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Abstract. It is proved that every abelian VNL-ring is an SVNL-ring, which gives
a positive answer to a question of Osba et al. [7]. Some characterizations of duo VNL-
rings are given and some main results of Osba et al. [7] on commutative VNL-rings are
extended to right duo VNL-rings and even abelian GVNL-rings.
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1. Introduction. Rings considered are associative with identity unless the
contrary is stated explicitly. An element a of a ring R is π -regular if there exist a
positive integer n and x ∈ R such that an = anxan. In the case of n = 1, a is regular. A
ring R is π -regular (regular) if every element in R is π -regular (regular). A ring R is an
exchange ring if for every a ∈ R there exists an idempotent e ∈ R such that e ∈ aR and
(1 − e) ∈ (1 − a)R. A ring R is right (left) duo if every right (left) ideal is two-sided, and
R is duo if R is right and left duo. A ring R is abelian if all idempotents are contained
in the center and a ring R is reduced if it does not contain nonzero nilpotent elements.

Following Contessa [4], a commutative ring R is a VNL-ring if for every a ∈ R, at
least one of a or 1 − a is regular. According to Osba et al. [7], a commutative ring R
is an SVNL-ring if whenever (S) = R for some nonempty subset S of R, at least one
of the elements in S is regular, where (S) is an ideal generated by S. Some properties
of VNL-rings and SVNL-rings are investigated in Osba et al. [7]. But they are unable
to solve the question whether every VNL-ring is an SVNL-ring. Because of this they
are unable to characterize VNL-rings abstractly in the sense of relating them to more
familiar classes of rings. In the present paper we define a noncommutative ring R to be a
VNL-ring (GVNL-ring) if for every a ∈ R at least one of a or 1 − a is regular (π -regular)
and a ring R is an SVNL-ring, if whenever (S)r = R for some nonempty subset S of
R, at least one element in S is regular, where (S)r is a right ideal generated by S. The
main purpose of this paper is to prove that every abelian VNL-ring is an SVNL-ring,
giving an answer to the question of Osba et al. [7] in the affirmative. Furthermore we
give some characterizations of duo VNL-rings, and extend and improve some main
results of Osba et al. [7] on commutative VNL-rings.

Throughout this paper we use the symbol J(R) to denote the Jacobson radical of
a ring R, Id(R) its set of idempotents, and Max(R) its maximal spectrum. The left
annihilator of an element a in R is denoted by Al(a). For an integer n ≥ 2, the symbol

https://doi.org/10.1017/S0017089505002806 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002806


12 WEIXING CHEN AND WENTING TONG

�n stands for the ring of integers modulo n. Also for two sets A and B with B ⊆ A, the
symbol A\B or A − B denotes the supplementary set of B in A.

2. Abelian VNL-rings. We start this section with the following definition.

DEFINITION 2.1. An element a of a ring R is called an exchange element if there
exists an idempotent e ∈ R such that e ∈ aR and 1 − e ∈ (1 − a)R.

Obviously, a ring R is an exchange ring if and only if every element of R is an
exchange element. And an element a of a ring R is an exchange element if and only if
so is 1 − a. It is known from Nicholsion ([6], Proposition 1.6) or Stock ([8], Example
2.3) that a regular element (π -regular element) of a ring R is an exchange element. So
we have the following.

THEOREM 2.2. Every VNL-ring (GVNL-ring) is an exchange ring.

Recall that an ideal I in a ring R is regular if for each a ∈ I , there exists x ∈ I such
that a = axa (Goodearl, [5], P2).

The following facts are essential to obtaining our main results.

LEMMA 2.3 (Goodearl, [5], Proposition 1.5). Let R be a ring, and set M(R) = {x ∈
R|RxR is a regular ideal}. Then the following hold:

(a) M(R) is a regular ideal of R.
(b) M(R) contains all regular ideals of R.
(c) R/M(R) has no nonzero regular ideal.

LEMMA 2.4 (Goodearl, [5], P2). Let R be a ring. If x, y ∈ R and x′ = x − xyx, and
if x′ = x′ax′ for some a ∈ R, then x = xbx for some b ∈ R.

LEMMA 2.5 (Warfield, [9], Theorem 1). An exchange ring with only two idempotents
is a local ring.

LEMMA 2.6. Let R = ∏
α∈� Rα be a ring. Then R is a VNL-ring (abelian VNL-ring)

if and only if there exists α0 ∈ � such that Rα0 is a VNL-ring (abelian VNL-ring) and
for each α ∈ � − {α0}, Rα is a regular (abelian regular) ring.

Proof. It is very similar to that of Osba et al. ([4], Theorem 3.1).

