COMPOSITIO MATHEMATICA

Refined global Gan-Gross-Prasad conjecture for Fourier-Jacobi periods on symplectic groups

Hang Xue

Compositio Math. 153 (2017), 68-131.

doi:10.1112/S0010437X16007752

Refined global Gan-Gross-Prasad conjecture for Fourier-Jacobi periods on symplectic groups

Hang Xue

Abstract

In this paper, we propose a conjectural identity between the Fourier-Jacobi periods on symplectic groups and the central value of certain Rankin-Selberg L-functions. This identity can be viewed as a refinement to the global Gan-Gross-Prasad conjecture for $\mathrm{Sp}(2 n) \times \mathrm{Mp}(2 m)$. To support this conjectural identity, we show that when $n=m$ and $n=m \pm 1$, it can be deduced from the Ichino-Ikeda conjecture in some cases via theta correspondences. As a corollary, the conjectural identity holds when $n=m=1$ or when $n=2, m=1$ and the automorphic representation on the bigger group is endoscopic.

1. Introduction

In this paper, we propose a conjectural identity between the Fourier-Jacobi periods on symplectic groups and the central value of certain Rankin-Selberg L-functions. This identity can be viewed as a refinement to the (global) Gan-Gross-Prasad conjecture [GGP12] for $\operatorname{Sp}(2 n) \times \mathrm{Mp}(2 m)$.

The Gan-Gross-Prasad conjecture predicts that the nonvanishing of certain periods is equivalent to the nonvanishing of the central value of certain L-functions. There are two types of periods: Bessel periods and Fourier-Jacobi periods. Bessel periods are periods of automorphic forms on orthogonal groups or hermitian unitary groups. A lot of work has been devoted to the study of Bessel periods, starting from the pioneering work of Waldspurger [Wal81]. In their seminal work [II10], based on an extensive study of the known low-rank examples, Ichino and Ikeda proposed a precise formula relating the Bessel periods on $\mathrm{SO}(n+1) \times \mathrm{SO}(n)$ and the central value of some Rankin-Selberg L-functions. The analogous formula for Bessel periods on the hermitian unitary groups $\mathrm{U}(n+1) \times \mathrm{U}(n)$ has been worked out by Harris in his thesis [Har11]. Zhang [Zha14a, Zha14b] then proved a large part of the conjectural formula for $\mathrm{U}(n+1) \times \mathrm{U}(n)$, using the relative trace formulae proposed by Jacquet and Rallis [JR11]. This has been further improved by Beuzart-Plessis [Beu16]. Recently, Liu [Liu16] proposed a conjectural formula for Bessel periods in general, i.e. the Bessel periods on $\mathrm{SO}(n+2 r+1) \times \mathrm{SO}(n)$ or $\mathrm{U}(n+2 r+1) \times \mathrm{U}(n)$. Some low-rank cases have also been considered in [Liu16].

There is a parallel theory for the Fourier-Jacobi periods. They are the periods of automorphic forms on $\operatorname{Mp}(2 n+2 r) \times \operatorname{Sp}(2 n)$ or $\mathrm{U}(n+2 r) \times \mathrm{U}(n)$. The case of Fourier-Jacobi periods on $\mathrm{U}(n) \times \mathrm{U}(n)$ has been considered in [Xue14, Xue16]. We proposed a conjectural formula relating the Fourier-Jacobi periods on $\mathrm{U}(n) \times \mathrm{U}(n)$ and the central value of some L-functions. We proved this conjectural formula in some cases, using the relative trace formula proposed by Liu [Liu14].

[^0]In the other extreme case, where one of the groups is trivial, the Fourier-Jacobi periods are simply the Whittaker-Fourier coefficients. In this situation, Lapid and Mao [LM15a] proposed a formula computing the norm of the Whittaker-Fourier coefficients. In a series of papers [LM15c, LM15b, LM14], they proved the formula for Whittaker-Fourier coefficients on $\mathrm{Mp}(2 n)$, under some simplifying conditions at the archimedean places.

The goal of this paper is to formulate a conjectural identity between the Fourier-Jacobi periods and the central value of some Rankin-Selberg L-functions for symplectic groups. We also verify that this conjecture is compatible with the Ichino-Ikeda conjecture in some cases. As a corollary, the conjectural identity holds in some low-rank cases. We now describe our results in more detail.

For simplicity, in the introduction, we consider only the Fourier-Jacobi periods on $\operatorname{Sp}(2 n+$ $2 r) \times \operatorname{Mp}(2 n)(r \geqslant 0)$. The case $r<0$ will be explained in the main context of the paper. Let F be a number field and $\psi: F \backslash \mathbb{A}_{F} \rightarrow \mathbb{C}^{\times}$be a nontrivial additive character. Let $\left(W_{2}, q_{2}\right)$ be the symplectic space over F with an orthogonal decomposition $W_{0}+R+R^{*}$ where R and R^{*} are isotropic subspaces and $R+R^{*}$ is the direct sum of $r-1$ hyperbolic planes. We fix a complete filtration of R and let N_{r-1} be the unipotent radical of the parabolic subgroup of G_{2} fixing the complete filtration.

