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Abstract

We study the static maximization of long-term averaged profit, when optimal pre-
set thresholds are determined to describe a pairs trading strategy in a general
one-dimensional ergodic diffusion model of a stochastic spread process. An explicit
formula for the expected value of a certain first passage time is given, which is used to
derive a simple equation for determining the optimal thresholds. Asymptotic arbitrage
in the long run of the threshold strategy is observed.
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1. Introduction

In pairs trading, we focus on two securities whose spread of (log) prices is modelled
as a mean-reverting stochastic process. When the spread widens, we make the higher
security short and the cheaper one long. When the spread reverts to its mean, we clear
the positions and make a profit. For a comprehensive review of studies on pairs trading,
we can refer to Krauss [11] and the references therein, where various schemes of pairs
trading are well categorized and explained. As for the formation period, that is, the
period to find and identify the comovements of a pair of security price processes, the
distance approach and the cointegration approach are introduced as two major ones.
As for the trading period after a suitable pair of securities is selected in the formation
period, several trading rules have been studied in the pairs trading literature. Among
these, the so-called threshold rules are widely employed to trigger trading signals
in constructing pairs trading strategies, and a one-dimensional Ornstein–Uhlenbeck
(OU) process is popularly used as a simple tractable model for the mean-reverting
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stochastic spread process. Zeng and Lee [14] studied a static optimization problem
for determining “optimal” preset thresholds, where a series expansion formula for
the expected value of a certain first passage time of an OU process is utilized (see
Remark 2.7 in Section 2). A related study of the OU process model by Bertram [1]
influenced Zeng and Lee’s work. In the present paper, we present a unified approach
to Zeng and Lee’s problem for determining optimal thresholds for pairs trading with
a general ergodic one-dimensional diffusion model for the stochastic spread process.
Our results are summarized as follows.

(a) We present a general class of one-dimensional diffusion models (see Assump-
tions 2.1–4.2) which have symmetric stationary distributions. The class contains
various tractable models: not only the OU process having a Gaussian stationary
distribution, but also the Pearson diffusion process having a t-stationary distri-
bution [7, 13], and the Jacobi diffusion process having a β-stationary distribution
[7, 10].

(b) For the class of one-dimensional diffusion models stated in (a) above,

– an explicit, analytic formula for the expected value of a certain first passage
time is derived (see Theorem 3.1 for details), and

– the static optimization problem for selecting the thresholds of pairs trading is
solved, where the long-time averaged profit is used as the criterion function; a
simple equation for the optimal thresholds, which involves a one-dimensional
integral, is explicitly described (see Theorem 4.5 for details).

These analytically tractable results for general non-Gaussian models seem to
be important, as the drawbacks of applying a Gaussian OU process model to
non-Gaussian financial data have been pointed out by Bertram [1] and Krauss
[11].

As evidence of the non-Gaussian nature of real financial time series data, we
observe daily Nikkei 225 (Nikkei stock average) and TOPIX (Tokyo stock price
index) data from the Japanese stock market from 1 June 2011 to 30 December 2020.
Figure 1 shows price movements, Figure 2 shows log-price movements, Figure 3 shows
the regression residual, log(Nikkei 225) − 1.144 × log(TOPIX) − 1.502 (the spread of
log-prices), and Figure 4 shows the quantile–quantile plot (see Chambers et al. [3]) of
the residual data, which seem to be non-Gaussian (with sample kurtosis 3.412061).

2. Model set-up

Consider two security price processes (Pt)t≥0 and (Qt)t≥0 in a continuous-time
economy. We may regard P and Q as discounted price processes for simplicity.
Suppose that fir some constants β, λ ∈ R,

Xt = log Pt − β log Qt − λ, t ≥ 0, (2.1)
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FIGURE 1. Nikkei 225 and TOPIX (2011–2020).

follows a one-dimensional diffusion process. Concretely, X = (Xt)t≥0 satisfies the
stochastic differential equation (SDE)

dXt = μ(Xt) dt + σ(Xt) dWt, t ≥ 0, X0 ∈ E, (2.2)

on a filtered probability space (Ω,F , P, (Ft)t≥0) endowed with the Ft-Brownian motion
(Wt)t≥0, where E = (l, r) ( −∞ ≤ l < 0 < r ≤ ∞) is the state space. Here, μ,σ : E → R
are continuous functions and σ(x)2 > 0 for all x ∈ E. Associated with X, we define the
scale function

s(x) =
∫ x

0
exp
{
− 2
∫ y

0

(
μ

σ2

)
(z) dz

}
dy, x ∈ E,

and the speed measure on E by

m(dx) =
2
σ(x)2 exp

{
2
∫ x

0

(
μ

σ2

)
(y) dy

}
dx.