LEMMA 2.7. Let R be an abelian VNL-ring and not regular. Then R/M(R) is a local
ring, where the meaning of M(R) is the same as that in Lemma 2.3.

Proof. It is known and easy to prove that the homomorphic image of a VNL-ring is
a VNL-ring. Since R is a VNL-ring, R/M(R) is a VNL-ring and so is an exchange ring
by Theorem 2.2. Let R = R/M(R). If R/M(R) is not a local ring, then by Lemma 2.5
there exists a nontrivial idempotent ē ∈ R. And hence R = ēR

⊕
(1̄ − ē)R. Since R is

an abelian exchange ring, the idempotents of R/M(R) can be lifted to R, so R/M(R)
is an abelian exchange ring and hence an abelian VNL-ring. Now Lemma 2.6 implies
that at least one of ēR or (1̄ − e)R is an abelian regular ring, so is a nonzero regular
ideal of R, which contradicts Lemma 2.3. And the proof is completed.

THEOREM 2.8. Let R be an abelian ring. Then R is a VNL-ring if and only if it is an
SVNL-ring.

Proof. (⇒) If R is regular, then we are done. Otherwise R is a VNL-ring which
is not regular. Now for any nonempty subset S of R with (S)r = R, there exist
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s1, s2, . . . , sn ∈ S such that s1R + s2R + · · · + snR = R, hence there exist r1, r2, . . . , rn ∈
R satisfying s1r1 + s2r2 + · · · + snrn = 1 and so s̄1r̄1 + s̄2r̄2 + · · · + s̄nr̄n = 1̄ in R =
R/M(R). According to Lemma 2.7, R is a local ring. It follows that not all s̄i are
in J(R). So there exists an s̄k such that s̄k is a unit in R, hence s̄k is a regular element
in R. Assume that s̄k = s̄kx̄ks̄k for some x̄k ∈ R. Then we have sk − skxksk ∈ M(R) and
sk − skxksk = (sk − skxksk)yk(sk − skxksk) for some yk ∈ R, thus sk is a regular element
by Lemma 2.4 and so R is an SVNL-ring.

(⇐) Assume that R is an SVNL-ring. For any a ∈ R, let S = {a, 1 − a}. Then
(S)r = R since 1 = a + 1 − a ∈ (S)r. Hence either a or 1 − a is regular and R is a
VNL-ring.

COROLLARY 2.9. Let R be a commutative ring. Then R is a VNL-ring if and only if
it is an SVNL-ring.

The above corollary gives a positive answer to the question whether every
commutative VNL-ring is an SVNL-ring.

Although the following corollary is observed by Osba et al. [5], its proof may not
be trivial until we obtain the above theorem.

COROLLARY 2.10. The homomorphic image of a commutative (abelian) SVNL-ring
is a commutative (abelian) SVNL-ring.

Proof. Since the homomorphic image of a commutative (abelian) VNL-ring is a
commutative (abelian) VNL-ring, we get the desired conclusion by Theorem 2.8.

Next extend some main results of Osba et al. [4] on commutative VNL-rings to
right duo VNL-rings and we give some characterizations of duo VNL-rings.

Recall that an ideal I of a ring R is (left) pure if I = mI , where mI = {a ∈ R|a = ia
for some i ∈ I}. It is easy to check that for a right duo ring R and any a ∈ R, Al(a) is a
two-sided ideal and mI = {a ∈ R|I + Al(a) = R}.

LEMMA 2.11. Let R be a right duo ring and a ∈ R. Then aR is pure if and only if
aR + Al(a) = R.

Proof. Suppose that aR is pure. Then there exists x = ar ∈ aR such that a = xa =
ara. So (1 − ar)a = 0 which implies that 1 − ar ∈ Al(a). Hence 1 = ar + (1 − ar) ∈
aR + Al(a), and aR + Al(a) = R. Conversely, assume that aR + Al(a) = R. Then there
exist r ∈ R, b ∈ Al(a) such that ar + b = 1. So ara + ba = a, i.e., a = ara since ba = 0.
So for any x ∈ R, we have ax = arax with ar ∈ aR, which implies that aR is pure.

THEOREM 2.12. Let R be a right duo ring and a ∈ R. Then a is regular if and only if
for every maximal ideal M, a ∈ M implies a ∈ mM.