Let $G_{2}=\operatorname{Sp}\left(W_{2}\right), G_{0}=\mathrm{Sp}\left(W_{0}\right)$ and $\widetilde{G_{0}}=\operatorname{Mp}\left(W_{0}\right)$ (the metaplectic double cover). Let π_{2} (respectively π_{0}) be an irreducible cuspidal tempered (respectively genuine) automorphic representation of $G_{2}\left(\mathbb{A}_{F}\right)$ (respectively $\widetilde{G_{0}}\left(\mathbb{A}_{F}\right)$). Let $\varphi_{2} \in \pi_{2}$ and $\varphi_{0} \in \pi_{0}$. Let $H=W_{0} \ltimes F$ be the Heisenberg group attached to W_{0} and ω_{ψ} be the Weil representation of $H\left(\mathbb{A}_{F}\right) \rtimes \widetilde{G_{0}}\left(\mathbb{A}_{F}\right)$ which is realized on the Schwartz space $\mathcal{S}\left(\mathbb{A}_{F}^{n}\right)$. Let $\phi \in \mathcal{S}\left(\mathbb{A}_{F}^{n}\right)$ be a Schwartz function and $\theta_{\psi}(\cdot, \phi)$ be a theta series on $H\left(\mathbb{A}_{F}\right) \rtimes \widetilde{G_{0}}\left(\mathbb{A}_{F}\right)$. Let ψ_{r-1} be an automorphic generic character of $N_{r-1}\left(\mathbb{A}_{F}\right)$ which is stable under the conjugation action of $H\left(\mathbb{A}_{F}\right) \rtimes G_{0}\left(\mathbb{A}_{F}\right)$. The Fourier-Jacobi period of $\left(\varphi_{2}, \varphi_{0}, \phi\right)$ is the following integral

$$
\begin{align*}
& \mathcal{F} \mathcal{J}_{\psi}\left(\varphi_{2}, \varphi_{0}, \phi\right) \\
& \quad=\int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \int_{H(F) \backslash H\left(\mathbb{A}_{F}\right)} \int_{N_{r-1}(F) \backslash N_{r-1}\left(\mathbb{A}_{F}\right)} \varphi_{2}\left(u h g_{0}\right) \varphi_{0}\left(g_{0}\right) \overline{\psi_{r-1}(u) \theta_{\psi}\left(h g_{0}, \phi\right)} d u d h d g_{0} . \tag{1.0.1}
\end{align*}
$$

This integral is absolutely convergent since φ_{2} and φ_{0} are both cuspidal. It defines an element in

$$
\operatorname{Hom}_{N_{r-1}\left(\mathbb{A}_{F}\right) \rtimes\left(H\left(\mathbb{A}_{F}\right) \rtimes G_{0}\left(\mathbb{A}_{F}\right)\right)}\left(\pi_{2} \otimes \pi_{0} \otimes \overline{\omega_{\psi} \otimes \psi_{r-1}}, \mathbb{C}\right) .
$$

This space is at most one dimensional [LS13, Sun12].
The Gan-Gross-Prasad conjecture predicts [GGP12, Conjecture 26.1] that if the above Homspace is not zero, then the integral (1.0.1) does not vanish identically if and only if $L_{\psi}^{S}\left(\frac{1}{2}, \pi_{2} \times \pi_{0}\right)$ is nonvanishing, where S is a sufficiently large finite set of places of F and $L_{\psi}^{S}\left(s, \pi_{2} \times \pi_{0}\right)$ is the tensor product L-function of π_{2} and π_{0} (note that this L-function depends on ψ).

The conjectural identity that we propose is

$$
\begin{equation*}
\left|\mathcal{F} \mathcal{J}_{\psi}\left(\varphi_{2}, \varphi_{0}, \phi\right)\right|^{2}=\frac{\Delta_{G_{2}}^{S}}{\left|S_{\pi_{2}}\right|\left|S_{\pi_{0}}\right|} \frac{L_{\psi}^{S}\left(\frac{1}{2}, \pi_{2} \times \pi_{0}\right)}{L^{S}\left(1, \pi_{2}, \operatorname{Ad}\right) L_{\psi}^{S}\left(1, \pi_{0}, \operatorname{Ad}\right)} \times \prod_{v \in S} \alpha_{v}\left(\varphi_{2, v}, \varphi_{0, v}, \phi_{v}\right) \tag{1.0.2}
\end{equation*}
$$

where:
$-\varphi_{2}=\bigotimes \varphi_{2, v}, \varphi_{0, v}=\bigotimes \varphi_{0, v}, \phi=\bigotimes \phi_{v} ;$
$-\Delta_{G_{2}}^{S}=\prod_{i=1}^{n+r} \zeta_{F}^{S}(2 i) ;$

H. Xue

- $L_{\psi}^{S}\left(s, \pi_{2} \times \pi_{0}\right)$ is the tensor product L-function and $L^{S}\left(s, \pi_{2}, \operatorname{Ad}\right), L_{\psi}^{S}\left(1, \pi_{0}, \operatorname{Ad}\right)$ are adjoint L-functions;
- α_{v} is a local linear form defined by integration of matrix coefficients (see $\S 2.2$ for the definition); it is expected that $\alpha_{v} \neq 0$ if and only if $\operatorname{Hom}_{N_{r-1}\left(F_{v}\right) \rtimes\left(H\left(F_{v}\right) \rtimes G_{0}\left(F_{v}\right)\right)}\left(\pi_{2, v} \otimes \pi_{0, v} \otimes\right.$ $\left.\overline{\psi_{r-1, v} \otimes \omega_{\psi_{v}}}, \mathbb{C}\right) \neq 0 ;$
- $d g_{0}$ in the definition of $\mathcal{F} \mathcal{J}_{\psi}$ is the Tamagawa measure on $G_{0}\left(\mathbb{A}_{F}\right), d u$ and $d h$ are the self-dual measures on $N_{r-1}\left(\mathbb{A}_{F}\right)$ and $H\left(\mathbb{A}_{F}\right)$ respectively;
- $S_{\pi_{2}}$ and $S_{\pi_{0}}$ are centralizers of the L-parameters of π_{2} and π_{0}, respectively; they are abelian 2 -groups (see $\S 2.3$ for a discussion).
This conjectural identity can be viewed as a refinement to the Gan-Gross-Prasad conjecture. It is motivated by the existing conjectural identities of this type [II10, Liu16, Har11, Xue16]. The conjectural identity claims that we should expect the same for both of the Bessel periods and the Fourier-Jacobi periods. In the first part of this paper, we show that the conjectural identity (1.0.2) is well-defined, i.e. the local linear form α_{v} is well-defined and the right-hand side of (1.0.2) is independent of the set S. In the definition of the local linear form α_{v}, we introduce a new way to regularize a divergent oscillating integral over a unipotent group. This gives the same results as the existing regularizations [LM15a, Liu16], but has the advantage of being elementary, purely function theoretic and uniform for both archimedean and non-archimedean places.

