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SUMMARY

Using data from a cohort study conducted by the Veterinary Laboratories Agency (VLA),

evidence of spatial clustering at distances up to 30 km was found for S. Agama and S. Dublin

(P values of 0.001) and borderline evidence was found for spatial clustering of S. Typhimurium

(P=0.077). The evolution of infection status of study farms over time was modelled using a

Markov Chain model with transition probabilities describing changes in status at each of four

visits, allowing for the effect of sampling visit. The degree of geographical clustering of infection,

having allowed for temporal effects, was assessed by comparing the residual deviance from a

model including a measure of recent neighbourhood infection levels with one excluding this

variable. The number of cases arising within a defined distance and time period of an index case

was higher than expected. This provides evidence for spatial and spatio-temporal clustering,

which suggests either a contagious process (e.g. through direct or indirect farm-to-farm

transmission) or geographically localized environmental and/or farm factors which increase the

risk of infection. The results emphasize the different epidemiology of the three Salmonella

serovars investigated.
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INTRODUCTION

Salmonella spp. are important foodborne and direct-

contact zoonoses with a major impact on both human

and animal health [1–3]. Salmonella spp. can be sub-

divided into over 2400 serovars, some of which are

species-specific. Of the ten most commonly reported

Salmonella serovars in human beings in 2000, seven

were also reported in cattle by routine statutory sur-

veillance [4].

Our understanding of the ecology and infection

dynamics of Salmonella spp. in dairy cattle is limited;

this hampers efforts to control and prevent disease

[5, 6]. Dairy cattle are exposed to Salmonella spp.

through persistently contaminated environments,

feed, water, and wildlife faeces. At the farm level, per-

sistent infection may be evident for years, probably

as the result of a continuous cycle of environmental
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contamination, cattle infection and faecal shedding

[7, 8]. This may lead to recurrent outbreaks of clin-

ical disease.

The epidemiology ofSalmonella serotypes is diverse.

Endemic persistence at a fluctuating level within the

national dairy herd is evident for many strains of sero-

vars such as S. enterica serovar Agama and S. enterica

serovar Dublin. Other strains show a more epidemic

pattern of spread. For example, an emergent multi-

drug-resistant strain of S. enterica serovar Typhi-

murium, which was classified as definitive type

(DT)104, was identified in the United Kingdom in

1984. This strain was first recorded on dairy farms in

1988. Few human and animal cases of infection were

reported up to 1990 [9]. Subsequently, S. Typhimur-

ium DT104 caused an epidemic in both humans and

cattle, with elevated morbidity and mortality com-

pared to other serovars. The number of cases peaked

in 1996, subsequently declining without targeted in-

tervention measures. To date, there is little under-

standing of why Salmonella infections display such

variation in their epidemiology [10].

Quantitative description of the spatial pattern of

the Salmonella serovars of interest will inform

knowledge of the underlying epidemiology and bio-

logical processes. For example, large-scale regional

variations in infection may indicate risk factors oper-

ating on a similar spatial scale such as the presence of

suitable habitats for wildlife populations acting as a

reservoir of infection [11]. Similarly, smaller-scale ex-

cess spatial clustering – or the tendency for case farms

to be closer together than would be expected based on

the distribution of all farms – may result from local-

ized contagious spread or highly localized risk factors

such as local feed suppliers [12, 13] and environmental

contamination [14]. For example, runoff from pas-

tures, direct contamination of surface water, leakage

or overflow from slurry lagoons and wastewater dis-

posal can all contribute to local water contamination,

which in turn may result in localized spread between

cattle herds [15].

The aim of this study was to investigate both large-

and small-scale spatial and temporal patterns of

infection of three commonly identified S. enterica

serovars (Agama, Dublin and Typhimurium) on dairy

farms in England and Wales. Detailed information

on clustering in space and time may lead to enhanced

understanding of the different epidemiological traits

of these serovars. Such information may prove useful

for the design and implementation of specific and ef-

fective control strategies, for instance by targeting

both surveillance and control activities towards high-

risk farms.