For the basic roles of the scale function and the speed measure in one-dimensional
diffusion theory, we can refer to the works of Durret [4, Chapter 6] and Karatzas and
Shreve [9, Section 5.5], for example. We make the following assumptions.
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FIGURE 2. Log-prices: Nikkei 225 and TOPIX (2011–2020).

ASSUMPTION 2.1. The boundary values of the scale function are

lim
x↓l

s(x) = −∞, lim
x↑r

s(x) = +∞,

and m(E) < ∞.

ASSUMPTION 2.2. The boundaries of the state space are −l = r > 0. In the SDE (2.2),
μ is an odd function and σ2 is an even function, so, μ(x) = −μ(−x) and σ(x)2 = σ(−x)2

for all x ∈ E.

REMARK 2.3. Assumption 2.1 implies that X is recurrent and has the invariant
probability measure, given by

m̄(dx) =
1

m(E)
m(dx). (2.3)

Hence, X is ergodic, and its stationary distribution is given by (2.3). Moreover, we see
that

lim
t→∞
Px(Xt < y) = m̄((l, y)) for all x, y ∈ E, (2.4)
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FIGURE 3. Residual of regression.

where Px(·) = P(· | X0 = x). This relation is seen in Karatzas and Shreve [9], which is
an extension of a result obtained by Pollack and Siegmund [12]. On the other hand,
Assumption 2.2 implies the symmetry of the stationary distribution m̄ on E. Further, it
implies that s and s′′ are odd functions and s′ is an even function.

Here are some examples which satisfy Assumptions 2.1 and 2.2.

EXAMPLE 2.4 (Ornstein–Uhlenbeck process). Let σ ∈ R++ be constant, let
μ(x) = −κσ2x with κ ∈ R++ := (0,∞), and let E = R. The associated process is
written as

dXt = −κσ2Xt dt + σ dWt. (2.5)

In this case, we see that

s′(x) = eκx
2
, m(dx) =

2
σ2 e−κx

2
dx

and the stationary distribution is a centred Gaussian distribution.
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FIGURE 4. Quantile–quantile plot of residuals.

EXAMPLE 2.5 (Pearson diffusion). Let μ(x) = −κγ2x and σ(x) = γ
√
δ + x2 with

κ, γ, δ ∈ R++, and let E = R. The associated process is written as

dXt = −κγ2Xt dt + γ
√
δ + X2

t dWt. (2.6)

In this case, we see that

s′(x) = (δ + x2)κ, m(dx) =
2
γ2 (δ + x2)−(1+κ) dx,

and the stationary distribution is a scaled t-distribution.

EXAMPLE 2.6 (Jacobi diffusion). Let μ(x) = −κγ2x and σ(x) = γ
√
δ2 − x2 with

κ, γ, δ ∈ R++, and let E = (−δ, δ). The associated process is written as

dXt = −κγ2Xt dt + γ
√
δ2 − X2

t dWt.

In this case, we see that

s′(x) = (δ2 − x2)−κ, m(dx) =
2
γ2 (δ + x)κ−1(δ − x)κ−1 dx,

and the stationary distribution is a centred and scaled beta distribution.
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REMARK 2.7. Forman and Sørensen [7] studied the parametrized one-dimensional
diffusion process

dXt = −θ(Xt − μ) dt +
√

2θ(aX2
t + bXt + c) dWt,

with θ > 0, μ, a, b, c ∈ R, which contains the above three examples, and shows the
feasibility of explicit statistical inference of parameters.

3. Expected value formula for first passage time

For y ∈ E, denote the first hitting time by

τy = inf{t ≥ 0 | Xt = y},

where we make the interpretation inf ∅ = +∞, with ∅ being the empty set. Using the
simplified notation Ex[(·)] = E[(·) | X0 = x], we obtain the following theorem.