One might be asking what happens for the Fourier-Jacobi periods on skew-hermitian unitary groups. An identity similar to (1.0.2) should also hold. We exclude that in the present paper for two reasons. First, sticking to the symplectic groups greatly simplifies the notation. More importantly, in showing that the right-hand side of (1.0.2) is independent of S, we make use of some results in [GJRS11]. The analogue results for unitary groups have not appeared in print yet. Jiang has informed the author that Shen and Zhang are working on a more general version of the results in [GJRS11], which should cover Fourier-Jacobi periods for both symplectic groups and skew-hermitian unitary groups. Once such results are available, one can then formulate the refined Gan-Gross-Prasad conjecture in the context of skew-hermitian unitary groups.

To support our conjecture, in the second part of this paper, we show, under some hypothesis on the local and global Langlands correspondences which we will state in $\S 5$, that our conjecture is compatible with the Ichino-Ikeda conjecture in some cases. Thus (1.0.2) holds in some low-rank cases when the Ichino-Ikeda conjecture is known. We have the following cases.
(i) If $n=1$ and $r=0$, then (1.0.2) has been proved in [Qiu14, Theorem 4.5].
(ii) If $r=0$ and π_{2} is a theta lift of some irreducible cuspidal tempered automorphic representation of $\mathrm{O}(2 n)$, then (1.0.2) can be deduced from the Ichino-Ikeda conjecture for $\mathrm{SO}(2 n+1) \times \mathrm{SO}(2 n)$. In this case, if π_{0} is not a theta lift from any $\mathrm{O}(2 n+1)$, then both sides of (1.0.2) vanish.
(iii) If $r=1$ and π_{2} is a theta lift of some irreducible cuspidal tempered automorphic representation of $\mathrm{O}(2 n+2)$, then (1.0.2) can be deduced from the Ichino-Ikeda conjecture for $\mathrm{SO}(2 n+2) \times \mathrm{SO}(2 n+1)$. In this case, if π_{0} is not a theta lift from $\mathrm{O}(2 n+1)$, then both sides of (1.0.2) vanish. In particular, when $n=1$, (1.0.2) holds for $\mathrm{Sp}(4) \times \mathrm{Mp}(2)$, if the automorphic representation on $\mathrm{Sp}(4)$ is a theta lift from $\mathrm{O}(4)$.

See Theorems 7.1.1 and 8.1.1 for the precise statements. See also Theorem 8.6.1 for an analogous statement in the case $r=-1$. In the course of proving these results, we derive a variant for the Ichino-Ikeda conjecture for the full orthogonal group, cf. Conjecture 6.3.1 and

Proposition 6.3.3. The author hopes that this variant is of some independent interest. See [GI11] for the case of the triple product formula on $\mathrm{GO}(4)$.

Ichino informed the author that there are some minor inaccuracies in the original formulation of the Ichino-Ikeda conjecture [II10, Conjecture 2.1] when the automorphic representation on the even orthogonal group appears with multiplicity two in the discrete automorphic spectrum. In this case, one needs to specify an automorphic realization. Moreover, the size of the centralizer of the Arthur parameter needs to be modified accordingly. We will take care of this modification in $\S 6$.

It is expected that our conjecture is compatible with the refined Gan-Gross-Prasad conjecture for $\mathrm{SO}(2 n+2 r+1) \times \mathrm{SO}(2 n)$ proposed by Liu [Liu16]. To keep this paper within a reasonable length, we postpone to check this more general compatibility in a future paper.

This paper is organized as follows. The first part of the paper consists of $\S \S 2-4$. In $\S 2$, we first define the Fourier-Jacobi periods and the local linear form α_{v}. Then we state the conjectural formula for the Fourier-Jacobi periods. In $\S 3$, we show that the local linear form α_{v} is welldefined, i.e. its defining integral is either absolutely convergent or can be regularized. We also prove a positivity result for α_{v}. In $\S 4$, we compute α_{v} when all of the data involved are unramified. The argument is mostly adapted from [Liu16]. The second part of this paper consists of $\S \S 5-8$. In §5, we state some working hypotheses on the local and global Langlands correspondences and make some remarks on the theta correspondences. For orthogonal groups and symplectic groups, these hypotheses should follow from the work of Arthur [Art13]. For metaplectic groups, they should eventually follow from the on-going work of Li (e.g. [Li15]). In §6, we review the Ichino-Ikeda conjecture and derive a variant of it for the full orthogonal group. In §7, we study the conjecture in the case $\operatorname{Mp}(2 n) \times \operatorname{Sp}(2 n)$ via a seesaw argument. This type of argument has also been used in [Ato15, GI16, Xue16]. In § 8, we study the conjecture in the case $\operatorname{Sp}(2 n+2) \times \operatorname{Mp}(2 n)$. For the convenience of the readers, we remark that $\S \S 3$ and 4 and the second part of the paper are logically independent. Sections 7 and 8 are also logically independent. They can be read in any order.

