the rapid parallel expansion
of the ionised pellet material, the pellet plasmoid, along magnetic field lines has been
proposed as at least partially contributing to the increased temperature ratio by directly
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FIGURE 1. Schematic of the electric potential induced by the presence of the plasmoid (Arnold
et al. 2023). Example trapped (with turning points ±zc) and passing electron trajectories are
included. The profiles are assumed to be even in z and monotonically decreasing in |z|, with the
electron density and potential reaching their maxima nm and φm at z = 0.

transferring energy from electrons to ions in the form of significant ion flow velocity,
which is eventually converted to heat (Aleynikov et al. 2019; Arnold, Aleynikov &
Helander 2021; Runov et al. 2021; Aleynikov et al. 2023).

The aim of this paper is to provide a rigorous model of the parallel plasmoid expansion
that resolves the inconsistencies of earlier models. What follows is a brief recapitulation of
the processes by which the pellet plasmoid is formed, the reason for its parallel expansion
and concomitant electron–ion energy transfer, and a summary of the approaches and
pitfalls of earlier models. An outline of the new approach, which does not suffer from
these pitfalls, is provided before being realised mathematically.

When a fuel pellet is injected into a magnetic confinement fusion (MCF) device, the
incoming energy flux from the ambient plasma ablates the surface of the pellet and
produces a gas cloud (Parks, Turnbull & Foster 1977). The pellet and gas are composed of
electrically neutral molecules, but plasma is continually generated within the gas cloud by
the collisions of the high-energy ions and electrons composing the multikiloelectronvolt
ambient plasma with gas molecules. Subsequently, the pellet and gas cloud continue to
cross magnetic field lines at the speed at which they were injected, but some of the newly
ionised plasma is left behind; that which was not collisionally ‘dragged’ along with the
moving gas cloud. This happens because the plasma constituents are charged particles and
follow Larmor orbits that ‘pin’ the particles to the field line. The result is that a plasmoid,
a localised excess density of plasma, is deposited on field lines that intersected the gas
cloud as it traversed the device.

As the plasmoid is a localised increase in density, and electrons have a much higher
thermal velocity than ions, the electric potential required to maintain quasineutrality acts
to trap electrons inside the plasmoid and accelerate ions away from the plasmoid. Figure 1
shows a schematic of the plasmoid and electric potential. As the potential acts to trap
electrons, we will use the names ‘well’ and ‘potential’ interchangeably. With regards to
pellet plasmoids the density is such that the electric potential drives parallel dynamics
much more quickly than transverse dynamics, the latter being due to drifts and collisional
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Parallel expansion of a fuel pellet plasmoid 3

diffusion. Therefore, as with previous investigations, we consider the parallel expansion
of the pellet plasmoid on a given field line.

We stress that not all of the plasma produced from the pellet ablatant fits the
description of the previous paragraph. Naturally, plasma that is ‘dragged along’ with the
gas cloud exhibits quite different dynamics. However, for ‘fast’ pellet injection devices
proportionally more of the plasmoid dynamics occur on field lines where the gas cloud
and pellet have departed (Arnold et al. 2021). The injection devices fitting the criteria of
being ‘fast’ are becoming the norm in MCF experiments, so the conclusions drawn from
the parallel plasmoid expansion in the absence of gas can be expected to reasonably well
apply to pellet injection in future MCF devices.

The dynamics of any plasmoid immersed in an ambient plasma depend greatly upon
the plasma and plasmoid parameters, such as their relative temperatures, densities, the
plasmoid size and so on. Naturally, it is difficult to describe plasmoid dynamics with a
too wide-ranging choice of parameters, so our attention must be restricted to plasmoids
broadly corresponding to those produced by pellet injection in a state-of-the-art MCF
device. We take as a reference point the W7-X stellarator, as the success of its pellet
injection experiments provides motivation for studying pellet plasmoids. Further, the
temperatures and densities in the core of W7-X are generally comparable to other
high-performance MCF devices.

For the purpose of untangling the different phenomena involved in plasmoid expansion
it is helpful to provide concrete plasma parameters. We consider an ambient plasma of
electron density na = 5 × 1019 m−3 at a temperature Ta = 5 keV. A typical line-integrated
electron density (along a field line) of a fuel pellet plasmoid in W7-X is N = 1022 m−2

(Arnold et al. 2021).
The fuel pellets in W7-X contain approximately 1020 electrons and penetrate roughly

0.1 m into the plasma, resulting in the average line-density in the radial direction of
1021 m−1 (Baldzuhn et al. 2019). In W7-X the flux surface located at minor radius
r = 0.3 m, given the major radius R = 5 m, has a flux-surface integrated density of
approximately 3 × 1021 m−1 if the density of this flux surface is 5 × 1019 m−3. Hence,
for such a flux surface the temperature is not strongly quenched after assimilation.
For high-performance scenarios in W7-X the quenching is even weaker due to the
higher plasma densities. Therefore, unlike killer pellets, which quench the temperature
completely, on large flux surfaces fuelling pellets only slightly affect the temperature. We
will therefore neglect any change in Ta during the plasmoid expansion.

We consider irrational flux surfaces where individual field lines have a connection
length LF that is, in principle, infinite. However, given that the plasmoid has a transverse
size rI , the connection length of the flux tube containing the plasmoid is in practice
(2πR)(2πr)/rI , as this is the length after which the flux tube of diameter rI self-intersects.

The transverse size of the pellet plasmoid in W7-X is difficult to estimate from the
camera observations (Baldzuhn et al. 2019), and the question of the transverse size of
the pellet plasmoid is complicated by the fact that the ablated and ionised material tends
to split up into smaller, closely spaced (often overlapping) discrete plasmoids that are
seen as ‘striations’ in the density profile, as observed in ASDEX (Axially Symmetric
Divertor EXperiment) Upgrade experiments (Mueller et al. 2002). In those experiments,
the overall plasmoid split up into tens of plasmoids of size ∼1 cm. Therefore, we consider
rI ∼ 1–10 cm, which can be interpreted as the size range of one small plasmoid to the
overall plasmoid. This range gives a connection length of 600–6000 m. As the parallel
size of the plasmoid is expected to reach this after its density has dropped to at most
the value of the ambient plasma for N = 1022 m−2 (Aleynikov et al. 2019), we formally
take the connection length to be infinite. This formulation is naturally consistent with the
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FIGURE 2. Schematic of the phase-space domain of the electron kinetic problem at z = 0. This
is also the domain for the bounce-averaged kinetic problem. The dotted line indicates E = E‖ +
E⊥ = 0. The diagonal dashed line indicates E = EI/II, which separates regions I and II. The
vertical dashed line indicates E‖ = 0, the trapped–passing separatrix.

ambient plasma temperature remaining constant. Arnold, Aleynikov & Breizman (2023),
in contrast, treated electron kinetics in a high-Z plasmoid on a field line of finite connection
length, accounting for the quenching of the ambient plasma temperature.

As plasmoid electrons are ‘born’ at energies comparable to the ionisation energy, of
order tens of electronvolts, but are immersed in an ambient plasma with a temperature of
the order of several kiloelectronvolts, the electron distribution function as a whole will
consist of a cold, dense core of plasmoid electrons and a hot, sparse tail of ambient
electrons. The distribution function is only close to a Maxwellian after the plasmoid
electrons have been sufficiently heated by the ambient electrons, which happens after the
plasmoid has significantly expanded with the plasma parameters considered here. The
primary concern with previous models of the expansion is that they treated only the cold
plasmoid electrons, assuming that they have a near-Maxwellian distribution function, but
did not treat ambient electrons. These electrons were simply assumed to be of a constant
density, only providing collisional heating to the plasmoid electrons. Further, ambient ions
were not considered at all in the fluid model for the ions. The consequence of this approach
is that the electric potential decreases without bound as the plasmoid density vanishes.
Clearly, one cannot use this approach as a basis for a treatment of both trapped and passing
electrons. The fact that the electric potential was unphysical also called into question the
result of the electron–ion energy transfer and other aspects of the expansion.

A more sophisticated approach to electron dynamics is required to resolve these
issues. We will consider electron kinetics in the variables of (i) parallel energy E‖ =
mev

2
‖/2 − eφ(z), where v‖ is the velocity parallel to the field line, (ii) perpendicular energy

E⊥ = mev
2
⊥/2, where v⊥ is the speed perpendicular to the field line, (iii) z, the position

along the field line and (iv) t, time. In anticipation of the form of the distribution function
for different energies we split the phase space into regions I, II and III, respectively,
corresponding to the deeply trapped electrons, hot trapped electrons, and hot passing
electrons (figure 2).
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In each region we employ the separation of time scales appropriate for the plasmoid and
plasma parameters mentioned earlier in this section in order to obtain a simplified kinetic
equation for the electrons. We find that trapped electrons collide with the cold, dense
plasmoid electrons (and the plasmoid ions) much more frequently than with the passing
electrons. At the same time, owing to the high temperature of the ambient plasma, the
mean free path of passing and hot trapped electrons exceeds the length of the plasmoid;
the plasmoid appears essentially transparent to the ambient electrons, and hot trapped
electrons bounce inside the well many times before colliding. The latter effect means that
trapped electrons behave ‘adiabatically’ as the potential well expands.

We will show that, except at the very earliest stage of expansion, the ordering of time
scales leads to electrons reaching a ‘quasiequilibrium’ (QE) state which is characterised
by the electron distribution exhibiting a steady-state on the time scale on which trapped
electrons collide with the plasmoid. The steady-state is established with no-net-flux of
electrons into the trapped region of phase space, in order to prevent the ‘charging up’
of the plasmoid (violation of quasineutrality) on this time scale. The QE distribution
function is analogous to an equilibrium distribution function, which is indeed attained
if electron–electron collisions are the fastest effect. In our case, however, the bounce
period of hot trapped electrons is considerably shorter than the collision time. We note
that the QE state and the equilibrium state (which has a Maxwellian energy distribution)
differ conceptually; a Maxwellian distribution exhibits no collisional flux, but the QE
state is characterised by a vanishing divergence of collisional flux; in this sense QE is
a ‘dynamical’ steady-state.

It will be shown that the QE distribution is specified in terms of the ‘deeply trapped’
distribution function occupying region I, a Maxwellian with homogeneous temperature
T , which is uniquely defined by two parameters. These two parameters must be such that
there is no-net-flux of electrons into the trapped region on the time scale on which QE
is established. This allows us to express one parameter of the lowest-order distribution
function in terms of the other. Once the electron distribution is known in terms of the
remaining parameter, which we choose to be T , its zeroth moment may be taken to obtain
an expression for electron density, which, combined with the quasineutrality condition,
provides an implicit expression for the self-consistent electric potential φ in terms of T .
The velocity moment corresponding to line-integrated energy density is then taken over
the higher-order electron kinetic equation, which is valid on the expansion time scale,
in order to obtain an energy conservation law, which is practically used as the evolution
equation for T .

A description of the expansion requires a model for ion motion. Two models are
considered: a cold-fluid model with a single flow velocity, and a collisionless kinetic
(Vlasov) model. The first model is pragmatically justified by a possible application of this
work being to provide a simplified model for pellet plasmoid expansion in an established
fluid code. The second is justified by the long mean-free-path of hot ambient ions. These
models represent opposite collisionality regimes for ions, and we therefore expect the
shared qualitative properties to remain in a more sophisticated and accurate model for
the ions. The qualitative property of greatest concern is the electron-to-ion energy transfer
during the expansion.

With each ion model the system was evolved until the plasmoid and ambient densities
were similar and the plasmoid electron temperature T had reached Ta; the plasmoid
assimilated with the ambient plasma. After this point the electric field does not provide
much energy to the ions, so the energy transfer from electrons to ions may be considered
complete. With the given choice of plasma parameters, the densities and temperatures
equilibrate at approximately the same time. With a much larger line-integrated density N
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the temperature equilibration would occur well before the densities are comparable. With
a much smaller line-integrated density, the densities would become similar well before the
temperatures have equilibrated. More discussion of how the QE formalism fits into the
larger topic of plasmoid expansion is given in a later section.