Proof. Suppose that a is regular. If M ∈ Max(R) is such that a ∈ M, then a = ara
for some r ∈ R with ar ∈ M and hence a ∈ mM. Conversely, assume that for each
maximal ideal M, a ∈ M implies a ∈ mM. We claim that aR + Al(a) = R. If not, there
exists a maximal ideal M such that aR + Al(a) ⊆ M. Note that a ∈ M implies a ∈ mM.
There exists x ∈ M such that a = xa. So (1 − x)a = 0, which gives 1 − x ∈ Al(a) ⊆ M.
Hence 1 ∈ M, a contradiction. Thus aR + Al(a) = R, there exist r ∈ R and c ∈ Al(a)
such that ar + c = 1, which implies a = ara and a is regular.

COROLLARY 2.13. A right duo ring R is regular if and only if all maximal ideals are
pure.
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Proof. If R is regular, then for every M ∈ Max(R), a ∈ M implies a ∈ mM by
Theorem 2.12, which gives mM = M and hence M is pure. Conversely, if every M ∈
Max(R) is pure, then M = mM and so a ∈ M implies a ∈ mM for every a ∈ R. Hence
for every a ∈ R, a is regular by Theorem 2.12 and so R is regular.

THEOREM 2.14. The following statements are equivalent for a duo ring R.
(a) All maximal ideals of R except may be one are pure.
(b) There exists N ∈ Max(R) such that for each a /∈ N, a is regular.
(c) The ring R is a VNL-ring.

Proof. (a) ⇒ (b) Suppose that there exists N ∈ Max(R) such that M = mM for
each M ∈ Max(R)\{N}. If a /∈ N, then for each M ∈ Max(R), a ∈ M implies M �= N,
so M = mM and a ∈ mM. Hence a is regular by Theorem 2.12.

(b) ⇒ (c) Assume that there exists N ∈ Max(R) such that for each a /∈ N, a is
regular. For each a ∈ R, if a /∈ N, then we are done. Otherwise a ∈ N, so 1 − a /∈ N
and hence 1 − a is regular.

(c) ⇒ (b) First note that a duo ring is abelian. Now suppose that R is a VNL-ring.
Then it is an SVNL-ring by Theorem 2.8. Let T be the set of elements which are
not regular in R. If T is empty, then we are done. Otherwise consider the right ideal
I generated by T , which is an ideal since R is duo. If 1 ∈ I , then 1 = ∑n

i=1 siri with
si ∈ T and ri ∈ R for each i. Thus R = s1R + s2R + · · · + snR and there exists i such
that si /∈ T , a contradiction. Hence I is contained in a maximal N and for each a /∈ N,
a is regular.

(b) ⇒ (a) Assume that there exists N ∈ Max(R) such that for each a /∈ N, a is
regular. Let M ∈ Max(R)\{N} and a ∈ M. If a /∈ N, then a is regular and so a ∈ mM
by Theorem 2.12. If a ∈ M

⋂
N, then choose b ∈ M\N, so that b ∈ mM. Clearly

a + b ∈ M\N, which implies a + b ∈ mM. We need to prove a ∈ mM. Since b ∈ mM,
M + Al(b) = R and there exist m1 ∈ M, x1 ∈ Al(b) such that m1 + x1 = 1. (∗) Similarly,
a + b ∈ mM implies M + Al(a + b) = R and there exist m2 ∈ M, x2 ∈ Al(a + b) such
that m2 + x2 = 1. (∗∗) Equations (∗) and (∗∗) imply m3 + x2x1 = 1 with m3 = m2m1 +
m2x1 + x2m1 ∈ M. Since R is duo,we have x2x1 = y1x2 for some y1 ∈ R. It follows that
x2x1(a + b) = 0 and x2x1b = 0, which implies x2x1a = 0. Hence M + Al(a) = R and
so a ∈ mM.

The following corollary characterizes a commutative VNL-ring, and the
equivalence of (a) and (b) is known in Osba et al. [4].

COROLLARY 2.15. The following are equivalent for a commutative ring R.
(a) All maximal ideals of R except may be one are pure.
(b) There exists N ∈ Max(R) such that for each a /∈ N, a is regular.
(c) The ring R is a VNL-ring.

3. Abelian GVNL-rings. In this section we study abelian GVNL-rings, extending
some main results of Osba et al. [4] on commutative VNL-rings to abelian GVNL-rings.

EXAMPLE 3.1. There is a commutative GVNL-ring R which is not a VNL-ring.

Proof. Let R = �4
⊕

�4. Then it is easy to check that (3̄, 2̄) and (1̄, 1̄) − (3̄, 2̄) are
not regular, so R is not a VNL-ring. Since R is π -regular, it is a GVNL-ring.

In the above example R satisfies J(R) �= 0. We naturally ask whether there exists
an abelian GVNL-ring R such that J(R) = 0 but it is not a VNL-ring. The following
proposition shows that the answer is negative.
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PROPOSITION 3.2. If R is an abelian GVNL-ring with J(R) = 0, then R is a VNL-ring.