Notation and convention

The following notation will be used throughout this paper. Let F be a number field, \mathfrak{o}_{F} the ring of integers and \mathbb{A}_{F} the ring of adeles. For any finite place v, let $\mathfrak{o}_{F, v}$ be the ring of integers of F_{v} and ϖ_{v} a uniformizer. Let $q_{v}=\left|\mathfrak{o}_{F, v} / \varpi_{v}\right|$ be the number of elements in the residue field of v. We fix a nontrivial additive character $\psi=\otimes \psi_{v}: F \backslash \mathbb{A}_{F} \rightarrow \mathbb{C}^{\times}$. We assume that ψ is unitary, thus $\psi^{-1}=\bar{\psi}$. For any $a \in F^{\times}$, we define an additive character ψ_{a} of $F \backslash \mathbb{A}_{F}$ by $\psi_{a}(x)=\psi(a x)$. For any place v of F, let $(\cdot, \cdot)_{F_{v}}$ be the Hilbert symbol of F_{v} and $\gamma_{\psi_{v}}$ the Weil index, which is an eighth root of unity. Note that $\prod_{v} \gamma_{\psi_{v}}=1$.

Suppose that V is a vector space and $v_{1}, \ldots, v_{r} \in V$. Then we denote by $\left\langle v_{1}, \ldots, v_{r}\right\rangle$ the subspace of V generated by v_{1}, \ldots, v_{r}. We write $\mathcal{S}(V)$ for the space of Schwartz functions on V.

Let $\left(V, q_{V}\right)$ be a quadratic space of dimension n over F where V is the underlying vector space and q_{V} is the quadratic form. We can choose a basis of V so that its quadratic form is represented by a diagonal matrix with entries a_{1}, \ldots, a_{n}. We define the discriminant disc V of V by

$$
\operatorname{disc} V=(-1)^{n(n-1) / 2} a_{1} \cdots a_{n} \in F^{\times} / F^{\times, 2} .
$$

Define a quadratic character $\chi_{V}: F^{\times} \backslash \mathbb{A}_{F}^{\times} \rightarrow\{ \pm 1\}$ by $\chi_{V}(x)=(x, \operatorname{disc} V)_{F}$.
Let $\left(W, q_{W}\right)$ be a symplectic space of dimension $2 n$ over F where W is the underlying vector space and q_{W} is the symplectic form. Then we denote by $\operatorname{Sp}(W)$ or $\operatorname{Sp}(2 n)$ the symplectic group

H. Xue

attached to W and $\operatorname{Mp}(W)$ or $\operatorname{Mp}(2 n)$ the metaplectic double cover. By definition, if v is a place of F, then $\operatorname{Mp}(W)\left(F_{v}\right)=\operatorname{Sp}(W)\left(F_{v}\right) \ltimes\{ \pm 1\}$ and the multiplication is given by

$$
\left(g_{1}, \epsilon_{1}\right)\left(g_{2}, \epsilon_{2}\right)=\left(g_{1} g_{2}, \epsilon_{1} \epsilon_{2} c\left(g_{1}, g_{2}\right)\right),
$$

where $c\left(g_{1}, g_{2}\right)$ is some 2-cocycle on $\operatorname{Sp}(W)$ valued in $\{ \pm 1\}$ (see [Ran93]). Moreover,

$$
\operatorname{Mp}(W)\left(\mathbb{A}_{F}\right)=\prod_{v}{ }^{\prime} \operatorname{Mp}(W)\left(F_{v}\right) /\left\{\left(1, \epsilon_{v}\right)_{v} \mid \prod_{v} \epsilon_{v}=1\right\} .
$$

If $g \in \operatorname{Sp}(W)\left(\mathbb{A}_{F}\right)$ (respectively $\operatorname{Sp}(W)\left(F_{v}\right)$), then we define $\iota(g)=(g, 1) \in \operatorname{Mp}(W)\left(\mathbb{A}_{F}\right)$ (respectively $\operatorname{Mp}\left(F_{v}\right)$). Note that $g \mapsto \iota(g)$ is not a group homomorphism.

By a genuine function on $\operatorname{Mp}(W)\left(F_{v}\right)$, we mean a function on $\operatorname{Mp}(W)\left(F_{v}\right)$ which is not the pullback of a function on $\operatorname{Sp}(W)\left(F_{v}\right)$. We always identify a function on $\operatorname{Sp}(W)\left(F_{v}\right)$ with a nongenuine function on $\operatorname{Mp}(W)\left(F_{v}\right)$. Suppose that f_{1}, \ldots, f_{r} are genuine functions on $\operatorname{Mp}(W)\left(F_{v}\right)$ and $h_{1}, \ldots h_{s}$ are functions on $\operatorname{Sp}(W)\left(F_{v}\right)$ such that the product $f_{1} \cdots f_{r}$ is not genuine. Then we write

$$
\int_{\operatorname{Sp}(W)\left(F_{v}\right)} f_{1}(g) \cdots f_{r}(g) h_{1}(g) \cdots h_{s}(g) d g=\int_{\operatorname{Sp}(W)\left(F_{v}\right)} f_{1}(\iota(g)) \cdots f_{r}(\iota(g)) h_{1}(g) \cdots h_{s}(g) d g
$$

An irreducible representation of $\operatorname{Mp}(W)\left(F_{v}\right)$ is said to be genuine if the element $(1, \epsilon)$ acts by ϵ. We always identify an irreducible representation of $\operatorname{Sp}(W)\left(F_{v}\right)$ with a non-genuine representation of $\operatorname{Mp}(W)\left(F_{v}\right)$. We make similar definitions for genuine functions and representations of $\operatorname{Mp}(W)\left(\mathbb{A}_{F}\right)$.