Late in the plasmoid expansion with the cold-fluid model for ions, a steepening of
the density profile results from the plasmoid rapidly expanding into the ambient plasma,
causing a shock near the extremities of the plasmoid. This shock would generate sound
waves and solitons that propagate into the ambient plasma; wave generation would then
sap the kinetic energy of the plasmoid expansion and possibly alter the electron–ion
energy balance. However, the shock and wave dynamics may only be properly accounted
for with Poisson’s equation for the electric potential, as a deviation from quasineutrality
would occur near the shock and within the waves. As we neglect any deviation from
quasineutrality, sound wave and soliton generation is suppressed.

In the Vlasov ion model, which accounts for the ambient ion temperature, no shock is
observed; the density profile smoothly decreases to the ambient density. This is because
the hot ambient ions either traverse the entire plasmoid or are rapidly reflected from the
potential, hence do not ‘pile up’ at the moving edge of the plasmoid. It is expected that as
the ion temperature decreases the system is more prone to forming a shock.

1.1. Self-similar solution to plasmoid expansion
Aleynikov et al. (2019) provided the self-similar solution to plasmoid expansion given
that the plasmoid is transparent to the ambient plasma. Although we seek to rectify
the issues of the model therein, the density and temperature profiles obtained with the
plasma parameters given earlier will be used to justify the ordering which will be used
to simplify the electron kinetic problem. We require only order-of-magnitude estimates to
find this ordering, so we deem the self-similar solution good enough for this purpose. We
develop these estimates assuming that plasmoid ions are singly charged and have mass mi.
However, as we wish to model the expansion of the plasmoid well past the applicability of
the self-similar model, we must modify the profiles in Aleynikov et al. (2019) so that they
are valid (i.e. give a correct order of magnitude estimate) for the long-term expansion.

Firstly, we note that in the self-similar expansion the plasmoid electron temperature is
given by T = νhTat for t � ν−1

h , where

νh = nae4 ln Λ

6
√

2π3/2ε2
0m1/2

e T3/2
a

(1.1)

is the inverse heating time of the cold plasmoid electrons by a hot population of density na
and temperature Ta. The expression

T ∼ Ta(1 − exp(−νht)) (1.2)

agrees with this linearly increasing temperature at early times, but exponentially
approaches Ta as time advances, which is the characteristic behaviour of a cold
Maxwellian being heated by a hotter one. Therefore, we expect the above expression to be
adequate in describing the plasmoid electron temperature for both the short and long-term
evolution of the plasmoid.

In the self-similar solution, the density becomes infinite at z = 0 as t → 0 and vanishes
for t → ∞, neglecting the fact that the electron density approaches na as time advances.
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Therefore, the expression

nm ∼ Nνh

√
3mi

8π(νht)3Ta
+ na (1.3)

for the peak electron density, which simply adds the ambient electron density na to the
self-similar solution, is a plausible expression for both long- and short-term evolution.

Although the electric potential in Aleynikov et al. (2019) diverges as |z| → ∞, the
Boltzmann relation

eφm ∼ T ln
(

nm

na

)
(1.4)

provides an adequate estimate for the height of the potential. This estimate is also
supported by the solution to the self-consistent electron kinetic problem in Arnold et al.
(2023), which showed that the potential height is the same order of magnitude as that
suggested by the Boltzmann relation, its exact value being somewhat larger when T < Ta.

Equation (1.3) expresses the peak electron density, which we will subsequently use to
obtain an ordering. Of course, electrons move within the plasmoid, so the most rigorous
approach would be to consider ‘average’ quantities throughout an orbit. This would be
very complicated, and relies on detailed knowledge of the shape of the potential which
we have not yet obtained. Therefore, we obtain the ordering using quantities at the peak
of the plasmoid, with the reasoning that the plasmoid density is very large at its peak and
decreases rapidly as one moves away from it: hence, when considering trapped electrons,
the average over the trapped orbit of any quantity will be heavily weighted by the value at
the peak. When considering passing electrons, we note that the expressions we obtain are
the same as those obtained by integrating over the z-dependent plasmoid density.

2. Electron kinetics

The kinetic equation for the electron distribution function f is given by

∂f
∂t

+ v‖
∂f
∂z

+ e
me

∂φ

∂z
∂f
∂v‖

= C( f , f ) +
∑

k

Ce,ik( f ) (2.1)

in the variables (v‖, v⊥, z, t), where C( f , f ) is the electron self-collision operator and
Ce,ik( f ) is the collision operator for electrons colliding with ion species k.

We change to the independent variables (E‖ = mev
2
‖/2 − eφ, E⊥ = mev

2
⊥/2, z, t),

∂f
∂t

+ v‖
∂f
∂z

− e
∂φ

∂t
∂f
∂E‖

= C( f , f ) +
∑

k

Ce,ik( f ), (2.2)

showing that collisionless change in electron energy is associated with time-variation
of the electric potential. We note that with a stationary potential both E‖ and E⊥ are
constants of motion in the absence of collisions. Passing electrons have E‖ ≥ 0 and trapped
E‖ < 0. The minimum parallel energy of an electron is E‖ = −eφm, which corresponds to
an electron with v‖ = 0 which remains at z = 0.

We now solve the kinetic equation in regions I, II and III after splitting up the
distribution function into its representation in each region: fI, fII and fIII. That is, when
we are in region I, for example, we solve the kinetic equation for fI. No matter where we
are in phase space, collisions are experienced with every other region of phase space via
C(·, fI + fII + fIII). In this sense it is understood that fI (or fII or fIII) is the entire distribution
function in region I (or II or III), but is zero outside of its own region.
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2.1. Solving the kinetic equation for passing electrons (region III)
The kinetic equation for electrons in region III is given by

∂fIII

∂t
+ v‖

∂fIII

∂z
− e

∂φ

∂t
∂fIII

∂E‖
= C( fIII, f ) +

∑
k

Ce,ik( fIII). (2.3)

The collision frequency of an electron at the peak of the plasmoid with the plasmoid
electrons and ions is approximately given by

νp(v) = nm(1 + Zeff)e4 ln Λ

8πε2
0m2

ev
3

, (2.4)

where v is the electron speed and

Zeff =
∑

k Z2
k nik(z = 0)∑

k Zknik(z = 0)
(2.5)

is the effective charge of the ions at z = 0, where Zk and nik are the charge (in multiples of
e) and density of ion species k, respectively. Equation (2.4) is the frequency at which an
electron experiences pitch-angle scattering, assuming that quasineutrality

ne(z = 0) = nm =
∑

k

Zknik(z = 0), (2.6)

where ne is the electron density, holds. The typical velocity of a passing electron is given
by the ambient electron thermal velocity vTa = √

2Ta/me. The inverse of the time taken for
a passing electron to transit the plasmoid is νT = vTa/Lp for plasmoid length Lp := N/nm.
Hence, for a hydrogenic plasma, in region III the ratio of the collision frequency with the
plasmoid and the inverse transit time is given by

νp(vTa)

νT
:= μ = Ne4 ln Λ

16πε2
0T2

a

. (2.7)

With the plasma and plasmoid parameters given in the Introduction this ratio is much less
than unity,

μ � 1, (2.8)

where for the purpose of calculation the Coulomb logarithm ln Λ is assumed to be equal
to 15. This implies that the mean free path of passing electrons is much longer than
the plasmoid, so the plasmoid appears essentially transparent to ambient electrons. We
therefore refer to μ as the opacity of the plasmoid. Here μ is independent of any parameters
that change during the expansion, hence it is small throughout the entire expansion. The
expression for opacity obtained by taking into account the changing plasmoid density is
the same as (2.7) (see (6) in Arnold et al. (2021)).

The terms in the kinetic equation (2.3) containing time derivatives correspond to
collisionless changes in the energy of passing electrons, which certainly occur on a longer
time scale than the transit time. Therefore, the shortest time scale in region III is the transit
time, which is associated with the convective term in the kinetic equation; the lowest-order
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kinetic equation for passing electrons is

v‖
∂fIII

∂z
= 0, (2.9)

which implies that fIII is independent of z. The kinetic equation for passing electrons (2.3)
then reduces to

∂fIII

∂t
− e

∂φ

∂t
∂fIII

∂E‖
= C( fIII, f ) +

∑
k

Ce,ik( fIII), (2.10)

the solution to which can be obtained immediately by bounce-averaging. We define the
bounce integral of a function g(E‖, E⊥, z, t) to be∮

g dz := 2
∫ zc

−zc

g dz, (2.11)

where zc(E‖, t) ≥ 0 is the turning point such that

E‖ + eφ(zc, t) = 0 (2.12)

(cf. figure 1). The bounce-average of g is given by

〈g〉 = 1
τ

∮
g dz (2.13)

for bounce period

τ =
∮

dz
v‖

, (2.14)

where v‖ = √
(2/me)(E‖ + eφ(z)). We note that on an infinitely long magnetic field line

the bounce-average of any function g for E‖ ≥ 0 is given by

〈g〉|E‖≥0 = lim
|z|→∞

g. (2.15)

As the potential vanishes at infinity, and we expect the distribution function to be constant
at infinity, the bounce-average of (2.10) is solved by the Maxwellian defining the ambient
plasma,

fIII = fa = na

(
me

2πTa

)3/2

exp
(

− E
Ta

)
. (2.16)

2.2. Solving the kinetic equation for deeply trapped electrons (region I)
The kinetic equation for electrons in region I is given by

∂fI

∂t
+ v‖

∂fI

∂z
− e

∂φ

∂t
∂fI

∂E‖
= C( fI, fI) + C( fI, fII + fIII) +

∑
k

Ce,ik( fI). (2.17)

We expect the potential well to be parabolic at its peak; deeply trapped electrons bounce
inside this parabola and collide with the plasmoid when its density is near its peak. For a
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parabolic potential of height φm and width Lp, the bounce frequency is given by

νB ∼ Lp√
2eφm/me

(2.18)

and is associated with the convective term, so we write

v‖
∂fI

∂z
∼ νB fI. (2.19)

Substituting expressions for the temperature (1.2) and density (1.3) from the modified
self-similar solution into the Boltzmann relation (1.4) yields

eφm

Ta
∼ (1 − exp(−νht)) ln

(
1 + 2

π
√

3

√
mi

me
μ(νht)−(3/2)

)
. (2.20)

The above is always order unity given μ � 1, except at very early or very late times.
Owing to the height of the potential, the bounce frequency in region I is of the same

order as the transit frequency in region III,

νB ∼ Lp√
2Ta/me

. (2.21)

As we expect fI to correspond to the dense population of cold plasmoid electrons, we
associate the collision terms against fI with the frequency of collisions with the plasmoid;
we write

C( fI, fI) ∼
∑

k

Ce,ik( fI) ∼ νp(vT)fI, (2.22)

where vT = √
2T/me is the typical electron speed in region I.

As fII and fIII represent the hot tail of the distribution, we associate the collision terms
against these with the heating rate. As T approaches Ta exponentially as time advances,
this heating rate decreases exponentially as time advances: we define the heating rate to be

1
Ta

dT
dt

= νh exp(−νht) (2.23)

and write

C( fI, fII + fIII) ∼ νh exp(−νht)fI. (2.24)

The ratio of the heating rate and the frequency of collisions with the plasmoid (using
the modified self-similar temperature (1.2) and density (1.3)) gives

νh exp(−νht)
νp(vT)

∼ 4
3
√

π
exp(−νht) (1 − exp(−νht))3/2

(
1 + 2

π
√

3

√
mi

me
μ(νht)−(3/2)

)−1

.