MATERIALS AND METHODS

Study design and population sampled

Data were taken from a cohort study of all known

Salmonella serovars on dairy farms in England and

Wales conducted by the Veterinary Laboratories

Agency (VLA) between October 1999 and February

2001. As described elsewhere, the study estimated the

national herd prevalence, incidence and spatial epi-

demiology of S. Agama, S. Dublin and S. Typhi-

murium [16], as well as risk factors associated with

Salmonella status [17]. A brief description of the study

population and relevant findings follows.

Dairy farms were enrolled through five milk com-

panies, which bought from 1224 dairy farms (rep-

resenting 63% of the total) in Great Britain. A total

of 872 farms agreed to the release of their name and

address. Of 547 farms that were randomly selected

and asked to participate, 499 met the defined selection

criteria : they had at least 30 milking cows, did not sell

directly to the public, did not produce unpasteurized

products, were not open to public visitors on a com-

mercial basis, and were not primarily cattle dealers. A

further 50 farms declined to participate ; the remain-

ing 449 farms were enrolled. The geographical dis-

tribution of these study farms appeared, on visual

inspection, representative of the wider geographical

distribution of dairy farms throughout England and

Wales.

Farms were sampled on up to four visits separated

by around 3-monthly intervals. At visit 1 (October

1999 to February 2000), all enrolled farms were

sampled. Of these farms, 272 farms consented to

continued participation in the study, and were sam-

pled at visit 2 (March–July 2000). There were 251

farms sampled at visit 3 (June–October 2000), and 243

farms at visit 4 (September 2000 to January 2001). At

each visit, 20 pooled 50-g samples of freshly voided

faeces were collected from nine defined sites, follow-

ing a standardized sampling protocol to minimize

variations between visits and between farms. Samples

were bacteriologically cultured for Salmonella fol-

lowing a standardized method. Suspect Salmonella

colonies were confirmed serologically and biochemi-

cally, and were serotyped and/or phage-typed.

Case farms were classified as those having a positive

result for a particular Salmonella serovar from at least
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one sample on any of the visits. For optimum confi-

dence that control farms were truly negative, all

samples on all four visits were required to be negative

(n=132). For the spatial analysis, information re-

garding the date of visit was ignored; the time element

was included for an analysis of changes in infection

status over time, and over space and time.

Statistical analysis

Spatial K-function

Spatial clustering of cases of each of the three

Salmonella serovars in turn was assessed using a

technique proposed by Diggle & Chetwynd [18],

which allows estimation of the nature and physical

scale of clustering, rather than just determination of

the existence of any such effect. Their approach cor-

rects for the underlying spatial variation in farm

density by comparing case locations with the loca-

tions of a randomly selected group of controls from

the population at risk, so that any apparent clustering

of cases may be attributed to genuine spatial anoma-

lies, rather than simply reflecting the underlying geo-

graphical population structure.

The data for analysis were the farm locations, with

a farm labelled as a case if it had positive disease sta-

tus, and as a control otherwise. Assessment of spatial

clustering was then based on the second-order pro-

perties of the process, using the K-function,

K(s)=lx1E(no: of further events within distance

s of an arbitrary event),

where l is the intensity, or mean number of events per

unit area [19]. The K-functions for cases and controls

were evaluated at a set of equally spaced distances sk :

k=1, …, m. The K-function was estimated using the

khat( ) routine of the Splancs library [20] in R version

2.4.0 (http://www.r-project.org), which implements

the estimator of Ripley [19] given by

K̂K(t)=
jAj

n(nx1)

Xn
i=1

X
jli

I(dijft)

wij
,

where t is the distance of interest, I( ) is an indicator of

whether the distance dij between point i and j is less

than t, n is the number of points in the region, |A| is
the area of the study region and wij is the edge cor-

rection factor. This latter is necessary to allow for

potential biases in studying distances between pairs of

events, one or more of which lies close to the bound-

ary of the study region. (For a detailed description of

K-function estimation and the associated edge cor-

rection, see Diggle [21, pp. 50–51].)