THEOREM 3.1. Under Assumptions 2.1 and 2.2, and for l < −α < β < α < r,

Eα[τβ] + Eβ[τ−α ∧ τα] =
m(E)

2
{s(α) − s(β)}.

REMARK 3.2. For the OU process given in Example 2.4, Zeng and Lee [14] derived
the series expansion formula

Eα[τβ] + Eβ[τ−α ∧ τα] =
1

2κσ2

∞∑
n=0

1
(2n + 1)!

× {(2
√
κα)2n+1 − (2

√
κβ)2n+1}Γ

(2n + 1
2

)
,

where we use the notation

Γ(z) =
∫ ∞

0
xz−1e−x dx (z ∈ C, 
(z) > 0)

for the gamma function. Using Theorem 3.1 for Example 2.4, we have the following
different analytic representation:

Eα[τβ] + Eβ[τ−α ∧ τα] =
√

2π
2κσ2

∫ α
β

eκx
2

dx.

PROOF. Let l < a < x < b < r. Recall that

Ex[τa ∧ τb] =
∫

E
Ga,b(x, y)m(dy),
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where we define the Green function by

Ga,b(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s(x) − s(a))(s(b) − s(y))
s(b) − s(a)

if a ≤ x ≤ y ≤ b,

(s(y) − s(a))(s(b) − s(x))
s(b) − s(a)

if a ≤ y ≤ x ≤ b,

0 otherwise,

(3.1)

(see, for example, Durret [4, Chapter 6] or Karatzas and Shreve [9, Section 5.5]). Note
that

Ex[τa ∧ τb] =
s(x) − s(a)
s(b) − s(a)

∫ b

x
(s(b) − s(y))m(dy)

+
s(b) − s(x)
s(b) − s(a)

∫ x

a
(s(y) − s(a))m(dy). (3.2)

Letting b ↑ r and using Assumption 2.1 yields

Ex[τa] = (s(x) − s(a))
∫ r

x
m(dy) +

∫ x

a
(s(y) − s(a))m(dy). (3.3)

Then, combining (3.2) with x = β, a = −α, b = α and (3.3) with x = α, a = β, we have

Eβ[τ−α ∧ τα] + Eα[τβ]

=
s(β) − s(−α)
s(α) − s(−α)

∫ α
β

(s(α) − s(y))m(dy) +
s(α) − s(β)

s(α) − s(−α)

∫ β
−α

(s(y) − s(−α))m(dy)

+ (s(α) − s(β))
∫ r

α

m(dy) +
∫ α
β

(s(y) − s(β))m(dy)

=
s(β) + s(α)

2s(α)

∫ α
β

(s(α) − s(y))m(dy) +
s(α) − s(β)

2s(α)

∫ β
−α

(s(y) + s(α))m(dy)

+ (s(α) − s(β))
∫ r

α

m(dy) +
∫ α
β

(s(y) − s(β))m(dy)

=
s(α) − s(β)

2

( ∫ α
β

+2
∫ r

α

+

∫ β
−α

)
m(dy) +

s(α) − s(β)
2s(α)

( ∫ β
−α
+

∫ α
β

)
s(y)m(dy)

=
s(α) − s(β)

2
m(E),

where we use the property that s is an odd function, that is, s(x) = −s(−x) for
x ∈ E, and the symmetry of m, that is, m(A) = m(−A) for A ∈ B(E), which follow from
Assumption 2.2. This completes the proof. �

REMARK 3.3. Under Assumption 2.1 (without imposing Assumption 2.2), we have for
l < β < α < r,

Eα[τβ] + Eβ[τα] = m(E){s(α) − s(β)}. (3.4)
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This assertion follows by combining equation (3.2) with x = α, a = β, and

Ex[τb] =
∫ b

x
(s(b) − s(y))m(dy) + (s(b) − s(x))

∫ x

l
m(dy) (3.5)

with x = β, b = α. Equation (3.5) follows from (3.2), by letting a ↓ l and using
Assumption 2.1. Note that formula (3.4) appeared in Karatzas and Shreve [9]. Also,
Bertram [1] has derived this formula for the OU process given in Example 2.4.