(2.25)

With the plasma parameters used in the Introduction the above is much smaller than unity
for all times: collisions with the plasmoid occur much more frequently than collisions that
cause heating. This effect is also enhanced by the fact that in a parabolic potential well we
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Parallel expansion of a fuel pellet plasmoid 11

expect the heating rate to be slightly reduced, due to the reduction in the density of passing
electrons and their reduction in collisionality (Arnold et al. 2023). Hence, we can write

νh exp(−νht)
νp(vT)

� 1. (2.26)

As region I represents the cold electrons, we expect the time-dependent terms in (2.17)
to act on a much longer time scale than the collision time. In region III we noted that
the transit frequency greatly exceeds the collision frequency with the plasmoid. However,
as we move into region I, which contains lower-velocity electrons, the bounce frequency
(which is comparable to the transit frequency, cf. (2.21)), remains the same as the collision
frequency increases. Therefore, collisions with the plasmoid and bounce motion are
associated with the two shortest time scales in region I. Accordingly, the lowest-order
kinetic equation in region I is

v‖
∂fI

∂z
= C( fI, fI) +

∑
k

Ce,ik( fI). (2.27)

When T � Ta, T � eφm, which allows us to define EI/II such that region I extends for
several T in both the parallel and perpendicular direction. Therefore, the solution to the
above, assuming that collisions with ions are well-approximated by pitch-angle scattering,
is a Maxwellian in energy

fI = f0 = η
( me

2πT

)3/2
exp

(
−E

T

)
(2.28)

for parameters η(t), T(t) (Aleynikov et al. 2019). We see now that in the earlier work
Aleynikov et al. (2019), Runov et al. (2021), Arnold et al. (2021) and Aleynikov et al.
(2023), only electrons in region I, where a purely Maxwellian electron distribution
function is exhibited, are treated, whereas in this investigation we continue the analysis
in regions II and III.

The higher-order kinetic equation in region I, corresponding to the heating time scale,
is given by

∂fI

∂t
− e

∂φ

∂t
∂fI

∂E‖
= C( fI, fII + fIII), (2.29)

which captures the collisionless change in electron energy due to the expanding well and
the heating of the cold Maxwellian by the hot electrons.

2.3. Choosing EI/II

Owing to the ordering, when T � Ta we understand that the potential well is deep enough
for a Maxwellian of temperature T to reside in region I provided EI/II is chosen close
enough to zero. We now decide upon an explicit definition for EI/II which is consistent
with the distribution in region I: we require that collisions with the cut-off Maxwellian
in region I are well-approximated by collisions with the full Maxwellian that extends to
arbitrarily large energies. This will allow the linearisation of the kinetic problem in region
II in terms of collisions with the full Maxwellian. However, we must not artificially extend
region I past the point where the distribution function would actually be Maxwellian.
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12 A.M. Arnold, P. Aleynikov and B.N. Breizman

From the Boltzmann relation (1.4) and the density of the full Maxwellian distribution
(2.28) being n0 = η exp(eφ/T) we find that

n0 ∼ na exp
(

eφ
T

)
. (2.30)

Consider an electron with parallel energy EI/II, which has a turning point zc such that
EI/II + eφ(zc) = 0. At this turning point,

n0(zc) ∼ na exp
(

−EI/II

T

)
. (2.31)

During its orbit this electron collides with a plasmoid electron density that is at least as
large as the above. Therefore, if we choose EI/II such that n0(zc) > ana for a � 1, then
the collisions the electron experiences are dominated by collisions with the plasmoid
throughout its entire orbit. Above this energy, the electron collides considerably with
the ambient electrons in the extremities of the plasmoid as well as with the plasmoid
electrons in the core, so the distribution function at these higher energies is not necessarily
Maxwellian. The upper bound for EI/II is correspondingly expressed as

EI/II < −T ln a. (2.32)

The lower bound is fixed by collisions with the cut-off Maxwellian in region I being
well-approximated by collisions with the full Maxwellian. The simplest way to guarantee
this is to have

f0(EI/II)

f0(−eφm)
<

1
a
. (2.33)

Then, the lower bound for EI/II is given by

EI/II > −eφm + T ln a. (2.34)

2.4. Deriving the kinetic equation for hot trapped electrons (region II)
The kinetic equation in region II is given by

∂fII

∂t
+ v‖

∂fII

∂z
− e

∂φ

∂t
∂fII

∂E‖
= C( fII, fI) + C( fII, fII + fIII) +

∑
k

Ce,ik( fII). (2.35)

As the intermediate region, the ordering is most complex for the hot trapped electrons.
More care must also be taken when considering terms with time derivatives, as the
collision frequency is lower in region II than in region I. The typical velocity in region
II is of order

√
2eφm/me ∼ vTa , so the collision frequency with the plasmoid in region II

is of the same order as in region III. In region II the bounce frequency is of the same order
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as in region I (2.21). Hence, we write

C( fII, fI) ∼
∑

k

Ce,ik( fII) ∼ νp(vTa)fII, (2.36)

C( fII, fII + fIII) ∼ νh exp(−νht)fII, (2.37)

v‖
∂fII

∂z
∼ νBfII, (2.38)

noting that both the collision frequency with the plasmoid and the heating rate are much
smaller than the bounce frequency,

νp(vTa)

νB
= μ � 1, (2.39)

νh exp(−νht)
νB

= 4
3
√

π

naLp exp(−νht)
N

μ � 1. (2.40)

As in region I, we assume that the terms containing time derivatives correspond to a time
scale much longer than the bounce period.

Then, the shortest time scale in region II is the bounce period, which leads to the
lowest-order equation

v‖
∂fII

∂z
= 0, (2.41)

meaning that fII (and hence f as a whole) is independent of z. The higher-order kinetic
equation can then be bounce-averaged, yielding

∂fII

∂t
− 1

τ

∂J
∂t

∂fII

∂E‖
=
〈

C( fII, fI) +
∑

k

Ce,ik( fII)

〉
+ 〈C( fII, fII + fIII)〉 (2.42)

where

J(E‖, t) =
∮

mev‖ dz =
√

2me

∮ √E‖ + eφ dz (2.43)

is the second adiabatic invariant for a trapped electron.
Now we analyse the time scales on which the time-dependent terms act and compare

them with other time scales. Collisional kinetic problems require continuity of the
distribution, so fII is equal to f0 at E = EI/II and equal to fa at E‖ = 0; it serves to perform
the analysis of the time scales at each boundary. We note that fa is constant in time, hence at
E‖ = 0 the first term on the left-hand side of (2.42) vanishes. The second term represents
the adiabatic change in electron energy as the well expands, which in Aleynikov et al.
(2019) was shown to occur on the heating time scale,∣∣∣∣1τ ∂J

∂t
∂fII

∂E‖

∣∣∣∣ ∼ νh exp(−νht)fII. (2.44)

At E = EI/II, (2.44) also holds. However, as the Maxwellian in region I has a temperature
that changes in time, the time derivative of fII is not zero here,

∂fII

∂t

∣∣∣∣
E=EI/II

=
[

1
η

dη

dt
+
(EI/II

T
− 3

2

)
1
T

dT
dt

]
fII

∣∣∣∣
E=EI/II

. (2.45)

Owing to the logarithmic dependence on the large number a in (2.32), we can always
choose EI/II such that |EI/II| ∼ T . We expect that (∂η/∂t)/η ∼ (∂T/∂t)/T , so (2.45) can be
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14 A.M. Arnold, P. Aleynikov and B.N. Breizman

approximated by
∂fII

∂t

∣∣∣∣
E=EI/II

∼ 1
T

dT
dt

fII

∣∣∣∣
E=EI/II

. (2.46)

That is, the time scale on which the term acts, which we define via the frequency

νt = 1
T

dT
dt

= Ta

T
νh exp(−νht), (2.47)

is the time taken for T to increase by a factor of e. When T is small this can be a very short
time, so νt cannot simply be assumed to be small compared with the collision time.

However, the expressions from the modified self-similar solution give

νt

νp(vTa)
∼ 4

3
√

π
exp(−νht)

√
1 − exp(−νht)

(
1 + 2

π
√

3

√
mi

me
(νht)−(3/2)

)−1

, (2.48)

which is always much less than unity for the plasma parameters given in the Introduction;
we may write

νt

νp(vTa)
� 1. (2.49)

We also find that the ratio of the heating rate to the collision frequency with the plasmoid
is much less than unity at all times,

νh exp(−νht)
νp(vTa)

∼ 4
3
√

π
exp(−νht)

(
1 + 2

π
√

3

√
mi

me
μ(νht)−(3/2)

)−1

� 1. (2.50)

So, the collision terms with the plasmoid corresponds to the shortest time scale in (2.42);
the lowest-order kinetic equation with respect to (2.42) is therefore〈

C( fII, fI) +
∑

k

Ce,ik( fII)

〉
= 0. (2.51)

This must be solved with boundary conditions ensuring continuity,

fII(E = EI/II) = f0(E = EI/II), (2.52)

fII(E‖ = 0) = fa(E‖ = 0). (2.53)

The higher-order equation in region II is

∂fII

∂t
− 1

τ

∂J
∂t

∂fII

∂E‖
= 〈C( fII, fII + fIII)〉, (2.54)

which again describes the heating and expansion time scales.

2.5. The QE problem
The distribution function in region II is obtained by solving (2.51), which must be
be supplemented by boundary conditions (2.52), (2.53) enforcing continuity of the
distribution function into regions I and III. Conceptually, the kinetic problem in region
II describes a quasiequilibrium: hot trapped electrons experience rapid collisions against
a Maxwellian (and experience rapid pitch-angle scattering against ions), but the tail
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of the distribution is forced to meet a Maxwellian of a different temperature at the
trapped–passing separatrix.

When T � Ta collisions with the distribution in region I are well-approximated by
collisions with the full Maxwellian: C(·, fI) ≈ C(·, f0). As it only remains to solve the
kinetic problem in region II, it is unnecessary to have a subscript; we write f = fII in
region II. Hence, the QE kinetic equation can be written as

〈CQE( f )〉 = 0 (2.55)

for
CQE( f ) = C( f , f0) +

∑
k

Ce,ik( f ). (2.56)

We note that, owing to the fact that collisions are now linearised in terms of collisions
against a full Maxwellian, the lower boundary condition (2.52) can actually be applied at
E = −eφm rather than EI/II.

2.6. Range of validity of the ordering
The ordering developed in this section is based on the self-similar expansion in Aleynikov
et al. (2019), modified to provide plausible profiles at the later stages of the expansion,
given a line-integrated plasmoid electron density N = 1022 m−2 in an ambient plasma of
electron density na = 5 × 1019 at a temperature Ta = 5 keV. The resulting QE formalism
demands that during most of the expansion the potential height is of order the ambient
temperature,

eφm ∼ Ta, (2.57)

that the plasmoid is transparent to passing and hot trapped electrons,

μ = νp(vTa)

νT
∼ νp(vTa)

νB
� 1, (2.58)

that the heating rate is much lower than the collision frequency with the plasmoid,

νh exp(−νht)
νp(vTa)

� 1, (2.59)

νh exp(−νht)
νp(vT)

� 1, (2.60)

and that the time taken for the plasmoid electron temperature to increase by a factor of e
is much larger than the collision time,

1
T

dT
dt

� νp(vTa), (2.61)

1
T

dT
dt

� νp(vT). (2.62)

The transparency of the plasmoid is dependent upon the line-integrated plasmoid
density not being too large, and eφm being of order Ta is dependent upon the line-integrated
plasmoid density not being too small. Satisfying both conditions therefore does formally
somewhat constrain the value of the line-integrated density, but the potential growing
logarithmically with the plasmoid density means that even for quite small line-integrated
plasmoid densities the latter condition is met.
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However, the relative simplicity of the resulting kinetic problem provides strong
motivation for using the formalism: we immediately obtain the distribution function in two
out of three regions, and in the remaining region we solve a steady-state kinetic equation.
Then, the macroscopic expansion is described by a kinetic equation of which velocity
moments can be taken, in order to obtain much simpler time-dependent equations than
one would by including the ∂/∂t term directly in the kinetic equation. In this sense, the
formalism is analogous to the Braginskii equations (or any Chapman–Enskog expansion
(Chapman & Cowling 1970)), but valid for systems with a long rather than short hot
electron mean free path.

We reiterate that the kinetic problem in regions I and II was formally derived assuming
T � Ta, which permitted a choice of EI/II that guaranteed a Maxwellian distribution
in region I, collisions with which are well-approximated by collisions with the full
Maxwellian. This ultimately allowed the linearisation of the kinetic problem in region II in
terms of collisions with the full Maxwellian. However, we note that when T = Ta, which
occurs in the late stage of the expansion, the potential well will be too shallow to contain
several T . However, at this point the entire electron distribution is a single Maxwellian,
so (2.55) will still be satisfied. We therefore conclude that the formalism is valid when
T � Ta and when T → Ta.

Therefore, the formalism can actually accurately model the expansion outside of its
formal ordering (which has T � Ta), which is characteristic of robust simplifications
of kinetic problems, such as the Braginskii equations, which often achieve a level of
qualitative correctness even when the mean free path is long and the distribution function
is not very close to a Maxwellian. By the same argument one could expect that the
formalism here is qualitatively correct somewhat outside of the range of parameters that
leads to the ordering.