Proof. It is known by Lemma 4.10 in (Stock, [8]) that for an exchange ring R
with J(R) = 0, R is abelian if and only if it is reduced. Now R is a reduced exchange
ring by Theorem 2.2. Now for any a ∈ R, if a is π -regular, then an = anxan

for some positive integer n and x ∈ R. Clearly, e = anx ∈ Id(R). So ((1 − e)a)n =
(1 − e)an = (1 − e)ean = 0, and hence (1 − e)a = 0. Therefore a = ea = a(an−1x)a is
regular. And the proof is completed.

Since the homomorphic image of a (an abelian) GVNL-ring is also a (an abelian)
GVNL-ring, the following corollary is immediate.

COROLLARY 3.3. If R is an abelian GVNL-ring, then R/J(R) is an abelian VNL-ring.

LEMMA 3.4. Let R = ⊕k
i=1 Ri be an abelian ring. Then (a1, a2, . . . , ak) is π -regular

in R if and only if every ai is π -regular in Ri.

Proof. It is sufficient to prove the case of k = 2. Clearly R is abelian if and only
if every Ri is abelian. Now suppose that a1 and a2 are π -regular. Then there exist
positive integers m, n and x, y ∈ R such that am

1 = am
1 xam

1 and an
2 = an

2yan
2. Since

xam
1 , and yan

2 are idempotents, we have amn
1 = amn

1 (xam
1 )n = amn

1 (xam
1 ) · · · (xam

1 ) =
amn

1 xam
1 (xam

1 )(xam
1 ) · · · (xam

1 )=amn
1 x2am

1 (xam
1 )(xam

1 ) · · · (xam
1 )am

1 = amn
1 x3am

1 (xam
1 )(xam

1 ) · · ·
(xam

1 )a2m
1 = amn

1 xnamn
1 . Similarly, amn

2 = amn
2 ymamn

2 and so (a1, a2)mn = (amn
1 , amn

2 ) =
(amn

1 xnamn
1 , amn

2 ymamn
2 ) = (amn

1 , amn
2 )(xn, ym)(amn

1 , amn
2 ) = (a1, a2)mn (xn, ym) (a1, a2)mn.

Hence (a1, a2) is π -regular. Using induction on k, we can obtain the desired conclusion.
Conversely, if (a1, a2, . . . , ak) is π -regular in R, then obviously every ai is π -regular
in Ri.

COROLLARY 3.5. Let R = ⊕n
i=1 Ri be a ring. Then R is abelian π -regular if and only

if every Ri is abelian π -regular.

THEOREM 3.6. Let R = ⊕n
i=1 Ri be a ring. Then R is an abelian GVNL-ring if and

only if there exists an index k such that Rk is a GVNL-ring and for each i �= k, Ri is a
π -regular ring.

Proof. Suppose that R is GVNL-ring. Then Ri is a GVNL-ring as a homomorphic
image of R for each i. If every Ri is a π -regular ring, then we are done.
Otherwise, there exists an index k such that Rk is not a π -regular ring. Assume
that ak ∈ Rk is not π -regular. Then for each i �= k and any ai ∈ Ri, (1 − a1, . . . , 1 −
ak−1, ak, 1 − ak+1, . . . , 1 − an) is not π -regular by Lemma 3.4. Thus (a1, . . . , ak−1, 1 −
ak, ak+1, . . . , an) is π -regular, and so is every ai whenever i �= k. Therefore Ri is π -
regular for each i �= k.

Conversely, assume that that there exists an index k such that Rk is a GVNL-
ring and, for each i �= k, Ri is π regular. We prove that R is a GVNL-ring. For
each a = (a1, . . . , ak−1, ak, ak+1, . . . , an) ∈ R, if ak is π -regular, then a is π -regular by
Lemma 3.4. If ak is not π -regular, then 1 − ak is π -regular, so is 1 − a. And the proof
is completed.

THEOREM 3.7. Let R be an abelian GVNL-ring in which 2 is a unit. Then every
element in R is a sum of a unit and a square root of 1 (i.e., an element a with a2 = 1).

Proof. Suppose that R is a GVNL-ring. By Theorem 2.2, R is an exchange ring.
Since R is abelian, it is a clean ring by Nicholson ([6], Proposition 1.8). According to
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Camillo and Yu ([3], Theorem 11), every element of a clean ring in which 2 is invertible
is a sum of a unit and a square root of 1 and so we are done.

COROLLARY 3.8 (Osba et al. 2004, Theorem 3.8). Every element of a commutative
VNL-ring in which 2 is a unit is a sum of no more than three units.