4. Optimal thresholds for pairs trading

In this section, we apply Theorem 3.1 to compute optimal thresholds for pairs
trading. Consider the situation where the stochastic spread process X = (Xt)t≥0 (2.1)
is governed by the one-dimensional SDE (2.2), and that Assumptions 2.1 and 2.2 are
satisfied. First, we note that the SDE (2.2) has a weak solution, which is unique in the
sense of probability law (for the definition of the uniqueness of the solution of SDE in
the sense of probability law, see [9, Chapter 5]). For the proof, we refer to Karatzas and
Shreve [9], where the case E = Rwas treated, which can be straightforwardly modified
to apply to our situation with E ⊂ R. Next, we note that

X(x) ≡
law
−X(−x),

where the superscript (x) denotes the starting position of the process X, that is,
x = X(x)

0 ∈ E, which follows from the uniqueness of the solution of SDE (2.2) and
Assumption 2.2.

Now, inspired by Zeng and Lee [14], we consider the following trading strategy. Let
a > 0 and b ∈ [−a, a] be two preset thresholds, which determine the trading signals.
We set T0 = 0, and, for n ∈ N, determine the starting time Sn and the completion time
Tn of the nth trading cycle by

Sn = inf{t > Tn−1||Xt | = a},
Tn = inf{t > Sn|Xt = sgn(XSn )b},

respectively. The nth trading cycle consists of the following two steps.

(A) At time Sn, if XSn = a (respectively, XSn = −a), set a one dollar short (respec-
tively, long) position of security P and a β dollar long (respectively, short)
position of security Q. Keep these positions until time Tn.

(B) At time Tn, clear the positions and make a profit. Wait until the next starting
time Sn+1.

The profit of the nth trading cycle is (approximately) given by

−sgn(XSn )
(PTn − PSn

PSn

− β
QTn − QSn

QSn

)
− c ≈ −sgn(XSn )

(
log

PTn

PSn

− β log
QTn

QSn

)
− c

= −sgn(XSn )(XTn − XSn ) − c = a − b − c,
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where sgn(x) denotes the sign of x ∈ R, and c > 0 is the total transaction cost in the
trading cycle. Here, recall that

Un = Tn − Tn−1, n ∈ N,

are independent, identically distributed random variables, which are deduced from the
time-homogeneity of X and the strong Markov property (the strong Markov property
of the solution of the Markovian SDE can be found in Karatzas and Shreve [9, Chapter
5]). We then define

Nt = sup{n ∈ N | Tn ≤ t}, t ≥ 0,

which is a renewal process. The cumulative profit obtained from the completed trading
until time t is

(a − b − c)Nt,

and the long-time averaged profit is

lim
t→∞

1
t

(a − b − c)Nt =
a − b − c
E[U1]

= L(a, b), almost surely, (4.1)

where we use the strong law of large numbers result in renewal theory [2, Chapter
10]. To determine the optimal threshold levels, we are interested in the maximization
problem

max
(a,b) ∈A

L(a, b), (4.2)

where

A = {(x, y) ∈ E2 | − x ≤ y ≤ x − c}, (4.3)

and the objective function can be expressed as

L(a, b) =
a − b − c

Eb[τa ∧ τ−a] + Ea[τb]
=

2(a − b − c)
m(E){s(a) − s(b)} (4.4)

by Theorem 3.1. To solve the problem expressed by (4.2)–(4.4), we impose the
following conditions.

ASSUMPTION 4.1. For all x ∈ E \ {0}, xμ(x) < 0.

ASSUMPTION 4.2. In the case where r = ∞, limx↑r s′(x) = ∞.

REMARK 4.3. Assumption 4.1 implies that X is mean-reverting: the drift μ of X is
always directed “inward”. It also implies that for all x ∈ (0, r),

s′′(x) = −2
(
μ

σ2

)
(x)s′(x) = −s′′(−x) > 0,
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where we recall that for all x ∈ E,

s′(x) = exp
{
− 2
∫ x

0

(
μ

σ2

)
(y) dy

}
= s′(−x) > 0,

which follow from Assumption 2.2 and Remark 2.3. Assumption 4.2 ensures that
L(a, b)→ 0 as a ↑ r(= ∞); the long-time averaged profit becomes small if the thresh-
old a is too large. The details can be found in the proof of Theorem 4.5.

REMARK 4.4. It is easy to check that Examples 2.4–2.6 satisfy Assumptions 2.1–4.2.

We obtain the following theorem concerning the solution of the maximization
problem (4.2).