Under the null hypothesis of no spatial clustering

the cases and controls form independent random

samples from the same underlying population at risk,

in which case the K-functions of cases and controls

are identical [21]. Diggle & Chetwynd [18] therefore

considered the function

D(s)=K̂K1(s)xK̂K0(s),

where subscripts 1 and 0 correspond to case and

control farms, respectively. Significantly positive val-

ues of the test statistic D(s) constitute evidence of

spatial clustering above that explained by the under-

lying spatial distribution of at-risk farms. D(s) is

therefore interpretable as excess clustering after this

underlying spatial distribution has been taken into

account. Diggle & Chetwynd [18] then proposed a

formal test of significance for spatial clustering based

upon the test statistic

D=
Xm
k=1

D(sk)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var{D(sk)}

p
,

which combines the information from the values of

D(sk) over the m distances, and the variance is calcu-

lated under the null hypothesis of no spatial cluster-

ing. Statistical significance of an observed D can then

be assessed using a Monte Carlo test. Under the null

hypothesis, cases are a random sample from the

superposition of cases and controls. The Monte Carlo

procedure ranks the observed value D1 of D from the

data amongst values D2, …, Dr obtained from rx1

random permutations of the case and control labels

under the null hypothesis. For D1 ranking the kth

largest, the exact P value is then given by k/r [18, 22,

23]. A priori, to balance the geographical scale of in-

terest with the fact that the K-function is most effec-

tive at detecting small-scale spatial interaction, we set

a maximum distance of interest of 30 km.

To correctly interpret the possible spatial clustering

of Salmonella infection over the study period, the

analysis was adjusted for the underlying distribution

of farms sampled by comparing the spatial distri-

bution of case farms to that of control farms. We in-

itially conducted an analysis at the country level. With

a single realization of a point process over a geo-

graphical scale of this magnitude, we acknowledge

that the possibility cannot be excluded that any

identifiable clustering is due to geographical hetero-

geneity alone. Accordingly, we conducted a subsidiary

analysis of three internally homogeneous sub-regions
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to obtain supplementary evidence in favour of

anomalous clustering (as opposed to purely geo-

graphical heterogeneity).

Allowing for temporal effects

As sampling of Salmonella spp. on the dairy farms

was conducted during four sampling intervals over

the 17-month study period, the evidence for a tem-

porally varying prevalence over the study period was

examined.

Let XK,T denote the disease status of farm K at visit

T, and write Pij(t) for the probability that farm k

moves from state i at time tx1 to state j at time t.

Denote a positive (infected) farm status as 1, and a

negative farm as 0. The sequence of test results for

each farm can then be modelled using a two-state

Markov Chain [24], defined by the 2r2 transition

matrices

Pij(t)=Pr[Xk, t=jjXk, tx1=i]= 1xP01(t) P01(t)
P10(t) 1xP10(t)

� �
:

Under this model, the likelihood of Pij(t) is given by

L(Pij(t)jX1)=
Y
t

P01(t)
n01(t)(1xP01(t))

n00(t)

rP10(t)
n10(t)(1xP10(t))

n11(t),

where nij(t) denotes the number of transitions that

occur from state i at visit (tx1) to state j at visit t.

Conditioning on visit 1, the maximum-likelihood es-

timates (MLEs) for the transition probabilities P̂ij(t)

at t=2, 3 and 4 are P̂ij(t)=[nij(t)/ni(t)]. We compared

the null hypothesis that no visit effect exists (equating

to transition probabilities being temporally homo-

geneous, i.e. P̂ij(t)=P̂ij), with the alternative hypo-

thesis of a visit effect [a separate P̂ij(t) being required

for each visit] using standard likelihood ratio tests (i.e.

comparing twice the difference in likelihoods with a x2

distribution on the appropriate degrees of freedom).