THEOREM 3.9. Let R be an abelian ring with only a finite number of idempotents.
Then R is a GVNL-ring if and only if it is the direct product of a local ring and finitely
many π -regular local rings each of which has the the property that the Jacobson radical
coincides its set of nilpotent elements.

Proof. Suppose that R is an abelian GVNL-ring. Then it is an exchange ring by
Theorem 2.2. According to Camillo and Yu ([3], Theorem 9), R is a semiperfect ring.
There exist e1, e2, . . . , en ∈ Id(R) such that e1 + e2 + · · · + en = 1 and e,

i s are mutually
orthogonal local idempotents. It follows that R = e1R

⊕
e2R

⊕ · · · ⊕ enR, where eiR
is a local ring for each i. Now Theorem 3.6 implies that there exists k such that ekR is a
GVNL-ring and ejR is a π -regular ring for each j �= k. By Badawi ([2], Lemma 5), we
know that J(ejR) coincides with the set of nilpotent elements in ejR. Conversely, if R
is the direct product of a local ring and finitely many π -regular local rings, then it is a
GVNL-ring by Theorem 3.6.

COROLLARY 3.10. Let R be an abelian ring with only a finite number of idempotents.
Then R is a VNL-ring if and only if it is the direct product of finitely many division rings
and a local ring.

Proof. By Lemma 2.6 and the fact that a local regular ring is a division ring.

In the case of R is a commutative ring, we have the following corollary.

COROLLARY 3.11 (Osba, [4], Theorem 6.1). If R is a commutative VNL-ring with
only a finite number of idempotents. Then it is the direct product of finitely many regular
rings and a local ring.

According to Ara [1], a ring I (without unit) is called an exchange ring if for each
a ∈ I there exist an idempotent e ∈ I and r, s ∈ I such that e = ar = a + s − as. Also if
I is an ideal of a unital exchange ring, then I satisfies the above condition.

LEMMA 3.12. Let R be a ring. Then R[x] is not an exchange ring.

Proof. Suppose that R[x] is an exchange ring. Then for x ∈ R[x] there exist an
idempotent e(x) ∈ R[x] and r(x), s(x) ∈ R[x] such that e(x) = xr(x) = x + s(x) − xs(x).
Thus e(x) = a1x + a2x2 + · · · + anxn, and hence e(x) = 0 by a direct calculation, so that
x + s(x) = xs(x), which is impossible by comparing the coefficients.

COROLLARY 3.13. For any ring R, the ring R[x] is not a GVNL-ring.

COROLLARY 3.14 (Osba et al., [4], Corollary 4.8). For a commutative ring R, the
ring R[x] is not a VNL-ring.

THEOREM 3.15. The following statements are equivalent for an abelian ring R.
(a) The ring R is a local ring.
(b) The ring R[[x]] is a local ring.
(c) The ring R[[x]] is a GVNL-ring.
(d) The ring R is a GVNL-ring and Id(R) = {0, 1}.
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Proof. (a) ⇒ (b) is known.
(b) ⇒ (c) Since a local ring is a VNL-ring, it is a GVNL-ring.
(c) ⇒ (d) Since R is a homomorphic image of R[[x]], R is a GVNL-ring. If Id(R) �=

{0, 1}, then there exists a nontrivial idempotent e ∈ R. Hence R = eR
⊕

(1 − e)R
and R[[x]] = eR[[x]]

⊕
(1 − e)R[[x]]. By Theorem 3.6, eR[[x]] or (1 − e)R[[x]] is π -

regular, say for example eR[[x]]. Then (ex)n = (ex)nf (x)(ex)n for some f (x) ∈ R[[x]]
and some positive integer n. This implies e = 0 by comparing the coefficients, which is
a contradiction.

(d) ⇒ (a) Since R is abelian, Id(R) = Id(R[[x]]). Hence R is an exchange ring with
only two idempotents and so R is a local ring.

Combining Theorem 2.8 with Theorem 3.15, we have the following corollary.

COROLLARY 3.16 (Osba, [4], Theorem 4.6). For a commutative ring R, the following
statements are equivalent.

(a) The ring R is a local ring.
(b) The ring R[[x]] is a local ring.
(c) The ring R[[x]] is an SVNL-ring.
(d) The ring R[[x]] is a VNL-ring.
(e) The ring R is an SVNL-ring and Id(R) = {0, 1}.
(f) The ring R is a VNL-ring and Id(R) = {0, 1}.
(g) For each a ∈ R, a is a unit or 1 − a is a unit.

We conclude this paper with the following open question:

QUESTION 3.17. Is every noncommutative VNL-ring an SVNL-ring?
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