THEOREM 4.5. Suppose that Assumptions 2.1–4.2 are satisfied, and let

h(a) = s(a) −
(
a − c

2

)
s′(a), a ≥ 0.

Then there exists a unique constant a∗ > 0 such that

h(a∗) = 0 and a∗ ∈
( c
2

, r
)
,

and it defines the maximizer for (4.2) with (4.3) and (4.4) as follows:

max
(a,b) ∈,A

L(a, b) = L(a∗,−a∗) =
2(a∗ − c/2)
m(E)s(a∗)

=
2

m(E)s′(a∗)
.

PROOF. Let

f (a, b) =
a − b − c

s(a) − s(b)
.

We see that

∂af (a, b) =
{s(a) − s(b)} − (a − b − c)s′(a)

{s(a) − s(b)}2
,

∂bf (a, b) =
−{s(a) − s(b)} + (a − b − c)s′(b)

{s(a) − s(b)}2
,

and ∂bf (a, b) ≤ 0 for any (a, b) ∈ A+ = {(a, b) ∈ A | b ≥ 0}. Indeed, the inequality

−{s(a) − s(b)} + (a − b − c)s′(b) ≤ −cs′(b) ≤ 0

holds for (a, b) ∈ A+ as s is convex on (0, r). Hence, we deduce that

max
(a,b) ∈A

f (a, b) = max
(a,b) ∈A−

f (a, b), (4.5)

whereA− = {(a, b) ∈ A | b ≤ 0}. Then we check the following.

(i) For (a, b) ∈ A−, we see that

f (a, b) ≤ 2a − c
s(a)

= f̄ (a),
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as s is increasing. Further, we see that lima↑r f̄ (a) = 0 by Assumption 2.1 (if
r < ∞) and l’Hôpital’s rule combined with Assumption 4.2 (if r = ∞).

(ii) We compute the boundary values of f onA− as

(a) f (a, b) = f (a, a − c) = 0 on {(a, b) ∈ A | b = a − c, a ≥ c/2}.
(b) f (a, b) = f (a, 0) = (a − c)/s(a) on {(a, b) ∈ A | b = 0, a ≥ c}.
(c) f (a, b) = f (a,−a) = (a − c/2)/s(a) on {(a, b) ∈ E2 | b = −a, a ≥ c/2}.

Hence, we deduce that the maximum of f (a, b) onA− exists, and that the maximizer(s)
exist(s) inA0 ∪ ∂1A, where

A0 ={(a, b) ∈ A− | ∂af (a, b) = ∂bf (a, b) = 0},

∂1A =
{
(a, b) ∈ E2

∣∣∣ b = −a, a ≥ c
2

}
.

Here, we see thatA0 ⊂ ∂1A. Indeed, ∂af (a, b) = ∂bf (a, b) = 0 for (a, b) ∈ A− implies

0 = {s(a) − s(b)} − (a − b − c)s′(a) = −{s(a) − s(b)} + (a − b − c)s′(b),

from which we deduce the relations s′(a) − s′(b) = 0 and b = −a. Now, to compute the
maximizer of

g(a) = f (a,−a) =
1

s(a)

(
a − c

2

)
on ∂1A(= A0 ∪ ∂1A), we first note the results

g
( c
2

)
= 0 and lim

a↑r
g(a) = 0, (4.6)

where the latter follows from g(a) ≤ f̄ (a)→ 0 as a ↑ r as we have seen. We next
compute the derivative as

g′(a) =
h(a)
s(a)2 .

Here, note that g′(c/2) = 1/s(c/2) > 0 for c > 0 and that h′(a) = −(a − c/2)s′′(a) < 0
for a > c/2. So, combining these observations with (4.6), we deduce that there exists
a unique a∗ ∈ (c/2, r) such that h(a∗) = 0 = g′(a∗), and we have that g′(a) > 0 for
a ∈ (c/2, a∗) and g′(a) < 0 for a ∈ (a∗, r). Therefore, recalling (4.5), we conclude that

max
a≥c/2

g(a) = g(a∗) = f (a∗,−a∗) = max
(a,b) ∈A

f (a, b). �

REMARK 4.6. The resulting trading strategy with the optimal thresholds (a∗,−a∗) is
called the new optimal rule (NOR) by Zeng and Lee [14]. Step (B) of this strategy
has no waiting time, which is different from that of the conventional trading rule with
thresholds 0 = b < a. Thus, one trading cycle of the NOR is described as follows.

https://doi.org/10.1017/S1446181121000298 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000298


116 M. Fukasawa, H. Maeda and J. Sekine [13]

(A) When Xt1 = a∗ (respectively, Xt1 = −a∗), set a one dollar short (respectively,
long) position of security P and a β dollar long (respectively, short) position
of security Q. Keep these positions as long as Xt > −a∗ (respectively, Xt < a∗).