If there was evidence for a visit effect, a formal test

was conducted to determine whether specification of

separate transition probabilities for each visit was re-

quired, or whether a more parsimonious model would

suffice. The number of parameters in the model was

varied by adjusting the transition probability struc-

ture, resulting in different models ; comparison of the

outputs was again performed using likelihood ratio

tests. First, the original model which assumed separ-

ate transition probabilities for positive to negative,

and negative to positive at each visit (i.e. containing

six parameters) was compared to the simplest model,

which fitted two parameters (i.e. specified common

negative to positive, and positive to negative trans-

ition probabilities at all visits). The six-parameter

model was also compared to models which allowed

for a seasonal effect, containing four parameters (com-

mon negative to positive, and positive to negative

transition probabilities at visits 2 and 4, and different

transition probabilities at visit 3) and three para-

meters (with a negative to positive transition prob-

ability that was the same at visits 2 and 4 and different

at visit 3, and a common positive to negative trans-

ition probability).

Spatio-temporal analysis

After the examination of temporal relationships, we

allowed for the presence of spatial effects. Specifically,

we investigated whether farms which move from

negative at time (tx1) to positive at time t were close

to farms that were positive at time (tx1). A covariate

xi was introduced as a measure of risk of infection

from neighbouring farms, here defined as the number

of farms that were positive for any serovar within a

25 km radius. The distance of 25 km was chosen to

include both short- and middle-range spatial effects

which may reflect first-order and second-order infec-

tions. This model, relating the transition probability

P̂01(t) to the status of neighbouring farms, was fitted

within the generalized linear model framework [25].

The response Yi is a binary variable representing

the disease status of farm i at time t conditional on

the premises being negative at time (tx1), taking the

value 1 if the farm is positive and 0 if negative. The

model is written as

Yi � Bernoulli (P01i), with logit (P01i)

= log
P01i

1xP01i

� �
=at+bxi,

where t again denotes visit (2, 3 or 4) and xi the

measure of risk from neighbouring farms calculated

at visit (tx1). The estimated coefficients, a and b,

represent the effects of visit and spatial risk respect-

ively. The measure of spatial risk xi did not differen-

tiate between serovars due to the small numbers in

each group; however, the analysis was still of benefit

in that clusters of farms which were infected in the

same time period might be exposed to some common

underlying risk factors.

To assess the effect of varying the neighbourhood

definition, the spatial risk function was calculated

at various distances and the effects on the residual
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deviance of the model and the exponents of the coef-

ficient values were considered.

RESULTS

Spatial analysis

Of the 449 farms that were initially enrolled into the

cohort study, Salmonella spp. were isolated from 159

farms on at least one occasion. The most common

serovars identified were S. Agama (n=46 farms),

S. Dublin (n=34) and S. Typhimurium (n=31).

Detailed information on estimates of prevalence and

incidence of Salmonella on the dairy farms can be

found in Davison et al. [16]. There appeared to be a

degree of spatial clustering of Salmonella infection

during the study period (Fig. 1). S. Agama was seen

only in Southern England, Wales and the Midlands

whereas S. Dublin was found more commonly in

Northern England, Wales and the Midlands. Clus-

tering was not apparent for S. Typhimurium. Multi-

variable analysis showed a statistically significant

association between region and Salmonella status [17].

(a) (b)

(c) (d)

Fig. 1. Maps of England and Wales showing the dairy farms sampled and their (a) S. Agama status, (b) S. Dublin status,
(c) S. Typhimurium status, (d) status for all three serovars combined. +, Case ; $, control.
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First, considering the countrywide analysis, Figure 2

shows D(s) for each serovar evaluated at distances s

up to 30 km, together with approximate 95% toler-

ance limits t2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[var{D(s)}]

p
constructed under the

null hypothesis of no spatial heterogeneity of each of

the three serotypes. Figure 2 provides evidence for

spatial heterogeneity of S. Agama, S. Dublin and

S. Typhimurium, having taken the underlying farm

density into account, indicated by the departure of

the function D(s) at a range of distances from 95%

tolerance limits constructed under the null hypothesis

of no excess clustering. This may suggest localized

variation in the occurrence of each serotype. Formal

Monte Carlo tests of the significance of spatial hetero-

geneity, using the statisticD which summarizes spatial

heterogeneity across all scales studied, gave P values

for S. Agama (P=0.001), S. Dublin (P=0.001) and

S. Typhimurium (P=0.077). The first two of these

provide significant evidence against the null hypo-

thesis that the cases and controls are random samples

from the same underlying population, and are sug-

gestive of heterogeneity in the occurrence of these two

serotypes over and above that which would be

explained by the density of cattle farms alone. The

evidence for heterogeneity of S. Typhimurium is

marginal. The Monte Carlo P values are consistent

with Figure 2: the smallest (most significant) P values

are associated with S. Agama and S. Dublin, for

which the departure from the 95% tolerance limits

was most pronounced; in contrast, S. Typhimurium

only deviated from the envelopes at small distances.