As mentioned in the previous subsection, the boundary condition (2.52) can be applied
at E = −eφm as we approximate collisions with fI by collisions with the full Maxwellian
f0. This solves the problem of how to choose EI/II when T approaches Ta and the well
becomes too shallow to contain several T: when solving the QE kinetic equation we can
always choose EI/II = −eφm.

The formalism has been developed specifically with pellet plasmoids in mind, and
essentially models plasmoid expansion with ‘intermediate’ line-integrated densities. An
alternate approach, which is more suited to the abstract study of plasmoid expansion, is
to consider the limit as the line-integrated plasmoid density goes to zero or infinity. Then,
the ratio eφm/Ta is a small or large parameter on which an ordering may be based.

When the line-integrated density is very large, the plasmoid and ambient temperatures
will equilibrate before the plasmoid density is comparable to the ambient density. Then,
the expansion can be described simply with Maxwellian electrons for most of the
assimilation process. If instead it is very small, the densities become comparable well
before the temperatures have equilibrated. In our case, with an intermediate line-integrated
density, the two occur at approximately the same time; certainly one cannot assume T ≈ Ta
or nm ≈ na for most of the assimilation process.

When constructing the ordering, the opacity μ was given assuming that intraspecies
collisions dominate; ambient ions collide most quickly with plasmoid ions and ambient
electrons collide most quickly with plasmoid electrons. This is the case when the thermal
velocities of ions and electrons are disparate. However, if the thermal velocities of an ion
population k and an electron population are comparable, then the ions slow very rapidly
on the electrons; the collision frequency of the ions with the electrons is actually mik/me
times larger than the ion–ion collision frequency (Helander & Sigmar 2002). The thermal
velocities of the ambient ions and plasmoid electrons are actually comparable for a brief
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window of time where T is extremely small. However, collisions of the ambient ions with
plasmoid electrons in this regime causes rapid heating of the plasmoid electrons, driving T
up and out of the regime where the plasmoid electrons and ambient ions have a comparable
thermal velocity. Hence, these collisions are negligible outside of the very early stages
of the plasmoid expansion, where the ordering is, anyway, not satisfied; we restrict our
attention to times later than this.

2.7. Expressing the QE equation in the variables (E‖, E⊥)

The collision operator against f0 in the variables (v, θ, z, t) for pitch-angle θ (assuming
that f is independent of the azimuthal angle ϕ of the velocity) is given by

C( f , f0) = e4 ln Λ

4πε2
0m2

e

{
1
v3

g′(x)
vT

1
2 sin θ

∂

∂θ

(
sin θ

∂f
∂θ

)

+ 1
v2

∂

∂v

[
x3g′′(x)

vT

(
f + T

mev

∂f
∂v

)]}
, (2.63)

where x = v/vT , g(x) is the function

g(x) =
∫

|v − v′|f ′
0 d3v′ = n0vT

[(
x + 1

2x

)
erf(x) + 1√

π
exp

(−x2)] , (2.64)

and

n0 = η exp
(

eφ
T

)
(2.65)

is the density of deeply trapped electrons (Helander & Sigmar 2002). We note that when
x is large, i.e. we consider collisions of electrons with energy much larger than T with the
Maxwellian, then both g′(x) and x3g′′(x) are well-approximated by n0vT .

Similarly, assuming that collisions with ions are well-approximated by pitch-angle
scattering, we have

Ce,ik( f ) = e4 ln Λ

4πε2
0m2

e

[
1
v3

Z2
k nik

1
2 sin θ

∂

∂θ

(
sin θ

∂f
∂θ

)]
. (2.66)

The collision operator is given by the divergence of the collisional flux F in velocity space,

C( f , f0) = ∇v · F , (2.67)

so it can always be expressed in the form

C( f , f0) = |J|∇w · F̃ , (2.68)

where |J| is the Jacobian of the transformation between coordinates v and w,

J = det
(

∂wi

∂vj

)
, (2.69)

and F̃ is the collisional flux in w phase space. Noting that

det
(

∂(E‖, E⊥, ϕ)

∂(v)

)
= m2

ev‖ (2.70)
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we seek to transform (2.63) into the form

C( f , f0) = Av‖∇(E‖,E⊥) · F̃ (2.71)

for some constant A. We find that

C( f , f0) = e4 ln Λ

4πε2
0me

v‖∇(E‖,E⊥)

·
[

f0

(
rrE⊥

v‖
v3

g′(x)
vT

+ T
ss

v5v‖

x3g′′(x)
vT

)
∇(E‖,E⊥)

(
f
f0

)]
, (2.72)

where
r = (1,−1), s = (v2

‖, v
2
⊥) (2.73a,b)

and rr, ss represent dyadic products. Similarly,

Ce,ik( f ) = e4 ln Λ

4πε2
0me

v‖∇(E‖,E⊥) ·
[

f0

(
rrE⊥

v‖
v3

Z2
k nik

)]
. (2.74)

Here rr is the tensor associated with pitch-angle scattering, altering parallel and
perpendicular energies such that their sum is unchanged. Here ss is associated with
collisions that alter energy, affecting parallel and perpendicular energies equally.

We must bounce-average the collision operators (2.72) and (2.74). In order to obtain
a ‘useful’ expression, we must be able to commute divergence in (E‖, E⊥) and the orbit
integral. The following lemma is useful with regards to commuting the divergence and
orbit integral: for a vector-valued function F , we have

∇(E‖,E⊥) ·
∮

F dz =
∮

∇(E‖,E⊥) · F dz + 4∇(E‖,E⊥)zc · F (zc). (2.75)

In order for the divergence and orbit integral to commute, we must have ∇(E‖,E⊥)zc ·
F (zc) = 0; either F (zc) or ∇(E‖,E⊥)zc vanishes, or ∇(E‖,E⊥)zc is orthogonal to F (zc).

We observe that the term associated with pitch-angle scattering is proportional to v‖,
which (by definition) vanishes when z = zc. So, the divergence and orbit integral commute
with respect to the pitch-angle scattering term.

As for the energy-altering term, we observe that

∇(E‖,E⊥)zc = ∂zc

∂E‖

(
1
0

)
, (2.76)

and

(ss)(z = zc) =
(

0 0
0 v4

⊥

)
, (2.77)

which means that with respect to this term,

∇(E‖,E⊥)zc · F (zc) ∝
(

1
0

)
·
[(

0 0
0 v4

⊥

)
∇(E‖,E⊥)

(
f
f0

)]
= 0, (2.78)

so the orbit integral and divergence commute for the energy-altering term. As both f and f0
are independent of z, they and their derivatives may be brought outside the orbit integral,
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giving the bounce-averaged QE collision operator

〈CQE( f )〉 = e4 ln Λ

4πε2
0meτ

∇(E‖,E⊥) ·
[

f0

(
rrE⊥

∮
v‖
v3

(
g′(x)
vT

+
∑

k

Z2
k nik

)
dz

+ T
∮

ss
v5v‖

x3g′′(x)
vT

dz

)
∇(E‖,E⊥)

(
f
f0

)]
. (2.79)

The QE kinetic equation is given by setting the above to zero,

∇(E‖,E⊥) ·
[

f0

(
rrE⊥

∮
v‖
v3

(
g′(x)
vT

+
∑

k

Z2
k nik

)
dz

+ T
∮

ss
v5v‖

x3g′′(x)
vT

dz

)
∇(E‖,E⊥)

(
f
f0

)]
= 0, (2.80)

which is in the form of an anisotropic steady-state diffusion problem in (E‖, E⊥) space,

∇(E‖,E⊥) ·
[

DQE∇(E‖,E⊥)

(
f
f0

)]
= 0 (2.81)

for
DQE = DQE,S + DQE,F, (2.82)

where the diffusion tensor associated with pitch-angle scattering is given by

DQE,S = f0E⊥

∮
v‖
v3

(
g′(x)
vT

+
∑

k

Z2
k nik

)
dz
(

1 −1
−1 1

)
, (2.83)

and that associated with collisions that alter energy is given by

DQE,F = f0T
∮

1
v5v‖

(
v4

‖ v2
‖v

2
⊥

v2
‖v

2
⊥ v4

⊥

)
x3g′′(x)

vT
dz. (2.84)

Together with quasineutrality, ∫
f d3v = ne =

∑
k

Zknik, (2.85)

(2.81) with the boundary conditions (2.52), (2.53) (noting that we write f = fII) provides a
unique solution for f and φ in terms of the parameters η and T . However, these parameters
are not known a priori.

It should be noted that up to this point we have assumed that the potential is
monotonically decreasing, which is the case when the density profile is monotonically
decreasing. If this is not the case, i.e. the potential has more than one peak, then there are
actually multiple trapped electron populations that must be treated independently. In that
case, some electrons can explore the region encompassed by only one peak, and others,
still trapped in the potential as a whole, can explore more than one. This situation greatly
complicates the kinetic problem and is of secondary importance in this paper as we are
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concerned with the expansion of a plasmoid with a potential that is initially single-peaked;
we expect, and observe, as will be shown in § 3.4, the profile to remain single-peaked when
the high temperature of the ambient ions is accounted for. There is one exception to the
inapplicability of the foregoing model to multiply peaked electric potential wells: when
T = Ta. In this case the solution to the QE problem is the ambient Maxwellian fa, which is
correct even when multiple peaks are present. It will be seen that the cold-fluid model for
ions does produce a multiply peaked electric potential during later stages of the expansion,
but at this point T is of order Ta, so the solution to the QE problem is close to a Maxwellian
and we expect the resulting expansion to be qualitatively correct.

2.8. The no-net-flux condition
Given some η and T we may solve the QE problem as specified in the previous subsection.
However, most combinations of η and T are not physically meaningful, as they would not
actually establish a steady-state. Quasineutrality requires that there is no net charge, but
most combinations of η and T would cause a very large collisional flux of electrons into
or out of the trapped region of phase space, causing the plasmoid to ‘charge up’, quickly
resulting in the violation of quasineutrality. Therefore, a closer look at quasineutrality
during the establishment of the QE state is required.

The global quasineutrality condition is given by

Nt + Np =
∑

k

ZkNik (2.86)

for Nt the line-integrated density of trapped electrons, Np the line-integrated density
of passing electrons and Nik the line-integrated density of ion species k. Formally,
the magnetic field line we consider is infinite. However, the entire plasmoid structure
is localised, with the possible exception of the plasmoid density approaching zero
asymptotically (if we use, for example, the Gaussian ion density profile from Aleynikov
et al. (2019)). So, rather than the whole field line, we consider the global quasineutrality
condition on some interval z ∈ [−LS/2, LS/2] for some LS much larger than the plasmoid;
large enough that the plasmoid density at the endpoints is negligible compared with the
ambient density, and the electric potential at the endpoints is negligible compared with T ,
Ta or eφm.

In order to maintain global quasineutrality we require

dNt

dt
+ dNp

dt
=
∑

k

Zk
dNik

dt
. (2.87)

As the density is constant far from the plasmoid, the terms in the above cease to change as
LS → ∞; we may take LS arbitrarily large as we never directly evaluate Np or Nik.