Suppose v is a non-archimedean place of F whose residue characteristic is not two. Let $B=T U$ is a Borel subgroup of $\operatorname{Sp}(2 n)$ and $\widetilde{B}=\widetilde{T} U$ the inverse image of B in $\operatorname{Mp}(2 n)\left(F_{v}\right)$. Then $\widetilde{T} \simeq\left(F_{v}^{\times}\right)^{n} \ltimes\{ \pm 1\}$. We define a genuine character $\chi_{\psi}(t)$ of \widetilde{T} by

$$
\chi_{\psi_{v}}\left(\left(t_{1}, \ldots, t_{n}\right), \epsilon\right)=\epsilon \gamma_{\psi_{v}} \gamma_{\psi_{v, t_{1} \cdots t_{n}}}^{-1} .
$$

Suppose that the conductor of ψ_{v} is $\mathfrak{o}_{F, v}$. By an unramified principal series representation of $\operatorname{Mp}(2 n)\left(F_{v}\right)$, we mean the induced representation $I(\chi)=\operatorname{Ind}_{\widetilde{B}}^{\operatorname{Mp}(2 n)\left(F_{v}\right)} \chi_{\psi_{v}} \chi$, where χ be a character of $T \simeq F_{v}^{n}$ defined by $\chi\left(t_{1}, \ldots, t_{n}\right)=\left|t_{1}\right|^{\alpha_{1}} \cdots\left|t_{n}\right|^{\alpha_{n}}, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$. This convention of parabolic inductions of the metaplectic group is the one in [GS12]. If π_{v} is an unramified representation of $\operatorname{Mp}(2 n)\left(F_{v}\right)$, then we can find an unramified character χ of T as above and $\pi_{v} \subset I(\chi)$. The complex numbers $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ are called the Satake parameters of π_{v}. Note that the Satake parameters of π_{v} depend also on ψ_{v}.

We write 1_{r} for the $r \times r$ identity matrix. We recursively define $\mathrm{w}_{1}=\{1\}$ and $\mathrm{w}_{r}=\left(1{ }^{\mathrm{w}_{r-1}}\right)$. Suppose $a=\left(a_{1}, \ldots, a_{r}\right) \in\left(F^{\times}\right)^{r}$. We let $\operatorname{diag}\left[a_{1}, \ldots, a_{r}\right]$ be the diagonal matrix with diagonal entries a_{1}, \ldots, a_{r}.

Suppose that G is a unimodular locally compact topological group and $d g$ a Haar measure. Suppose that π is a representation of G, realized on some space V. Let f be a continuous function on G. Then we put (whenever it makes sense, e.g. f is compactly supported and locally constant)

$$
\pi(f) v=\int_{G} f(g) \pi(g) \cdot v d g
$$

Let S be a finite set of places of F. We define a constant Δ_{G}^{S} as follows. If $G=\operatorname{Mp}(2 n)$ or $\operatorname{Sp}(2 n)$, we define $\Delta_{G}^{S}=\prod_{i=1}^{n} \zeta_{F}^{S}(2 i)$. If $G=\mathrm{O}(V)$ or $\operatorname{SO}(V)$ when $n=\operatorname{dim} V \geqslant 3$, then we define

$$
\Delta_{G}^{S}= \begin{cases}\zeta_{F}^{S}(2) \zeta_{F}^{S}(4) \cdots \zeta_{F}^{S}(n-1) & \text { if } n \text { is odd } \\ \zeta_{F}^{S}(2) \zeta_{F}^{S}(4) \cdots \zeta_{F}^{S}(n-2) L^{S}\left(\frac{n}{2}, \chi_{V}\right) & \text { if } n \text { is even }\end{cases}
$$

Refined global Gan-Gross-Prasad conjecture

Suppose that v is a place F, then we define $\Delta_{G, v}$ in an analogous way, replacing the partial L-functions by the local Euler factors at v. In this case, if T is a split maximal torus in $\mathrm{Sp}(2 n)$ and \widetilde{T} is the inverse image of T in $\operatorname{Mp}(2 n)$, then we define $\Delta_{\widetilde{T}, v}=\Delta_{T, v}=\left(1-q_{v}^{-1}\right)^{-n}$.

Part I. Conjectures

2. Conjectures for the Fourier-Jacobi periods

2.1 Global Fourier-Jacobi periods

Let $\left(W_{2}, q_{2}\right)$ be a $2 m$-dimensional symplectic space over F. We choose a basis $\left\{e_{m}^{*}, \ldots, e_{1}^{*}, e_{1}, \ldots\right.$, $\left.e_{m}\right\}$ of W_{2} so that $q_{2}\left(e_{i}^{*}, e_{j}\right)=\delta_{i j}$. For $1 \leqslant i \leqslant m$, let $R_{i}=\left\langle e_{m-i+1}, \ldots, e_{m}\right\rangle$ and $R_{i}^{*}=\left\langle e_{m}^{*}, \ldots\right.$, $\left.e_{m-i+1}^{*}\right\rangle$ be isotropic subspaces of W_{2}. Put $R_{0}=R_{0}^{*}=\{0\}$. Let $0 \leqslant r \leqslant m$ be an integer and put $n=m-r$ and $\left(W_{0}, q_{0}\right)$ the orthogonal complement of $R_{r}+R_{r}^{*}$. We define $\left(W_{1}, q_{1}\right)=W_{0}+\left\langle e_{n+1}\right.$, $\left.e_{n+1}^{*}\right\rangle$. Let $G_{i}=\operatorname{Sp}\left(W_{i}\right)$ and $\widetilde{G_{i}}=\operatorname{Mp}\left(W_{i}\right)$.