The function lD(s) estimates the expected number

of cases (positive farms) within distance s of a refer-

ence case which are attributable to excess spatial

clustering (Fig. 3). From Figure 3 it was seen that

within 20 km of a case of S. Agama, a further 1.8

cases would be expected due to excess spatial cluster-

ing; within 20 km of a S. Dublin case, a further 1.7

cases ; and within 20 km of a S. Typhimurium case, a

further 0.3 cases (although the last of these was not

statistically significant).

We subsequently estimated D(s) within three sub-

regions of England and Wales : North West England

(Cheshire and North Midlands), South West England

(Devon and Cornwall), and Pembroke, Wales. The

numbers of cases of each serotype in each region are

shown in Table 1. Figure 4 shows the estimates ofD(s)

with approximate pointwise 95% tolerance limits

(constructed as ¡2 S.D.) under the null hypothesis of

random labelling of cases and controls within each
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Fig. 2. Estimated excess risk attributable to spatial clustering, D(s) (––), and approximate 95% tolerance limits for D(s)=0
(– – –), calculated at distances s=1, …, 30 km for (a) S. Agama, (b) S. Dublin and (c) S. Typhimurium.
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region. The final row of Figure 4 shows pooled esti-

mates obtained as weighted averages over the three

regions, with weights proportional to the numbers of

cases shown in Table 1.

For S. Dublin, the results show significant cluster-

ing in the North West (P=0.010), no significant de-

parture from random labelling in the South West

(P=0.696) and no evidence of clustering in Pembroke

(P=0.258). The non-significant result in the South

West is unsurprising as this region includes only four

cases. The pooled estimate of D(s) shows significant

clustering (P=0.010).

For S. Typhimurium the results are qualitatively

similar: significant clustering in the North West (P=
0.021), no significant departure from random label-

ling in either the South West (P=0.275) or Pembroke

(P=0.571), where the numbers of cases are again

small (5 and 4, respectively), and significant clustering

in the pooled analysis (P=0.021).

For S. Agama, the results once more indicate clus-

tering, significantly so in the North West (P=0.012),

Pembroke (P=0.029) and pooled (P=0.001) analy-

ses, whilst a non-significant result was observed in the

South West (P=0.302).

In principle, the shapes of the estimated functions

D(s) can indicate the nature and scale of the clustering

[21, section 6.3.1]. However, in the present study their

capacity to do so is limited by the relatively small

numbers of cases, as is reflected in the widths of the

tolerance intervals shown in Figure 4.

Temporal analysis

Comparison of outputs of the Markov Chain models

indicated that the model incorporating different trans-

ition probabilities at all visits (i.e. six parameters) best

represented the data: it had a significantly better fit

than the simplest, two-parameter model (D=21.00,

P=0.0003), as well as the intermediate models with

four parameters (D=7.30, P=0.02) and three para-

meters (D=12.59, P=0.006).

Figure 5 shows the time-varying transition prob-

abilities estimated via maximum likelihood (a) for a

farm becoming infected with Salmonella (any serovar)

and (b) for a farm returning to a negative Salmonella

status. Considering all serovars together, the trans-

ition probabilities of negative to positive (and vice

versa) were similar at visits 2 and 4. For visit 3 there

was an increase in the chance of a farm becoming

positive and a decrease in the likelihood of farms re-

turning from a positive to negative status.

Stronger evidence for transmission dynamics ought

to be obtained from serovar-specific analyses. When

this was done, significant time inhomogeneity was

found for new infections of S. Agama (P=0.026).