(B) When Xt2 = −a∗ (respectively, Xt2 = a∗) ( t2 > t1), clear the positions and make
a profit. Restart immediately with step (A).

5. Asymptotic arbitrage

Pairs trading is sometimes explored in the context of so-called “statistical arbitrage”,
as it is sometimes executed algorithmically at high frequency. In this section, we
consider the asymptotic arbitrage property of the threshold strategy, which is a weak
form of arbitrage in the long run. Let us consider the threshold strategy described in
Section 4. The cumulative gain of the (self-financing) threshold strategy until time t is
given by

Nt∑
j=1

−sgn(XSj )
(PTj − PSj

PSj

− β
QTj − QSj

QSj

)
− cNt

+

[
−sgn(XSNt+1 )

(Pt − PSNt+1

PSNt+1

− β
Qt − QSNt+1

QSNt+1

)
− c
]
1{SNt+1≤t<TNt+1},

where we regard P and Q as discounted price processes to cancel the interest rate
effect. Here, we make the interpretation that

SNt+1 =

∞∑
j=0

Sj+11{Nt=j} and XSNt+1 =

∞∑
j=0

XSj+1 1{Nt=j},

for example. As we have seen in Section 4, we can approximate the cumulative gain

Gt =

Nt∑
j=1

−sgn(XSj )
(

log
PTj

PSj

− β log
QTj

QSj

)
− cNt

+

[
−sgn(XSNt+1 )

(
log

Pt

PSNt+1

− β log
Qt

QSNt+1

)
− c
]
1{SNt+1≤t<TNt+1}

= (a − b − c)Nt + [−sgn(XSNt+1 )(Xt − a) − c]1{SNt+1≤t<TNt+1}. (5.1)

REMARK 5.1. On {TNt ≤ t < SNt+1},

Gt = (a − b − c)Nt ≥ 0,

which implies that the cumulative gain is always nonnegative and constant, until the
new (Nt + 1)th trading cycle starts at time SNt+1 after the previous Ntth trading cycle
completes. On the other hand, note that, on {SNt+1 ≤ t < TNt+1},

Gt = (a − b − c)Nt − sgn(XSNt+1 )(Xt − a) − c,
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which implies the cumulative gain can be negative, and hence the threshold strategy
becomes risky until the new (Nt + 1)th trading cycle completes after starting at time
SNt+1.

We recall the notion of asymptotic arbitrage in the long run, which was introduced
by Föllmer and Schachermayer [6].

DEFINITION 5.2 (Asymptotic arbitrage). The cumulative gain process (Gt)t≥0 realizes
a strong asymptotic arbitrage (SAA) in the long run if it satisfies the following
conditions:

(AA1) G0 = 0;
(AA2) for any ε > 0 sufficiently small, there exists T > 0 such that

GT > −ε almost surely and P(GT > ε
−1) ≥ 1 − ε.

Let us impose the following condition.

ASSUMPTION 5.3.
∫

E
|x|m (dx) < ∞.

We then obtain the following result.

PROPOSITION 5.4 Suppose Assumptions 2.1, 2.2 and 5.3 hold and let a − b − c > 0.
Then the cumulative gain process (Gt)t≥0 given by (5.1) satisfies

lim
t→∞

Gt

t
= L(a, b) in L1(P),

where L(a, b) is given by (4.1), and the existence of an SAA follows.

PROOF. First, recall the relation

|Gt − (a − b − c)Nt | ≤ |Xt | + a + c for almost every (t,ω) ∈ R+ ×Ω. (5.2)

Further, we see that

lim
t→∞
Ex[|Xt |] =

∫
E
|y|m̄ (dy) < ∞ (5.3)

for any x ∈ E, where we use Assumption 5.3 and relation (2.4). Combining (5.2), (5.3)
and the law of large numbers for the renewal process (Nt)t≥0, we deduce that

lim
t→∞
E

[∣∣∣∣∣Gt

t
− L(a, b)

∣∣∣∣∣
]
= 0.