Let $0 \leqslant i \leqslant n$ be an integer. Let P_{i} be the parabolic subgroup of G_{2} stabilizing the flag

$$
0=R_{0} \subset R_{1} \subset \cdots \subset R_{i},
$$

with the Levi decomposition $P_{i}=M_{i} N_{i}$. Here and below in this article, the notation $P=M N$ signifies that M is the Levi subgroup and N is the unipotent radical of P. We denote by W^{i} the orthogonal complement of $R_{i}+R_{i}^{*}$ and $G^{i}=\operatorname{Sp}\left(W^{i}\right)$. Then $M_{i}=G^{i} \times \mathrm{GL}_{1}^{i}$. Let ψ_{m} be the character of N_{m} defined by

$$
\psi_{m}(n)=\psi\left(\sum_{j=1}^{m-1} q_{2}\left(n e_{m-j+1}^{*}, e_{m-j}\right)+q_{2}\left(n e_{1}^{*}, e_{1}^{*}\right)\right) .
$$

Let ψ_{i} be the restriction of ψ_{m} to N_{i}.
Let $H=H\left(W_{0}\right)$ be the Heisenberg group attached to the symplectic space W_{0}. By definition, $H=W_{0} \ltimes F$ and the group law is given by

$$
\left(w_{1}, t_{1}\right)\left(w_{2}, t_{2}\right)=\left(w_{1}+w_{2}, t_{1}+t_{2}+q_{0}\left(w_{1}, w_{2}\right)\right) .
$$

The group H embeds in G_{2} as a subgroup of G_{1} and $H=G_{1} \cap N_{r}, N_{r}=N_{r-1} H$. Let $L=\left\langle e_{1}\right.$, $\left.\ldots, e_{n}\right\rangle$ and $L^{*}=\left\langle e_{n}^{*}, \ldots, e_{1}^{*}\right\rangle$. Then $W_{0}=L+L^{*}$ is a complete polarization. We sometimes write an element $h \in H$ as $h\left(l+l^{*}, t\right)$ where $l \in L, l^{*} \in L^{*}$ and $t \in F$. Let v be a place of F and $\omega_{\psi_{v}}$ be the Weil representation of $H\left(F_{v}\right)$ which is realized on $\mathcal{S}\left(L^{*}\left(F_{v}\right)\right)$. It is defined by

$$
\begin{aligned}
\omega_{\psi_{v}}(h(y+x, t)) f\left(l^{*}\right)=\psi(& \left.t+q_{2}\left(2 x+l^{*}, y\right)\right) f\left(l^{*}+x\right), \\
& f \in \mathcal{S}\left(L^{*}\left(F_{v}\right)\right), l^{*}, x \in L^{*}\left(F_{v}\right), y \in L\left(F_{v}\right) .
\end{aligned}
$$

This is the unique irreducible infinite-dimensional representation of $H\left(F_{v}\right)$ whose central character is ψ_{v}. It induces an action of $\widetilde{G_{0}}\left(F_{v}\right)$ on $\mathcal{S}\left(L^{*}\left(F_{v}\right)\right)$. We denote the joint action of $H\left(F_{v}\right) \rtimes \widetilde{G_{0}}\left(F_{v}\right)$ on $\mathcal{S}\left(L^{*}\left(F_{v}\right)\right)$ again by $\omega_{\psi_{v}}$. We take the convention that if $W_{0}=\{0\}$, then $\omega_{\psi_{v}}=\psi_{v}$.

Taking restricted tensor product of the Weil representations $\omega_{\psi_{v}}$, we obtain a global Weil representation ω_{ψ} of $H\left(\mathbb{A}_{F}\right) \rtimes \widetilde{G_{0}}\left(\mathbb{A}_{F}\right)$ which is realized on $\mathcal{S}\left(L^{*}\left(\mathbb{A}_{F}\right)\right)$. We define the theta series

$$
\theta_{\psi}\left(h g_{0}, \phi\right)=\sum_{l^{*} \in L^{*}(F)} \omega_{\psi}\left(h g_{0}\right) \phi\left(l^{*}\right), \quad \phi \in \mathcal{S}\left(L^{*}\left(\mathbb{A}_{F}\right)\right), h \in H\left(\mathbb{A}_{F}\right), g_{0} \in \widetilde{G_{0}}\left(\mathbb{A}_{F}\right) .
$$

H. Xue

We now talk about automorphic representations. There are two cases.
Case Mp. Let $\pi_{2}=\otimes \pi_{2, v}$ be an irreducible cuspidal genuine automorphic representation of $\widetilde{G_{2}}\left(\mathbb{A}_{F}\right)$ and $\pi_{0}=\bigotimes \pi_{0, v}$ be an irreducible cuspidal automorphic representation of $G_{0}\left(\mathbb{A}_{F}\right)$.

Case Sp . Let $\pi_{2}=\bigotimes \pi_{2, v}$ be an irreducible cuspidal automorphic representation of $G_{2}\left(\mathbb{A}_{F}\right)$ and $\pi_{0}=\bigotimes \pi_{0, v}$ be an irreducible cuspidal genuine automorphic representation of $\widetilde{G_{0}}\left(\mathbb{A}_{F}\right)$.

Let S be a sufficiently large finite set of places of F containing all archimedean places and finite places whose residue characteristic is two, such that $\pi_{2, v}$ and $\pi_{0, v}$ are both unramified and the conductor of ψ_{v} is $\mathfrak{o}_{F, v}$ if $v \notin S$. Let $\left(\alpha_{1, v}, \ldots, \alpha_{m, v}\right)$ and $\left(\beta_{1, v}, \ldots, \beta_{n, v}\right)$ be the Satake parameters of $\pi_{2, v}$ and $\pi_{0, v}$, respectively. Put

$$
A_{2}= \begin{cases}\operatorname{diag}\left[\alpha_{1, v}, \ldots, \alpha_{m, v}, \alpha_{m, v}^{-1}, \ldots, \alpha_{1, v}^{-1}\right] & \text { Case } \mathrm{Mp} \\ \operatorname{diag}\left[\alpha_{1, v}, \ldots, \alpha_{m, v}, 1, \alpha_{m, v}^{-1}, \ldots, \alpha_{1, v}^{-1}\right] & \text { Case } \mathrm{Sp}\end{cases}
$$

and

$$
A_{0}= \begin{cases}\operatorname{diag}\left[\beta_{1, v}, \ldots, \beta_{n, v}, 1, \beta_{n, v}^{-1}, \ldots, \beta_{1, v}^{-1}\right] & \text { Case } \mathrm{Mp} \\ \operatorname{diag}\left[\beta_{1, v}, \ldots, \beta_{n, v}, \beta_{n, v}^{-1}, \ldots, \beta_{1, v}^{-1}\right] & \text { Case } \mathrm{Sp}\end{cases}
$$