Using the results from Appendix A, we see that the time derivative of the line-integrated
density of trapped electrons is given by

dNt

dt
= 2π

m2
e

d
dt

∫ ∞

0

∫ Jm

0
f dJ dE⊥, (2.88)

where Jm = J(E‖ = 0) is the maximum value of the second adiabatic invariant for a
trapped electron, and, knowing that f = fa in the E‖ > 0 region, the time derivative of
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the line-integrated density of passing electrons is given by

dNp

dt
= d

dt

∫ LS/2

−(LS/2)

na exp
(

eφ
Ta

)
erfc

(√
eφ
Ta

)
dz. (2.89)

The full kinetic equation (2.2) can be bounce-averaged and the left-hand side changed to
the independent variables (J, E⊥, t) to yield

∂f
∂t

∣∣∣∣
J

= 〈C( f , fI)〉 +
∑

k

〈Ce,ik( f )〉 + 〈C( f , fII + fIII)〉, (2.90)

which, along with the approximation C( f , fI) ≈ C( f , f0), gives

dNt

dt
= 2π

m2
e

∫ ∞

0

∫ Jm

0
〈CQE( f )〉 dJ dE⊥

+ 2π

m2
e

∫ ∞

0

∫ Jm

0
〈C( f , fII + fIII)〉 dJ dE⊥

+ 2π

m2
e

∫ ∞

0

dJm

dt
fa(E = E⊥) dE⊥, (2.91)

where we have used the fact that f (J = Jm) = f (E‖ = 0) = fa(E‖ = 0). We then see that
(2.87) becomes

2π

m2
e

∫ ∞

0

∫ Jm

0
〈CQE( f )〉 dJ dE⊥

+ 2π

m2
e

∫ ∞

0

∫ Jm

0
〈C( f , fII + fIII)〉 dJ dE⊥

+
∫ LS/2

−(LS/2)

na
e
Ta

∂φ

∂t
exp

(
eφ
Ta

)
erfc

(√
eφ
Ta

)
dz =

∑
k

Zk
dNik

dt
, (2.92)

where the term associated with dJm/dt has cancelled out between dNt/dt and dNp/dt.
The first term on the left-hand side is associated with fluxes due to collisions with the

plasmoid; we may write

2π

m2
e

∫ ∞

0

∫ Jm

0
〈CQE( f )〉 dJ dE⊥ ∼ νp(vTa)N, (2.93)

where we have used the fact that N ≈ Nt. The second term on the left-hand side is due to
heating; we may write

2π

m2
e

∫ ∞

0

∫ Jm

0
〈C( f , fII + fIII)〉 dJ dE⊥ ∼ νh exp(−νht)N. (2.94)

The term on the right-hand side is due to the plasma at infinity acting as a source or sink
of ions.

The third term on the left-hand side is due to the constant replenishment of the passing
distribution by plasma at infinity, leading to f always being equal to fa in the passing
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region. We can estimate this term by noting that exp(eφ/Ta)erfc(
√

eφ/Ta) ∼ 1 for φ � Ta
and using the approximation

∫ LS/2

−(LS/2)

eφ
Ta

dz ∼ Lp
eφm

Ta
∼ Lp. (2.95)

Writing Lp = N/nm and using (1.3) then yields

∫ LS/2

−(LS/2)

na
e
Ta

∂φ

∂t
exp

(
eφ
Ta

)
erfc

(√
eφ
Ta

)
dz ∼ νhN

μ

√
3mi

me
νht(

(νht)3/2 + 2

π
√

3

√
mi

me
μ

)2 . (2.96)

With the plasma parameters used in the Introduction, the above is at most of order νhN,
and decreases as time advances; it is of the same order as the heating term (the second on
the left-hand side of (2.92)).

The change in Nik depends upon the (yet unchosen) model for the ions. Of course, the
system for plasmoid ions is necessarily conservative (plasmoid ions are localised), so the
line-integrated plasmoid ion density is constant. If the system also conserves ambient ions,
i.e. the ambient plasma cannot act as a source of ions, then the line-integrated ambient ion
densities are constant. On the other hand, if the plasma can act as a source for the ambient
ions, then the terms associated with the change in their line-integrated densities are at most
of the same order as (2.96). This is because an ambient ion density nik,a is at most of order
na/Zk and its change is associated purely with the change in the electric potential.

Therefore, the most significant term in (2.92) is the first on the left-hand side, which is
associated with the frequency at which an electron collides with the plasmoid; the other
terms are associated with the heating frequency. Hence (2.92) is well-approximated by
a vanishing net electron flux associated with collisions with the plasmoid, which can be
expressed as

Γ = e4 ln Λ

2ε2
0m3

e

∫ ∞

0

[
DQE∇(E‖,E⊥)

(
f
f0

)]∣∣∣∣
E‖=0

·
(

1
0

)
dE⊥ = 0. (2.97)

Hence, to maintain global quasineutrality, there can (approximately) be no net electron
flux due to collisions with the plasmoid into the trapped region of phase space; we call the
above the no-net-flux condition. Intuitively this makes sense: a steady-state due entirely
to collisional fluxes cannot exist if a consequence of the flux is an immediate violation of
quasineutrality.

As we had two free parameters in the QE problem, η and T , the no-net-flux condition
fixes one in terms of the other. We choose to keep T as the free parameter. From (2.81) it is
clear that although the QE problem implies a steady-state, the collisional fluxes themselves
do not vanish. This is the sense in which QE is a dynamical steady-state rather than the
static steady-state characteristic of a thermal equilibrium.

2.9. Numerical solution to the QE problem
The QE problem (2.81) with boundary conditions (2.52), (2.53) (noting that we write
f = fII in region II) was solved numerically with a self-consistent potential given by
quasineutrality (2.85) and the no-net-flux condition (2.97). The plasma was assumed to
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(a) (b)

(c) (d)

FIGURE 3. (a) Numerical distribution function at z = 0 in SI units. (b) Effective phase-space
flow velocity u∗ (see (2.100)). (c) Phase-space trajectories of electrons (the streamlines of u∗).
(d) Collisional flux into the trapped region (see (2.101), (2.102)). Here vc = √

2eφm/me is the
parallel escape velocity at z = 0.

be hydrogenic: there was a single species of singly charged ion following the profile

ni = na + N
1

Lp
√

π
exp

(
−
(

z
Lp

)2
)

, (2.98)

where Lp = 2.8 m, N = 1022 m−2, T = 615 eV, na = 5 × 1019 m−3 and Ta = 5 keV. The
Gaussian term in the above is consistent with the self-similar profile in Aleynikov et al.
(2019) at t = 20 μs given these parameters.

Figure 3 shows the properties of the electron distribution function. Figure 3(a) shows
the distribution function in velocity space at z = 0. Here E = 0 is indicated by the dashed
circle and the trapped–passing separatrix by the vertical dashed lines. The isotropic
passing distribution is clearly visible as concentric circles, as is the very isotropic core
(E < 0). Significant flattening of the distribution in the high-v⊥ region of trapped phase
space is observed. This is a result of the friction experienced by hot electrons causing
them to fall to lower energies after being scattered into this region. Figure 3(c) shows the
phase-space trajectories of electrons in (E‖, E⊥) space, clearly indicating flow into and out
of the trapped region. The dashed line indicates E = 0. The right-hand boundary is the
trapped–passing separatrix. Figure 3(b) shows the effective phase-space flow velocity u∗,
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defined via

∇(E‖,E⊥) · (u∗f ) = −〈CQE( f )〉, (2.99)

i.e.

u∗ ∝ −
DQE∇(E‖,E⊥)

(
f
f0

)
f

. (2.100)

Electron phase-space flow for E < 0 is very weak, as this region is highly isotropised and
essentially conforms to a Maxwellian, which exhibits no collisional phase-space flux.

Figure 3(d) shows the flux through the trapped–passing separatrix, where

ΓS = −e4 ln Λ

2ε2
0m3

e

[
DQE,S∇(E‖,E⊥)

(
f
f0

)]∣∣∣∣
E‖=0

·
(

1
0

)
, (2.101)

ΓF = −e4 ln Λ

2ε2
0m3

e

[
DQE,F∇(E‖,E⊥)

(
f
f0

)]∣∣∣∣
E‖=0

·
(

1
0

)
, (2.102)

and Γ = ΓS + ΓF. Collisions with the cold Maxwellian always produce an inflow of
electrons in the E > 0 region due to friction (see ΓF in figure 3). Pitch-angle scattering
may only cause a flow along lines of constant E , and is seen to eject electrons at low
perpendicular energies and cause an inflow at higher energies. The net flux through the
separatrix vanishes due to the no-net-flux condition.

2.10. Analytical solution to the QE problem
The main difficulty in the QE problem is the presence of bounce integrals, which are
difficult to evaluate analytically in a self-consistent potential. In a square well, however,
owing to the constancy of the electric potential and plasmoid density, the bounce-average
operator is the identity, significantly simplifying matters. As the phase-space domain of the
QE problem depends only upon the potential height φm, the distribution function obtained
as a solution to the QE problem in a square-well potential of height φm may be used as an
approximation to the solution of the QE problem in a self-consistent potential.

Assuming that there is a single ion species of charge Z, that hot trapped electrons have
energies much larger than vT , and that the plasmoid density greatly exceeds the ambient
density (hence quasineutrality is approximately given by n0 = Zni), from (2.63), (2.66) we
see that the bounce-averaged QE collision operator in a square well is given by

〈CQE( f )〉 = n0e4 ln Λ

4πε2
0m2

e

[
1 + Z

v3

1
2 sin θ

∂

∂θ

(
sin θ

∂f
∂θ

)
+ 1

v2

∂

∂v

(
f + T

mev

∂f
∂v

)]
. (2.103)

We consider 〈CQE( f )〉 = 0 separately in the E < 0 (i.e. v < vc = √
2eφm/me in a square

well) and E > 0 (v > vc) regions of phase space, using the most convenient coordinates
in each case. It is convenient to write f = f0 + f1 and solve for f1; in both regions we
neglect v-diffusion for f1 (i.e. the term proportional to T/(mev) in the above), leaving only
v-friction.
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In the E > 0 region we use the variables (v, v‖ = v cos θ), meaning we must solve
D( f1) = 0 for

D( f1) = 1 + Z
2

∂

∂v‖

[
(v2 − v2

‖)
∂f1

∂v‖

]
+ v

∂f1

∂v
+ v‖

∂f1

∂v‖
. (2.104)

It is convenient to consider the limit where v � v‖, which represents the correct limit in
the majority of E > 0, E‖ < 0 phase space,

D( f1) = 1 + Z
2

v2 ∂2f1

∂v2
‖

+ v
∂f1

∂v
, (2.105)

which has superposable solutions (that are even in v‖) provided by the separation of
variables,

fk = Ck exp
(

−1
2
λkv

2

)
cosh

(
v‖

√
2

1 + Z
λk

)
(2.106)

for constants {Ck} and {λk}. The boundary condition (2.53) is satisfied by the sum of two
solutions

f1 = fa(E)

cosh

(
v‖
vTa

√
4

1 + Z

)

cosh

(
vc

vTa

√
4

1 + Z

) − f0(E)

cosh

(
v‖
vT

√
4

1 + Z

)

cosh

(
vc

vT

√
4

1 + Z

) . (2.107)

In the E < 0 region we use the variables (v, ξ = cos θ). So, we must solve G( f1) = 0
where

G( f1) = 1 + Z
2

∂

∂ξ

[
(1 − ξ 2)

∂f1

∂ξ

]
+ v

∂f1

∂v
. (2.108)

We note that Legendre polynomials are the eigenfunctions of the operator in ξ , so we write
f in this basis,

f1 =
∞∑

n=0

an(v)Pn(ξ), (2.109)

which gives the following equations for {an(v)}:

v
∂an

∂v
− 1 + Z

2
n(n + 1)an = 0, (2.110)

which has solutions

an = cnv
((1+Z)/2)n(n+1) (2.111)
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for {cn} constants. The continuity of the distribution function at v = vc provides
expressions for cn,

cn = 2n + 1
2

v−((1+Z)/2)n(n+1)
c

⎡
⎢⎢⎢⎢⎣

fa(E = 0)

cosh

(
vc

vTa

√
4

1 + Z

) ∫ 1

−1
cosh

(
vc

vTa

√
4

1 + Z
ξ

)
Pn(ξ) dξ

− f0(E = 0)

cosh

(
vc

vT

√
4

1 + Z

) ∫ 1

−1
cosh

(
vc

vT

√
4

1 + Z
ξ

)
Pn(ξ) dξ

⎤
⎥⎥⎥⎥⎦ . (2.112)

To summarise, the analytical solution to the QE problem in a square well is given by
(2.107) in the E > 0, E‖ < 0 region, (2.109) in the E ≤ 0 region and f = fa in the E‖ ≥
0 region. The phase-space domain of the QE problem is the same given any potential,
so the substitution of

√
(2/me)(E + eφm) for v and

√
(2/me)(E‖ + eφm) for v‖ yields an

(approximate) analytical solution to the QE problem valid in a self-consistent potential.
We refer to this analytical solution in figures as fan.