There was, however, no evidence of time inhomogen-

eity for S. Dublin (P=0.230) or for S. Typhimurium

(P=0.953). Lack of evidence for time inhomogeneity

may in part be due to a lack of power induced by the

reduced sample size (Table 2), and may also explain

the large differences seen between serovars, particu-

larly for P10(t), shown in Figure 5.

Spatio-temporal analysis

Results of the generalized linear model relating the

probability of a control farm becoming infected to the

number of positive neighbouring farms within a

25 km radius, after adjustment for the temporal visit

effect, are shown in Table 3. It can be seen that the

estimated probability for a farm becoming positive at

visit 2 (P=0.083) was very similar to the MLE of the

transition probability from the earlier Markov Chain

analysis considering all serovars together [P̂01(2)=
0.075] shown in Figure 5. The effects of visits 3 and 4

were different from the MLEs (0.198, 0.158), due to

the spatial effect explaining a part of the residual de-

viance.

The effects of varying the neighbourhood distance

on the residual deviance of the model and the expon-

ents of the coefficient values are shown in Figure 6.

Figure 6a shows that the spatial risk function reduced

the residual deviance by the greatest amount when

neighbourhoods of 22–25 km and 35–40 km were

used. Since the measure of risk was a cumulative count

of infected farms over the distances defined, the peak

between these two ranges was difficult to explain and

may simply reflect random variation in the data.

The exponents of the estimated coefficients for the

spatial risk function are shown in Figure 6b where

it was seen that the spatial risk was always >1, indi-

cating that a farm was more likely to become positive

Table 1. Numbers of cases of each serotype in each

of three regions

Region S. Agama S. Dublin S. Typhimurium

North West 14 6 9

South West 16 4 5
Pembroke 7 14 4

Total in the
three regions

37 24 18
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if it had a positive neighbour at the previous visit.

There was a general trend for the value to decrease as

distance increased, albeit with a minimum around

20 km, which may again reflect random variation.

Results from Figure 6 are suggestive of the underlying

process of transmission, but given their borderline

significance (P=0.065), should be interpreted with

caution.

DISCUSSION

The study provided evidence for spatial clustering

of S. Agama and S. Dublin at the country level, above

that explained by variations in farm density and geo-

graphical distribution of cases. The results of the sub-

regional analysis collectively demonstrate that all

three serotypes show evidence of spatial clustering

that cannot be attributed solely to regional scale

variation in risk.

The temporal and spatio-temporal analysis pro-

vided further evidence for a higher than expected

number of cases arising within a defined time period

and distance. The temporal analysis indicated that the

risk of a farm becoming infected with Salmonella was

not constant over time and was higher during visit 3 ;

note that this corresponded to samples being taken in

the months of June–October, a time when certain

Salmonella strains have been reported to be at their

most prevalent [16]. Unfortunately, it was difficult to

assign meaning to results of serovar-specific analysis

due to the limited sample size. The spatio-temporal

analysis suggested that at visits 3 and 4, a farm was

more likely to become positive if there were more

positive farms within 25 km of that farm at the time of

the previous visit.

This clustering suggests evidence for either a con-

tagious process (e.g. through direct or indirect farm-

to-farm transmission) or for geographically localized

environmental and/or farm factors which increase the

risk of infection [26]. In support of the former, pre-

vious studies have demonstrated evidence for farm-

to-farm spread of Salmonella serovars [3, 27]. In terms

of common risk factors, studies have suggested com-

mon sources for Salmonella infections in cattle, e.g.

feed [12, 13], other animals (including birds [28, 29],

rodents [30], badger reservoirs [11]), and environ-

mental contamination [7, 14].