We then define the tensor product L-function

$$
L_{\psi_{v}}\left(s, \pi_{2, v} \times \pi_{0, v}\right)=\operatorname{det}\left(1-A_{2} \otimes A_{0} \cdot q_{v}^{-s}\right)^{-1}, \quad L_{\psi}^{S}\left(s, \pi_{2} \times \pi_{0}\right)=\prod_{v \notin S} L_{\psi}\left(s, \pi_{2, v} \times \pi_{0, v}\right) .
$$

The partial L-function is convergent for $\Re s \gg 0$. We denote by $L_{\psi_{v}}\left(s, \pi_{i, v}, \mathrm{Ad}\right)$ and $L_{\psi}^{S}(s$, $\left.\pi_{i}, \mathrm{Ad}\right)=\prod_{v \notin S} L_{\psi_{v}}\left(s, \pi_{i, v}, \mathrm{Ad}\right)$ the (local and partial) adjoint L-functions of π_{i}. If π_{i} is an automorphic representation of the metaplectic group (respectively symplectic group), then they depend (respectively do not depend) on ψ. We include the subscript ψ in both cases to unify notation. We assume that these L-functions can be meromorphically continued to the whole complex plane.

Let $\varphi_{2} \in \pi_{2}, \varphi_{0} \in \pi_{0}$ and $\phi \in \mathcal{S}\left(L^{*}\left(\mathbb{A}_{F}\right)\right)$. Define

$$
\begin{aligned}
& \mathcal{F} \mathcal{J}_{\psi}\left(\varphi_{2}, \varphi_{0}, \phi\right) \\
& \quad=\int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \int_{H(F) \backslash H\left(\mathbb{A}_{F}\right)} \int_{N_{r-1}(F) \backslash N_{r-1}\left(\mathbb{A}_{F}\right)} \varphi_{2}\left(u h g_{0}\right) \varphi_{0}\left(g_{0}\right) \overline{\psi_{r-1}(u) \theta_{\psi}\left(h g_{0}, \phi\right)} d u d h d g_{0} .
\end{aligned}
$$

The measures $d u$ and $d h$ are the self-dual measures on $N_{r-1}\left(\mathbb{A}_{F}\right)$ and $H\left(\mathbb{A}_{F}\right)$, respectively. The measure $d g_{0}$ is the Tamagawa measures on $G_{0}\left(\mathbb{A}_{F}\right)$.

2.2 Local Fourier-Jacobi periods

We fix a Haar measure $d g_{0, v}$ on $G_{0}\left(F_{v}\right)$ for each v such that the volume of $G_{0}\left(\mathfrak{o}_{v}\right)$ equals one for almost all v. Then there is a constant C_{0} such that $d g_{0}=C_{0} \prod_{v} d g_{0, v}$. Following [II10], we call C_{0} the measure constant.

Let $\mathcal{B}_{\pi_{i}}(i=0,2)$ be the canonical bilinear pairing between π_{i} and π_{i}^{\vee} defined by

$$
\mathcal{B}_{\pi_{2}}\left(\varphi, \varphi^{\vee}\right)=\int_{G_{2}(F) \backslash G_{2}\left(\mathbb{A}_{F}\right)} \varphi(g) \varphi^{\vee}(g) d g, \quad \varphi \in \pi_{i}, \varphi^{\vee} \in \pi_{i}^{\vee}
$$

We fix a bilinear pairing $\mathcal{B}_{\pi_{i, v}}$ between $\pi_{i, v}$ and $\pi_{i, v}^{\vee}$ for each place v such that $\mathcal{B}_{\pi_{i}}=\prod_{v} \mathcal{B}_{\pi_{i, v}}$. Put $\Phi_{\varphi_{i, v}, \varphi_{i, v}^{\vee}}(g)=\mathcal{B}_{\pi_{i, v}}\left(\pi_{i, v}(g) \varphi_{i, v}, \varphi_{i, v}^{\vee}\right)$ if $\varphi_{i, v} \in \pi_{i, v}$ and $\varphi_{i, v}^{\vee} \in \pi_{i, v}^{\vee}$.

Refined global Gan-Gross-Prasad conjecture

The contragredient representation of ω_{ψ} is $\omega_{\psi^{-1}}$ (again realized on $\mathcal{S}\left(L^{*}\left(\mathbb{A}_{F}\right)\right)$) and there is a canonical pairing between ω_{ψ} and $\omega_{\psi^{-1}}$ given by

$$
\mathcal{B}_{\omega_{\psi}}\left(\phi, \phi^{\vee}\right)=\int_{L^{*}\left(\mathbb{A}_{F}\right)} \phi\left(l^{*}\right) \phi^{\vee}\left(l^{*}\right) d l^{*}, \quad \phi, \phi^{\vee} \in \mathcal{S}\left(L^{*}\left(\mathbb{A}_{F}\right)\right),
$$

where the measure $d l^{*}$ is the self-dual measure on $L^{*}\left(\mathbb{A}_{F}\right)$. Similarly, for any place v, there is a canonical pairing between $\omega_{\psi_{v}}$ and $\omega_{\psi_{v}^{-1}}$ given by

$$
\mathcal{B}_{\omega_{\psi_{v}}}\left(\phi_{v}, \phi_{v}^{\vee}\right)=\int_{L^{*}\left(F_{v}\right)} \phi_{v}\left(l^{*}\right) \phi_{v}^{\vee}\left(l^{*}\right) d l^{*}, \quad \phi_{v}, \phi_{v}^{\vee} \in \mathcal{S}\left(L^{*}\left(F_{v}\right)\right),
$$

where the measure $d l^{*}$ is the self-dual measure on $L^{*}\left(F_{v}\right)$. Then $\mathcal{B}_{\omega_{\psi}}=\prod_{v} \mathcal{B}_{\omega_{\psi_{v}}}$. $\operatorname{Put} \Phi_{\phi_{v}, \phi_{v}^{\vee}}(g)=$ $\mathcal{B}_{\omega_{\psi_{v}}}\left(\omega_{\psi_{v}}(g) \phi_{v}, \phi_{v}^{\vee}\right)$.