Figure 4 shows the analytical distribution function for the same parameters as those
used to produce figure 3. Figure 4(a) shows the distribution in velocity space at z = 0.
Figure 4(b) shows the percentage difference from the numerical solution given in figure 3.
Figure 4(c) shows the distribution function at E⊥ = 0. Figure 4(d) shows the distribution
function at E‖ = −eφm. The qualitative behaviour of the distribution is captured well, in
particular the ‘flattening’ of the distribution function in the high-v⊥ region of trapped
phase space. The observation that in this region the contours of the distribution function
are nearly horizontal lines in (v‖, v⊥) can be explained by the fact that for the analytical
QE distribution function

∂

∂v‖
f (v‖, v⊥) ∝ 2

v2
Ta

v‖

(
2

1 + Z
− 1

)
+ O(v3

‖), (2.113)

which vanishes to lowest order if Z = 1.
We note that the simplification made by neglecting the v-diffusion term for f1 reduces

a formerly second-order problem in v to a first-order problem. Solving the QE problem in
the E > 0 region with the continuity boundary condition (2.53) then fixes the value of f at
E = 0. Similarly, in the E < 0 region we only have the opportunity to apply the continuity
boundary condition at E = 0, but not at E = −eφm. As a consequence, as E → −eφm,
f1 → c0, which violates (2.52). On the other hand, c0 is several orders of magnitude smaller
than f0(−eφm), so the discrepancy is small. This is purely an artefact of the approximations
made to obtain the analytical solution; no such behaviour is seen in the numerical solution.

2.11. Expressions for η and φ in terms of T
We have found an analytical solution to the QE problem in terms of the lowest-order
distribution function f0, which is uniquely determined by the parameters η and T . The
electric potential φ is as yet unknown, but must be such that quasineutrality (2.85) is
satisfied. Additionally, the no-net-flux condition (2.97) must be satisfied. Therefore, we
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(a) (b)

(c) (d)

FIGURE 4. (a) Analytical electron distribution fan in SI units at z = 0. (b) Percentage difference
between the numerical f (see figure 3) and analytical fan. (c) Distributions at E⊥ = 0.
(d) Distributions at E‖ = −eφm. Here vc = √

2eφm/me is the parallel escape velocity at z = 0.

may reduce the number of unknowns in the system from three (η, T and φ) to one (which
we choose to be T) by imposing quasineutrality and no-net-flux.

The analytical solution to the QE problem, however, does not capture the ‘ejection
structure’ near E‖ = E⊥ = 0 characterising the flux of electrons out of trapped phase space,
so the no-net-flux condition may not be used directly. Instead, analysis of the flow of
electrons in phase space allows us to formulate a condition that is approximately equivalent
to (2.97). Pitch-angle scattering acts to diffuse newly trapped electrons to lower parallel
velocities while leaving their energy unchanged. Simultaneously the scattered electrons
lose energy via friction. These effects can be seen in the streamline plot of figure 3. The
net effect is that a large fraction of electrons entering the trapped region of phase space
are eventually drawn into the E < 0 region. In order for there to be no-net-flux into the
trapped region, the same number of electrons entering the E < 0 region must escape from
it, eventually being scattered and ejected from trapped phase space (forming the ejection
structure).

Therefore, an approximation to the condition (2.97), which states that there is
no-net-flux into the trapped region of phase space, is that there is no-net-flux into the
E < 0 region of phase space. As the flux into and out of this region is characterised by
integrals on the E = 0 line it is not necessary to have a description of the ejection structure,
whereas directly applying (2.97) requires us to integrate along E‖ = 0, where the ejection
structure strongly affects the flux. As the analytical solution to the QE problem potentially
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has a discontinuous derivative at E = 0, the flux into the E < 0 region has contributions
from E → 0+ and E → 0−. We apply this approximation of the no-net-flux condition to
the analytical solution to the QE problem in a square well.

As the analytical solution to the QE problem is derived from that posed in a square well,
we will calculate the flux in terms of the variables (v, ξ, ϕ). Pitch-angle scattering may not
change the energy of electrons, so the pitch-angle scattering term of the collision operator
cannot contribute to the flux across E = 0. In a square well, the number of electrons
entering the E < 0 region of phase space is equal to the number of electrons entering
the v < vc region of phase space. From (2.103) we see that the collisional flux in the v̂
direction at v = vc is given by

F = −n0e4 ln Λ

4πε2
0m2

e

1
v2

c

(
f + T

mev

∂f
∂v

)∣∣∣∣
E=0

. (2.114)

The phase-space area element on the v = vc sphere is given by v2
c dξ dϕ, so the net flux

into the v < vc region is given by

G = −
∫ 2π

0

∫ 1

−1
v2

c (F|E=0+ + F|E=0−) dξ dϕ. (2.115)

Setting the above to zero will provide the relation between η, T and φ required for
no-net-flux into the E < 0 region. It will be seen that the expression obtained from G = 0
in the limit Z → ∞ is quite accurate, even for Z = 1. In this limit the analytical solution is
given by f = fa for E > 0 and f = c0 + f0 for E < 0, where c0 = fa(E = 0) − f0(E = 0).
Then, G = 0 yields the relation

η = na

(
T
Ta

)3/2 (
2 − T

Ta

)
. (2.116)

Now, quasineutrality allows us to express both η and φ in terms of T and the ion profiles.
In the variables (E‖, E⊥, z, t) the electron distribution is independent of z, so the electron
density is a function of φ, time and the parameter T (η being already expressed in terms
of T via the above). Therefore, the quasineutrality condition (2.85) demands that

ne(φ, t; T) =
∑

k

Zknik, (2.117)

which gives an implicit expression for φ at every point given some T and some ion density
profiles {nik}. We can immediately obtain an expression for the potential height when the
plasmoid density is high; in this case the electron density at z = 0 is well-approximated
by

ne(z = 0) = η exp
(

eφm

T

)
, (2.118)

so

eφm = T
[

ln
(

ne(z = 0)

na

)
+ 3

2
ln
(

Ta

T

)
− ln

(
2 − T

Ta

)]
. (2.119)

This is a modification of the Boltzmann relation, the extra contributions accounting for
the fact that in the QE state the distribution function resembles a cold Maxwellian of
temperature T for E < 0 and a hot Maxwellian of temperature Ta for E > 0. As expected,
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the above reduces to the Boltzmann relation for T = Ta (when the distribution becomes a
single Maxwellian), agreeing with the rough estimate (1.4) which was used to justify the
ordering leading to the QE problem. As noted earlier, eφm given by (2.119) exceeds that
given by the Boltzmann relation when T < Ta.

The height of the potential in the numerical solution to the QE problem (figure 3), which
is calculated entirely self-consistently, and leads to no net flux into the trapped region, is
within 3 % of the estimate (2.119). This is a remarkable agreement considering that the
estimate was derived in the limit Z → ∞, but the numerical solution is with Z = 1. The
estimate also correctly predicts the height of the self-consistent potential for the solution to
the time-dependent kinetic problem with isotropic electrons given in Arnold et al. (2023),
which is strong evidence that the QE state was established there.

3. Plasmoid expansion
3.1. Treatment of ions

We consider two different models for the ions: a collisionless (Vlasov) system with
hot ambient ions, but cold plasmoid ions; and a cold-fluid system. We restrict our
attention to plasmoids with a single ion species of charge Z. The collisionless and fluid
models are in opposite regimes of collisionality, which will provide the broadest range
of qualitative results for the plasmoid expansion. The collisionless system is, however,
the most physically accurate model for the plasmoid expansion as ambient ions have a
long mean-free-path relative to the plasmoid size. In fact, the ratio of plasmoid size to the
ambient ion mean free path is the same as for ambient electrons: the opacity (2.7). The
collisionless system still models cold plasmoid ions accurately as they are initialised with
zero velocity spread.

For the collisionless ion expansion we solve the Vlasov equation,

∂fi

∂t
+ v‖

∂fi

∂z
− Ze

mi

∂φ

∂z
∂fi

∂v‖
= 0. (3.1)

For the cold-fluid expansion we solve the equations

∂ni

∂t
+ ∂

∂z
(niui) = 0, (3.2)

∂ui

∂t
+ ui

∂ui

∂z
+ Ze

mi

∂φ

∂z
= 0. (3.3)

3.2. Treatment of electrons on the expansion time scale
Equations (2.29) and (2.54) describe electron dynamics on the expansion and heating time
scales. We note that because they take exactly the same form after bounce-averaging,
(2.54) and the bounce-average of (2.29) may be combined to yield

∂f
∂t

− 1
τ

∂J
∂t

∂f
∂E‖

= 〈C( f , fII + fIII)〉 (3.4)

to describe both regions I and II.
By solving the QE problem with the restrictions of quasineutrality and the no-net-flux

condition, the distribution is known up to the parameter T; the evolution of the electron
distribution function is completely characterised by how T changes in time. In analogy
with the Braginskii equations, we obtain an evolution equation for T by taking a moment
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of the kinetic equation (3.4) over phase space. When we take moments, the QE distribution
serves the same role as the near-Maxwellian distribution in the Braginskii equations.

In contrast to a local equilibrium distribution, where the parameters η and T defining the
Maxwellian distribution are dependent upon z, in our case (analogous to a global thermal
equilibrium) the parameters of are independent of z, so we also integrate the kinetic
equation over z as well as the ‘momentum-like’ variables (we note that we have already
integrated the kinetic equation over z when it is bounce-averaged). We also need only take
moments over the trapped region of phase space as the passing electron distribution is
known.

As we seek an equation for T , it serves to take the E-moment over trapped phase space.
The line-integrated energy density of trapped electrons is given by

Wt =
∫

Vt

E f d3v dz, (3.5)

where Vt is the trapped region of phase space. Taking the E-moment of (3.4) yields

dWt

dt
= dWt

dt

∣∣∣∣
adiabatic

+ dWt

dt

∣∣∣∣
separatrix

+ dWt

dt

∣∣∣∣
heating

(3.6)

for

dWt

dt

∣∣∣∣
adiabatic

= −2π

m2
e

∫ ∞

0

∫ 0

−eφm

∂J
∂t

f dE‖ dE⊥, (3.7)

dWt

dt

∣∣∣∣
separatrix

= 2π

m2
e

dJm

dt

∫ ∞

0
E⊥fa

∣∣∣∣
E‖=0

dE⊥, (3.8)

dWt

dt

∣∣∣∣
heating

=
∫

Vt

EC( f , fII + fIII) d3v dz. (3.9)

The details of the procedure are contained in Appendix A.
The terms in (3.6) are descriptive: ‘adiabatic’ corresponds to the adiabatic change

in the electron energy as the well changes shape; ‘separatrix’ corresponds to electrons
crossing the trapped–passing separatrix due to the changing depth of the potential well
eφm; ‘heating’ corresponds to collisions of f with the hot electrons.

Although Wt is in principle expressible in terms of T , any tiny change in Wt (and hence
T) results in a huge deviation from quasineutrality due to the exponential dependency of n0
on eφ/T . Solving the evolution equation for Wt numerically, inverting the relation to find
T , and maintaining quasineutrality requires an impractically small time step. Instead, we
derive an energy conservation law for electrons and ions which can be used as an evolution
equation for T .

The energy conservation law will contain contributions from both passing and trapped
electrons, so it is more convenient to consider the energy contained within some interval
z ∈ [−LS/2, LS/2] for LS much larger than the plasmoid. The ambient plasma then acts
as an infinite source and sink of electrons and energy for this section of the field line.
The passing distribution function on this interval being fa can be understood as the
ambient plasma instantly replenishing the passing distribution if it is altered in any way by
interaction with the plasmoid; the ambient plasma essentially acts as a ‘thermostat’ for the
passing distribution. Here LS must be large enough that the line-integrated trapped electron
energy density Wt changes negligibly as LS increases (i.e. the trapped electron density is
negligible at |z| = LS/2).
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It is more convenient to work with the line-integrated kinetic energy

Kt = Wt +
∫ LS/2

−(LS/2)

eφne,t dz (3.10)

(where ne,t is the trapped electron density) rather than Wt, as we expect the sum of kinetic
energies to exhibit a conservation law. Taking the time derivative of Kt yields

dKt

dt
= dWt

dt
+
∫ LS/2

−(LS/2)

e
∂φ

∂t
ne,t dz +

∫ LS/2

−(LS/2)

eφ
∂ne,t

∂t
dz

= dWt

dt
− dWt

dt

∣∣∣∣
adiabatic

+
∫ LS/2

−(LS/2)

eφ
(

Z
∂ni

∂t
− ∂ne,p

∂t

)
dz, (3.11)

where we have used the quasineutrality condition (assuming that there is a single species
of ions with charge Z) and the fact that ne,t + ne,p = ne for ne,p the passing electron density.
The latter two terms correspond to the changing kinetic energies of the ions and passing
electrons. The term involving ion density is given by∫ LS/2

−(LS/2)

Zeφ
∂ni

∂t
dz = −∂Ki

∂t
(3.12)

for Ki the line-integrated kinetic energy of the ions. This can be derived by taking a
velocity moment of (3.1) or by constructing an energy equation from (3.2), (3.3). The
same procedure cannot be carried out for the passing electrons as these are restricted to a
certain region of phase space.