These results emphasize the different epidemiology

of the three Salmonella serovars. S. Agama and

S. Dublin show similar behaviour in terms of the

nature and scale of spatial clustering (Fig. 2a, b),

although their geographical distributions were clearly

different. In contrast, S. Typhimurium was found

throughout England and Wales, and with the current

dataset does not demonstrate significant spatial clus-

tering. This may in part be due to the known differ-

ences in the serovars : endemic and epidemic strains

might be expected to behave differently in terms of

virulence, host adaptation and survival in the

environment. A recent study in The Netherlands es-

timated a higher basic reproduction ratio (R0) for

S. Dublin than for S. Typhimurium [31]. This related

to the higher probability that S. Dublin outbreaks

led to more severe clinical signs and mortality, and

Table 2. The number of farms with a new infection, and the number remaining negative from the previous

visit, at visits 2–4

Visit 2 Visit 3 Visit 4

Newly
infected

Remains
negative

Newly
infected

Remains
negative

Newly
infected

Remains
negative

S. Agama 5 (1.9) 257 (98.1) 18 (7.3) 228 (92.7) 8 (3.6) 216 (96.4)

S. Dublin 2 (0.8) 259 (99.2) 4 (1.7) 238 (98.3) 7 (3.0) 226 (97.0)
S. Typhimurium 5 (1.9) 258 (98.1) 7 (2.8) 239 (97.2) 6 (2.5) 230 (97.5)

All serovars 17 (7.5) 210 (92.5) 44 (19.8) 178 (80.2) 29 (15.8) 154 (84.2)

Values given are number (%).

Table 3. Risk factors associated with a farm

becoming positive for all Salmonella serovars

Variable
Coefficient
estimate

Odds
ratio P value

Time-

varying
infection

Visit 2 x2.493 0.083 <0.001

Visit 3 x1.329 0.265 <0.001
Visit 4 x1.554 0.211 0.001

Spatial
risk

Count of
positive farms

within 25 km

0.109 1.115 0.065
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resulted in persistence more often, than S. Typhi-

murium outbreaks. The reasons for the emergence

and subsequent decline in the 1990s of the more

virulent, epidemic S. Typhimurium DT104 strain

have not yet been explained; the in vitro invasiveness

of this strain does not appear to be greater than for

other Salmonella strains. The results of the present

study support a more epidemic pattern of behaviour

of S. Typhimurium, although it must be borne in

mind that S. Typhimurium generates the smallest

dataset of the three serovars studied, and analyses for

S. Typhimurium DT104 were not possible because of

the small number of cases.

This study, although longitudinal in nature, spans

just a short window in the full timescale of persistence

of these serotypes in the population. It is therefore

possible that any observed differences in the spatial

and temporal properties are the result of sampling

serotypes at different stages in their epidemic/endemic

profiles, and that over a longer timescale they may be

more similar. Such variations in the nature and extent

of spatial and temporal clustering between different

serotypes have been observed in other studies [10].

Possible biases in the design of the study were de-

scribed in Pascoe [32] and Davison et al. [16]. The 449

dairy herds initially sampled at visit 1 were randomly

selected through five large commercial milk compa-

nies which represented 63% of the dairy herds in

England and Wales. Of these 449 farms, 272 were

enrolled into the cohort study (out of 362 farms re-

quested to continue) and sampled on up to three fur-

ther occasions, and 243 farms were sampled at all four

visits. To achieve a consistent sampling interval of

about 3 months, farms which were sampled at visit

1 in October and early November (mostly one milk

company) were excluded, and a potential association

between milk company and farms recruited was

therefore introduced. Pascoe [32] concludes that this

potential bias was unlikely to have influenced results

and states there had been no significant association

between milk company and the outcomes of interest

(a farm being positive or becoming positive). More-

over since the controls were taken from within the

study population the conclusions reached should be

valid and be applicable to all dairies in England and

Wales that fulfil the study selection criteria.

The use of the K-function technique in detecting

and describing spatial clustering has been used pre-

viously for sporadic cases of human disease [33]. The

K-function approach is receiving increasing attention

in veterinary epidemiology [11, 34]. In this appli-

cation, the approach enables not only the use of D(s)

to test the null hypothesis of no spatial clustering, but

also estimation of the size and scale of the clustering

present due to the novel interpretation of K̂ (s) as a

scaled expectation. The Markov Chain approach

presents a further example of the innovative appli-

cation of a well-founded probabilistic technique

within the veterinary epidemiology field. It pro-

vides an objective method for making inference from

spatial-temporal disease surveillance data and, in

particular, for assessing the evidence in favour of

particular disease transmission mechanisms and un-

derlying aetiologies.
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