So, for any δ > 0,

lim
t→∞
P

(∣∣∣∣∣Gt

t
− L(a, b)

∣∣∣∣∣ ≥ δ
)
= 0
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follows from Markov’s inequality. Further, for any δ, ε > 0 sufficiently small, there
exists T∗ > 0 such that

P(GT ≤ {L(a, b) − δ}T) < ε for all T ≥ T∗.

Hence, for T ≥ max(T∗, ({L(a, b) − δ}ε)−1),

P(GT > ε
−1) = 1 − P(GT ≤ ε−1) ≥ 1 − P(GT ≤ {L(a, b) − δ}T) ≥ 1 − ε,

and an SAA is realized. �

REMARK 5.5 (Statistical arbitrage). Hogan et al. [8] used the following definition. If
the cumulative gain process (Gt)t≥0 satisfies the following four conditions, then we say
that a statistical arbitrage (SA) opportunity exists:

(SA1) G0 = 0;
(SA2) limt→∞ E[Gt] > 0;
(SA3) limt→∞ P(Gt < 0) = 0;
(SA4) limt→∞(1/t)V[Gt] = 0 if P(Gt < 0) > 0, for all t ≥ 0.

We conjecture that an SA does not exist in the cumulative gain process (5.1) of the
threshold strategy. Indeed, (SA4) seems to be violated, if we recall the central limit
theorem for the renewal process (Nt)t≥0 discussed in Section 7.

6. Numerical experiment

In this section, using two examples of the stochastic spread processes, that is,
Examples 2.4 and 2.5, we show some numerical experiments. Recall that the OU
process (2.5) has the stationary distribution

m̄(dx) =
m(dx)
m(R)

=

√
κ

π
e−κx

2
dx ∼ N

(
0,

1
2κ

)
,

the centered normal distribution with variance 1/2κ, and that Pearson diffusion process
(2.6) has the stationary distribution,

m̄(dx) =
m(dx)
m(R)

=
Γ(κ + 1)

√
δπΓ(κ + 1/2)

(
1 +

x2

δ

)−(κ+1)

dx,

which is a scaled t-distribution; concretely, we have

lim
t→∞
P

(√2κ + 1
δ

Xt ∈ dx
)
∼ f2κ+1(x) dx

with

fν(x) =
Γ((ν + 1)/2)
√
νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2
.
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Hence, the limiting variance and kurtosis are given by

V∞ = lim
t→∞
V[Xt] =

δ

2κ − 1
,

K∞ = lim
t→∞
K[Xt] =

6
2κ − 3

,
(6.1)

respectively, where V[(·)] denotes the variance and K[(·)] denotes the kurtosis.
For the optimization problem studied in Section 4, we consider the following

numerical experiment for Pearson diffusion model (2.6).

(i) Set δ = (0.2)2, γ = 1, and choose several values of κ, which control the limiting
variance and kurtosis (6.1) of the t-stationary distribution.

(ii) For each parameter set, numerically compute the optimal threshold value a∗P and
the optimal long-time averaged profit

L∗P = LP(a∗P,−a∗P),

given in Theorem 4.5, where LP(a, b) is given by (4.4) for the Pearson diffusion
model with c = 0.01.

Further, as a comparison, we consider the following numerical experiment for the OU
process model (2.5).

(iii)Set the limiting variance 1/2κOU of the OU process equal to the limiting variance
V∞ = δ/(2κ − 1) of the Pearson diffusion process, to solve for the parameter
value κOU:

1
2κOU

=
δ

2κ − 1
⇔ κOU =

2κ − 1
2δ

.

Set σ = 0.2.
(iv) For each corresponding parameter set, numerically compute the optimal thresh-

old value a∗OU and the optimal long-time averaged profit

L∗OU = LOU(a∗OU,−a∗OU),

given in Theorem 4.5, where LOU(a, b) is given by (4.4) for the OU model with
c = 0.01.

(v) Compute

Lmis = LP(a∗OU,−a∗OU),

which is interpreted as the long-time expected profit for a “misspecified” agent
who observes the limiting variance and “misapplies” OU model (2.5) instead of
Pearson model (2.6). Also, compute the loss rate,

Loss =
L∗P − Lmis

L∗P
.
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TABLE 1. Pearson model result and comparison with OU model.