Extending the notion of an orbit integral to electrons with positive parallel energy is
straightforward on a finite z interval,∮

g(E‖ > 0) dz = 2
∫ LS/2

−(LS/2)

g(E‖ > 0) dz, (3.13)

allowing us to define the second adiabatic invariant J for positive parallel energies. The
line-integrated passing electron energy density on the interval z ∈ [−LS/2, LS/2] is given
by

Wp = 2π

m2
e

∫ ∞

0

∫ ∞

Jm

E fa dJ dE⊥, (3.14)

hence

dWp

dt
= 2π

m2
e

∫ ∞

0

∫ ∞

0

( E
Ta

− 1
)

∂J
∂t

fa dE‖ dE⊥ − 2π

m2
e

∫ ∞

0
E⊥

dJm

dt
fa(E = E⊥) dE⊥. (3.15)

We note that
2π

m2
e

∫ ∞

0

∫ ∞

0

∂J
∂t

fa dE‖ dE⊥ =
∫ LS/2

−(LS/2)

e
∂φ

∂t
ne,p dz (3.16)

and
2π

m2
e

∫ ∞

0
E⊥

dJm

dt
fa(E = E⊥) dE⊥ = dWt

dt

∣∣∣∣
separatrix

, (3.17)
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so, given that

Kp = Wp +
∫ LS/2

−(LS/2)

eφne,p dz, (3.18)

we obtain the energy conservation law on the interval z ∈ [−LS/2, LS/2]

d
dt

(Kt + Kp + Ki) = dWt

dt

∣∣∣∣
heating

+ 2π

m2
e

∫ ∞

0

∫ ∞

0

E
Ta

∂J
∂t

fa dE‖ dE⊥. (3.19)

Evidently, the inclusion of the ion and passing electron energies in the energy conservation
law accounts for the absence of dWt/dt|adiabatic, as this represents energy that is extracted
from trapped electrons during the expansion and given to other species. The absence of
the separatrix term is simply due to this contribution cancelling out between Kt and Kp.

The second term on the right-hand side of the above arises from the fact that passing
electrons have their energy altered when passing through the time-varying potential well,
and this energy gain (or loss) is absorbed by (or suffered by) the ambient plasma, which
continually supplies passing electrons following the distribution fa. The heating due to this
effect is essentially negligible when T � Ta, but provides a considerable fraction of the
heating power when T ∼ Ta.

The first term on the right-hand side represents the collisional heating of trapped
electrons. In Arnold et al. (2023), which treated a high-Z plasmoid, it was shown that the
heating rate for cold electrons in a plasmoid was 3/4 of that expected for cold electrons in
a homogeneous plasma, as the acceleration of passing electrons through the potential well
decreases their density and collisionality. That is, given that the per-electron heating rate
of a cold Maxwellian in a homogeneous plasma is approximately 3νh(Ta − T) (Aleynikov
et al. 2019), the per-electron heating rate for electrons trapped in the potential well was
found to be (9/4)νh(Ta − T). The QE distribution function is highly isotropic for E < 0,
so we approximate the collisional heating term by

dWt

dt

∣∣∣∣
heating

= 9
4
νhNE<0(Ta − T), (3.20)

where NE<0 is the line-integrated density of trapped electrons with E < 0. As shown in
§ 2.9, the distribution function is somewhat less than fa in the E > 0 region for Z = 1, so
the above is an upper bound for the heating rate.

Consolidating trapped and passing electron energies into Ke = Kt + Kp we have the
energy conservation law

d
dt

(Ke + Ki) = Q (3.21)

for heating power

Q = 9
4
νhNE<0(Ta − T) + 2π

m2
e

∫ ∞

0

∫ ∞

0

E
Ta

∂J
∂t

fa dE‖ dE⊥. (3.22)

3.3. Comparison of the system with earlier models
At this point a clear comparison can be drawn between this investigation and Aleynikov
et al. (2019), Arnold et al. (2021) and Aleynikov et al. (2023). In those publications a
cold-fluid system for ions was coupled with an energy conservation law for the plasmoid
ions and electrons. The dynamics of the passing electron distribution were neglected save
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for the assertion that the presence of the ambient plasma resulted in a per-electron heating
rate 3νhTa for plasmoid electrons (only the T � Ta stage of the expansion was treated).
The potential was given by the Boltzmann relation and was unbounded as |z| → ∞ due to
the neglecting of passing electrons.

In this paper, on the other hand, we have an energy conservation law with heating terms
and an electron kinetic energy derived from the solution to a rigorously derived electron
kinetic problem. The electric potential is given by the quasineutrality condition, which
now accounts for passing electrons, hence the potential vanishes as |z| → ∞.

As an alternative to the more recent work on plasmoid expansion, Rozhanskij &
Veselova (1994) used cold-fluid equations for ions and an energy transport equation for
electrons. The energy transport equation considers a single electron temperature which
may depend on position, accounts for decompressive cooling of the electrons (which
corresponds to the adiabatic extraction of energy from electrons as the well expands),
and attempts to account for the long mean free path of electrons with a non-local heat
conductivity derived from an approximate electron kinetic problem (Luciani, Mora &
Virmont 1983). However, this formulation is still fundamentally limited by the electron
mean free path and does not account for the trapped and passing electrons populations
with distinct dynamics: for a plasmoid almost completely transparent to hot electrons it is
not appropriate. However, the model still has utility in describing the late-stage expansion
and the formation of an ion front as it does account for the ambient plasma density.

In summary, a full kinetic treatment such as the QE formalism would seem
necessary to simultaneously account for the long electron mean free path, the strikingly
non-Maxwellian nature of the electron distribution function (facilitated by the separation
of phase space into trapped and passing regions), and the non-negligible effect of the
ambient plasma density associated with the passing electrons.

3.4. Numerical solutions to the plasmoid expansion system
Numerical solutions to the system created by coupling the energy conservation law (3.21),
quasineutrality (2.117) and one of systems describing the ions (the Vlasov equation (3.1)
or the cold-ion system (3.2), (3.3)) were obtained with the plasma parameters na = 5 ×
1019 m−3, Ta = 5 keV and N = 1022 m−2, the same as in § 2.9. The plasma was once more
assumed to be hydrogenic. The heating time scale with these parameters is ν−1

h = 162 μs
and the expansions were run to 300 μs, at which point T is nearly equal to Ta and the peak
plasmoid density has dropped to nearly the ambient.

In the collisionless ion expansion, the ambient ion distribution was initialised to a
Maxwellian of density na and temperature Ta. The plasmoid ions were initialised at a
temperature of 50 eV. In both the cold-fluid and collisionless expansion the plasmoid was
initialised in the lowest-z grid cell and the ambient uniformly across z

The analytical solution to the QE problem given in § 2.10 was used to calculate densities
and kinetic energy densities, respectively, appearing in the quasineutrality condition
(2.117) and the energy conservation law (3.21). We neglected any deviation of f from
f0 in the E < 0 region when evaluating these densities as the difference is negligible.
However, we did take into account the fact that f is flattened in the E > 0, E‖ < 0 region,
as this has a relatively large impact on the density and energy density. We used (2.116)
as the expression for η in terms of T when calculating densities and energy densities.
Additionally, we expanded the cosh functions found in the analytical expression for f to
second order to obtain analytical expressions for the densities and energy densities.

The electron density is then given by

ne = nE<0 + nE>0,c
E‖<0 + nE>0,a

E‖<0 + nE‖>0 (3.23)
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for

nE<0 = η

(
exp

(
eφ
T

)
erf

(√
eφ
T

)
− 2√

π

√
eφ
T

)
, (3.24)

nE>0,c
E‖<0 = 2√

π
η

⎡
⎢⎢⎣
√

eφ
T

− 1

1 + 2
1 + Z

eφm

T

(√
eφ
T

+ 1
3

2
1 + Z

(
eφ
T

)3/2
)⎤⎥⎥⎦ , (3.25)

nE>0,a
E‖<0 = 2√

π
na

1

1 + 2
1 + Z

eφm

Ta

(√
eφ
Ta

+ 1
3

2
1 + Z

(
eφ
Ta

)3/2
)

(3.26)

and

nE‖>0 = na exp
(

eφ
Ta

)
erfc

(√
eφ
Ta

)
. (3.27)

The subdensities on the right-hand side of (3.23) are associated with the regions of phase
space indicated in their subscripts and superscripts, with a (for ‘ambient’) and c (for
‘cold’), respectively, indicating that they are associated with the first or second term on
the right-hand side of (2.107)

The line-integrated electron kinetic energy is given by

Ke = KE<0 + KE>0,c
E‖<0 + KE>0,a

E‖<0 + KE‖>0, (3.28)

where

KE<0 = 3
2

NE<0T − 2√
π

η

∫ LS/2

−(LS/2)

(
eφ
T

)3/2

dz, (3.29)

KE>0,c
E‖<0 = NE>0,c

E‖<0 T +
∫ LS/2

−(LS/2)

eφnE>0,c
E‖<0 dz, (3.30)

KE>0,a
E‖<0 = NE>0,a

E‖<0 Ta +
∫ LS/2

−(LS/2)

eφnE>0,a
E‖<0 dz (3.31)

and

KE‖>0 = 3
2

NE‖>0Ta + 1√
π

naTa

∫ LS/2

−(LS/2)

√
eφ
Ta

dz, (3.32)

where

NE<0 =
∫ LS/2

−(LS/2)

nE<0 dz, (3.33)

NE>0,c
E‖<0 =

∫ LS/2

−(LS/2)

nE>0,c
E‖<0 dz, (3.34)
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(a) (b) (c)

FIGURE 5. Ion distribution function (in SI units) of the collisionless ion expansion at various
times. The dashed line is the self-similar flow velocity given in Aleynikov et al. (2019).

NE>0,a
E‖<0 =

∫ LS/2

−(LS/2)

nE>0,a
E‖<0 dz, (3.35)

NE‖>0 =
∫ LS/2

−(LS/2)

nE‖>0 dz. (3.36)

The subscripts and superscripts carry the same meaning as for the densities.
Figure 5 shows the ion distribution of the collisionless ion expansion at various times.

We see that the self-similar flow velocity matches in the regions of highest ion density
even at late times. Figures 6 and 7 show quantities derived from the collisionless ion
expansion and the cold-fluid expansion, respectively. In the fluid expansion an ion front
rapidly forms, resulting in very large density gradients. The front appears to develop an
oscillatory character at later times. Sound waves and solitons would likely develop near
the ion front and propagate into the ambient plasma if Poisson’s equation were used to
account for the expected deviation from quasineutrality near the front.

In contrast, the collisionless expansion exhibits no steep front owing to the fact that the
hot ambient ions do not ‘pile-up’ on the moving plasmoid; the majority of ambient ions
have a large enough parallel velocity to either pass over the plasmoid or be reflected from
the front before experiencing a significant change in energy. In both cases the electron
temperature approaches Ta somewhat more quickly than the estimate (1.2), a consequence
of the term in (3.22) corresponding to the energy lost by passing electrons but gained by
trapped electrons and ions. This term constitutes the majority of the heating when T ∼ Ta.

The ion front in the cold-fluid expansion is also found in Rozhanskij & Veselova (1994)
and may well have been observed experimentally in the TFTR (Tokamak Fusion Test
Reactor) tokamak (Mansfield et al. 1991); in that experiment two symmetric density
‘pulses’ were observed to move along magnetic field lines in opposite directions shortly
after pellet injection. As discussed in the previous paragraph and in the Introduction, the
ion front is more likely to develop with a lower ambient plasma temperature owing to the
‘piling up’ on the edge of the expanding plasmoid; the front was observed in Rozhanskij
& Veselova (1994) with cold ions and in Mansfield et al. (1991) with an ambient ion
temperature which is likely to be somewhat lower than the electron temperature of
2–2.5 keV.

Naturally, the derivative of the electric potential decreases as the expansion proceeds,
owing to the plasmoid density decreasing relative to the ambient density; the expansion
velocity will not increase indefinitely, reaching instead some maximum as the electric
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(a) (b)

(c) (d)

FIGURE 6. Derived quantities of the collisionless ion expansion. (a) The relative amounts of
energy deposited into the electrons and ions. (b) The plasmoid electron temperature T and the
estimated temperature evolution given a homogeneous plasma. (c,d) Plots of the electric potential
and electron density at various times.

potential offers increasingly weak acceleration. Correspondingly, the plasmoid electrons
do not gain energy indefinitely, instead their temperature is tending to the ambient Ta.
These limited electron and ion energies are in contrast to the models in Aleynikov et al.
(2019), Arnold et al. (2021) and Aleynikov et al. (2023), which have an unbounded electric
potential as |z| → ∞; the potential offers unlimited acceleration to the extremities of the
plasmoid and, owing to the form of the heating term, the plasmoid electrons do not reach
a maximum temperature.

Of particular note, and ultimately what is sought in this investigation, is the energy
balance between electrons and ions, plotted in figures 6(a) and 7(a). The two lines
represent the fraction of the heating energy (

∫ t
0 Q dt for Q in (3.22)) deposited into each

species, and in all cases the energy balance tends to a near equal split between electrons
and ions, which is quite remarkable considering the opposite collisionality regimes for ions
in the cold-fluid and Vlasov models. This energy balance is similar to those predicted by
the self-similar expansions in Aleynikov et al. (2019), Arnold et al. (2021) and Aleynikov
et al. (2023).

We stress that only plasmoid electrons are directly heated by collisions in these
expansions; plasmoid ions acquire energy in the form of flow velocity due to acceleration
by the electric potential, hence the physical interpretation of this energy balance is that
energy extracted adiabatically from trapped plasmoid electrons (which themselves gain
energy through heating by ambient electrons) is transferred to the ions.
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(a) (b)

(c) (d)

FIGURE 7. Derived quantities of the cold-fluid ion expansion. (a) The relative amounts of
energy deposited into the electrons and ions. (b) The plasmoid electron temperature T and the
estimated temperature evolution given a homogeneous plasma. (c,d) Plots of the electric potential
and electron density at various times.

This energy transfer mechanism occurs on the expansion time scale, i.e. the ambient
electron–ambient electron collision time ν−1

h (162 μs with the parameters used here).
However, the ion flow energy will eventually be converted to heat on the ambient
ion–ambient ion collision time ν−1

h

√
mi/me (7 ms). Ordinarily, ions acquire energy from

electrons on the ambient electron–ambient ion collision time, ν−1
h (mi/me) (300 ms), hence

the process of parallel expansion speeds up energy transfer from electrons to ions by a
factor of

√
mi/me (≈40).

4. Discussion and conclusions

A model for the parallel expansion of the plasmoid produced by fuel pellet ablation has
been developed with a particular focus on rigorously deriving a simplified kinetic problem
for the electrons. The result is a relatively simple steady-state electron kinetic problem on
the shortest collisional time scale. The long-term evolution of the electrons is described by
an energy conservation law obtained by taking a velocity moment of the electron kinetic
equation which is valid on the expansion time scale. Ions are described with cold-fluid
equations or with the Vlasov equation.

The model presented in this paper is contrasted with earlier work that simply assumed
a Maxwellian electron distribution for plasmoid electrons and entirely neglected ambient
electrons except for a simple heating term. Earlier work also only considered a cold-fluid
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model for the ions. The largest pitfall of earlier work was the combination of an unbounded
(and therefore unphysical) electric potential and the lack of a proper treatment of passing
electrons, which called into question the conclusions about the qualitative character of
the expansion, most notably the electron-to-ion energy transfer. The rectification of these
issues was the main motivation for developing a model in a more ‘first principles’ manner.

It has been shown that during the expansion, electrons reach a ‘quasiequilibrium’ state:
a dynamical steady-state on the fastest collisional time scale which establishes an electron
distribution that has no net flux through the trapped–passing separatrix. An analytical
solution to the QE electron kinetic problem was obtained and compared with a numerical
solution. A robust estimate of the height of the self-consistent electric potential that
supports QE has been derived. The estimate is consistent with the Boltzmann relation
when the temperatures of the plasmoid electrons and ambient electrons are equal, and
is in agreement with the height of the self-consistent potential found in the solution to
the time-dependent electron kinetic problem in a high-Z plasmoid (Arnold et al. 2023),
providing strong evidence for the establishment of the QE state.

The quasineutrality condition, no-net-flux condition and QE kinetic problem allow a
description of the QE distribution function and electric potential in terms of the plasmoid
electron temperature T and the ion densities. Analogous to the Braginskii equations, the
evolution equation for T was obtained by taking the energy moment over the electron
kinetic equation that holds on the expansion time scale; with some manipulation this
evolution equation can take the form of an energy conservation law for both electrons
and ions. The evolution of T is driven by the energy exchange between passing electrons,
trapped electrons and ions; heating power initially deposited in the plasmoid electrons by
collisions with the hot ambient electrons can be redistributed between the species.

When modelling the expansion, collisionless and cold-fluid models were used for ions
due to their opposite collisionality regimes; it is expected that the shared qualitative
properties of these expansions hold with a more accurate model for the ions. The most
important qualitative feature of the expansions is the near-equal split of the heating power
between electrons and ions. Ions, in contrast to electrons, gain their energy in the form of
flow velocity rather than heat owing to their rapid acceleration by the electric potential.
This energy balance is in agreement with that of the self-similar solutions to the expansion
found in Aleynikov et al. (2019) and Arnold et al. (2021). The explanation for this result
is that self-similar solutions tend to be ‘attractors’ for more complicated systems, with
the particularly robust predictions being those that do not reference any parameters at
all, such as the energy balance (Barenblatt 1996). It is reasonable therefore to suggest
that the energy balance holds with a more accurate model of the ions, perhaps also one
including motion transverse to magnetic field lines, which would allow a description of
the assimilation of the plasmoid into the core plasma.

As this energy balance entails a considerable transfer of energy from electrons to ions,
we conclude that the parallel expansion of a pellet plasmoid is a potent mechanism for
the heating of ions on a much faster time scale than that on which electron–ion collisions
occur; the expansion happens on the ambient electron–ambient electron collision time and
the resulting ion flow energy is converted to thermal energy on the ambient ion–ambient
ion collision time, which is approximately

√
mi/me times shorter than the electron–ion

collision time. Hence, fuel pellet injection should be considered as not just a method for
replenishing lost plasma, but also a technique for rapidly heating ions if their temperature
is exceeded by that of the electrons.

Section 6 of Aleynikov et al. (2019) contains a detailed discussion of the net effect of
this energy transfer, particularly its competition with collisional thermalisation between
ions and electrons. It also includes transport simulations of W7-X that incorporate the
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energy transfer resulting from exactly 50 % of the heating energy deposited in plasmoid
electrons going to the ions. It is, however, difficult to estimate the true magnitude of the
energy transfer with only a model of the parallel expansion; different field lines in the
transverse profile of the plasmoid, with different line-integrated plasmoid densities, will
exhibit different energy transfers (a fact discussed in more detail later in this section),
so detailed knowledge of the transverse profile of the plasmoid is required to make an
accurate prediction.

From a more general point of view, the QE formalism is essentially the analogue of
the Braginskii equations which is appropriate for electrons with a long mean free path
in the presence of a symmetric, positively oriented electric potential with a single peak.
The QE distribution is the analogue of the near-Maxwellian distribution of the Braginskii
equations, which is similarly derived from a steady-state kinetic equation. Therefore, the
use of the QE formalism for electrons rather than the Braginskii equations should be
considered in codes that attempt to model pellet assimilation in MCF devices.

The QE formalism is more complicated than earlier models of plasmoid expansion in
Aleynikov et al. (2019), Arnold et al. (2021), Aleynikov et al. (2023) and Rozhanskij
& Veselova (1994), but it has significant advantages. Firstly, the long mean free path
of electrons and non-Maxwellian nature of the electron distribution function (with its
trapped–passing dynamics) call into question the validity of the model given in Rozhanskij
& Veselova (1994). Secondly, the QE formalism is valid over the entire assimilation
process, an advantage over the remaining models which are fundamentally limited by the
requirements T � Ta and nm � na, which are bound to be violated at late times.

Although not presented in detail in this paper, other simulations of the expansion
with the QE formalism indicate that the magnitude of the transfer of energy to ions can
change with the line-integrated plasmoid density, as opposed to it remaining constant at
approximately 50 % in the models in Aleynikov et al. (2019) and Arnold et al. (2021).
Indeed, even with N = 1022 m−2, which was used in the numerical simulations in § 3.4,
the energy balance is closer to 60/40 electrons/ions rather than an equal split; it appears
that the energy balance tends to an exact 50/50 split for larger line-integrated densities
and a less favourable split for ions at lower line-integrated densities. This can be easily
understood as the electric potential providing weaker acceleration to ions when the
plasmoid density approaches the ambient density in the QE formalism, whereas in the
other models the potential is unbounded and no such reduction in acceleration is seen.
The natural conclusion is that the QE formalism is necessary for correctly describing the
energy transfer at lower line-integrated densities, such as those found in the extremities of
the transverse profile of the pellet plasmoid.
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Appendix A. Moments of the electron distribution function and kinetic equation

The volume element in the variables (E‖, E⊥, z) is given by

d3v dz = 4π

m2
e

1
v‖

dE‖ dE⊥ dz, (A1)

so phase-space integrals over the trapped domain Vt may be expressed as

∫
Vt

h d3v dz = 4π

m2
e

∫ ∞

−∞

∫ ∞

0

∫ 0

−eφ

h
v‖

dE‖ dE⊥ dz

= 2π

m2
e

∫ ∞

0

∫ 0

−eφm

∮
h
v‖

dz dE‖ dE⊥

= 2π

m2
e

∫ ∞

0

∫ 0

−eφm

〈h〉τ dE‖ dE⊥

= 2π

m2
e

∫ ∞

0

∫ Jm

0
〈h〉 dJ dE⊥, (A2)

where we have used the fact that
∂J
∂E‖

= τ. (A3)

Hence, for a term g that is already bounce-averaged (or independent of z), the integral over
trapped phase space is given by

∫
g d3v dz = 2π

m2
e

∫ ∞

0

∫ 0

−eφm

gτ dE‖ dE⊥ = 2π

m2
e

∫ ∞

0

∫ Jm

0
g dJ dE⊥. (A4)

We note that (3.4) may be expressed as

∂f
∂t

∣∣∣∣
J

= 〈C( f , fII + fIII)〉, (A5)

where ·|J indicates a derivative at constant J rather than constant E‖. Hence, its E moment
over phase space may be expressed as

2π

m2
e

∫ ∞

0

∫ Jm

0
E ∂f

∂t

∣∣∣∣
J

dJ dE⊥ =
∫

Vt

EC( f , fII + fIII) d3v dz, (A6)

where we have used the fact that

2π

m2
e

∫ ∞

0

∫ Jm

0
E〈C( f , fII + fIII)〉 dJ dE⊥ =

∫
Vt

EC( f , fII + fIII) d3v dz. (A7)
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From (3.5) we find

dWt

dt
= −2π

m2
e

∫ ∞

0

∫ 0

−eφm

∂J
∂t

f dE‖ dE⊥ + 2π

m2
e

dJm

dt

∫ ∞

0
E⊥fa

∣∣∣∣
E‖=0

dE⊥

+
∫

Vt

EC( f , fII + fIII) d3v dz, (A8)

where we have used the fact that

∂E
∂t

∣∣∣∣
J

= −1
τ

∂J
∂t

∣∣∣∣
E‖

. (A9)
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