κ
√

V∞ K∞ a∗P L∗P a∗OU L∗OU Lmis Loss

1.6 0.1348 30.00 0.059 25 0.1347 0.065 88 0.1050 0.1345 1.634e-03
1.7 0.1291 15.00 0.058 09 0.1379 0.064 03 0.1093 0.1377 1.427e-03
1.8 0.1240 10.00 0.056 97 0.1409 0.062 37 0.1134 0.1407 1.259e-03
1.9 0.1195 7.500 0.055 93 0.1439 0.060 87 0.1173 0.1437 1.120e-03
2.0 0.1155 6.000 0.054 96 0.1468 0.059 51 0.1210 0.1466 1.003e-03
2.1 0.1118 5.000 0.054 07 0.1496 0.058 27 0.1246 0.1494 9.039e-04
2.2 0.1085 4.286 0.053 23 0.1523 0.057 13 0.1281 0.1522 8.194e-04
2.3 0.1054 3.750 0.052 58 0.1550 0.056 07 0.1314 0.1549 7.454e-04
2.4 0.1026 3.333 0.051 76 0.1576 0.055 08 0.1347 0.1575 6.829e-04
2.5 0.1000 3.000 0.051 02 0.1602 0.054 17 0.1378 0.1601 6.278e-04
2.6 0.097 57 2.727 0.050 33 0.1627 0.053 31 0.1409 0.1626 5.791e-04
2.7 0.095 35 2.500 0.049 70 0.1651 0.052 51 0.1438 0.1651 5.360e-04
2.8 0.093 25 2.308 0.049 12 0.1676 0.051 75 0.1467 0.1675 4.976e-04
2.9 0.091 29 2.143 0.048 58 0.1699 0.051 04 0.1495 0.1698 4.631e-04
3.0 0.089 44 2.000 0.048 08 0.1722 0.050 36 0.1523 0.1722 4.319e-04

From the result (Table 1) we see that L∗P > L∗OU always holds though a model
misspecification in the profit is rather small (as we see in the loss rate, Loss). Also, we
see that higher mean-reversion (with larger κ and κOU) yields higher optimized profits.

7. Concluding remarks

The long-time maximization of profit for pairs trading with thresholds, discussed in
Section 4, is an idealized problem, based on the law of large numbers in the long run:

lim
t→∞

Nt

t
= lim

t→∞

E[Nt]
t
=

1
E[U1]

.

To consider a suitable “mean–variance” optimization of profit is an interesting and
important challenge as the fluctuation from the mean value seems to have a consider-
able effect in realistic situations with a finite time horizon. One such mean–variance
optimization is to consider the criterion function

MV(a, b) = L(a, b) − αV(a, b),

where

L(a, b) = lim
t→∞

E[(a − b − c)Nt]
t

=
(a − b − c)
E[U1]

=
2(a − b − c)

m(E){s(a) − s(b)}
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is the long-time limit of the mean-value of profit, which was analysed in Section 4.
Note that

V(a, b) = lim
t→∞

V[(a − b − c)Nt]
t

=
(a − b − c)2

V[U1]
E[U1]3 (7.1)

is the long-time limit of the variance of profit, and α > 0 is the risk-aversion parameter.
The limiting variance (7.1) is obtained from the central limit theorem

√
t
(Nt

t
− 1
E[U1]

)
√
V[U1]
E[U1]3

⇒ N(0, 1)

for the scaled and centred renewal process (see Borovkov [2, Chapter 10]). Defining
Vx[(·)] = Ex[(·)2] − {Ex[(·)]}2, the variance V[U1] in (7.1), rewritten as

V[U1] = Va[τb] + Vb[τa ∧ τ−a],

can be computed by using Kac’s moment formula [5],

Ex[(τα ∧ τβ)2] = 2
∫

E
Gα,β(x, y)Ey[τα ∧ τβ]m(dy),

where we use the Green function (3.1), combined with the expected value formula
(3.2). Although we have an analytic representation of V(a, b) in closed form, the
maximization of MV(a, b) does not seem to be straightforward, so this is left as a future
research topic. For a different but related optimization for determining thresholds to
trigger trading signals, we refer the reader to the Sharpe ratio maximization problem,
discussed by Bertram [1].
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