We now fix a place v of F. Recall that the group P_{m} of G_{2} is a minimal parabolic subgroup which is contained in P_{r-1}. For any real number γ or $\gamma=-\infty$, define

$$
N_{m, \gamma}=\left\{u \in N_{m}\left(F_{v}\right)| | q_{2}\left(u e_{1}^{*}, e_{1}^{*}\right)\left|\leqslant e^{\gamma},\left|q_{2}\left(u e_{i+1}^{*}, e_{i}\right)\right| \leqslant e^{\gamma}, 1 \leqslant i \leqslant m-1\right\} .\right.
$$

For any $\gamma \geqslant-\infty$, we define $N_{i, \gamma}=N_{i}\left(F_{v}\right) \cap N_{m, \gamma}$. Define

$$
\mathcal{F}_{\psi_{v}} \Phi_{\varphi_{2, v, \varphi_{2, v}^{\vee}}^{\vee}}\left(h g_{0}\right)=\lim _{\gamma \rightarrow \infty} \int_{N_{r-1, \gamma}\left(F_{v}\right)} \Phi_{\varphi_{2, v, v} \stackrel{\vee}{\vee}, v}\left(h g_{0} u\right) \overline{\psi_{r-1, v}(u)} d u, \quad \varphi_{2, v} \in \pi_{2, v}, \quad \varphi_{2, v}^{\vee} \in \pi_{2, v}^{\vee}
$$

where $h \in H\left(F_{v}\right)$ and $g_{0} \in G_{0}\left(F_{v}\right)$ in the case Sp (respectively $g_{0} \in \widetilde{G_{0}}\left(F_{v}\right)$ in the case Mp). Define
$\alpha_{v}\left(\varphi_{2, v}, \varphi_{2, v}^{\vee}, \varphi_{0, v}, \varphi_{0, v}^{\vee}, \phi_{v}, \phi_{v}^{\vee}\right)=\int_{G_{0}\left(F_{v}\right)} \int_{H\left(F_{v}\right)} \mathcal{F}_{\psi} \Phi_{\varphi_{2, v}, \varphi_{2, v}^{\vee}}\left(h g_{0}\right) \Phi_{\varphi_{0, v}, \varphi_{0, v}^{\vee}}\left(g_{0}\right) \Phi_{\phi_{v}, \phi_{v}^{\vee}}\left(h g_{0}\right) d h d g_{0}$,
for $\varphi_{i, v} \in \pi_{i, v}, \varphi_{i, v}^{\vee} \in \pi_{i, v}^{\vee}, \phi_{v}, \phi_{v}^{\vee} \in \mathcal{S}\left(L^{*}\left(F_{v}\right)\right)$. If $r \leqslant 1$, then it is to be understood that $\mathcal{F}_{\psi} \Phi_{\varphi_{2, v}, \varphi_{2, v}^{\vee}}=\Phi_{\varphi_{2, v}, \varphi_{2, v}^{\vee}}$. Moreover, if $r=0$, then it is to be understood that the integral over $H\left(F_{v}\right)$ is void.

Proposition 2.2.1. Assume that $\pi_{2, v}$ and $\pi_{0, v}$ are both tempered. Then the limit in the definition of $\mathcal{F}_{\psi_{v}} \Phi_{\varphi_{2, v}, \varphi_{2, v}^{\vee}}$ exists. Moreover, the defining integral of α_{v} is absolutely convergent.

If $\pi_{i, v}$ is unitary, then we may identify $\pi_{i, v}^{\vee}$ with $\overline{\pi_{i, v}}$. We then define

$$
\alpha_{v}\left(\varphi_{2, v}, \varphi_{0, v}, \phi_{v}\right)=\alpha_{v}\left(\varphi_{2, v}, \overline{\varphi_{2, v}}, \varphi_{0, v}, \overline{\varphi_{0, v}}, \phi_{v}, \overline{\phi_{v}}\right) .
$$

Proposition 2.2.2. Assume that $\pi_{2, v}$ and $\pi_{0, v}$ are unitary and tempered. Then $\alpha_{v}\left(\varphi_{2, v}, \varphi_{0, v}\right.$, $\left.\phi_{v}\right) \geqslant 0$ for all smooth vectors $\varphi_{2, v} \in \pi_{2, v}, \varphi_{0, v} \in \pi_{0, v}$ and $\phi_{v} \in \mathcal{S}\left(L^{*}\left(F_{v}\right)\right)$.

These two propositions will be proved in $\S 3$.
We now consider the unramified situation. Note first that the symplectic spaces W_{i}, the isotropic subspaces R_{i} and hence the groups G_{i} are naturally defined over \mathfrak{o}_{F}. Let S be a sufficiently large finite set of places of F containing all archimedean places and finite places whose residue characteristic is two, such that if $v \notin S$, then the following conditions hold.

H. Xue

(i) The conductor of ψ_{v} is $\mathfrak{o}_{F, v}$.
(ii) We have $\phi_{v}=\phi_{v}^{\vee}=\mathbf{1}_{L^{*}\left(\mathfrak{o}_{F, v}\right)}$.
(iii) For $i=0,2, \varphi_{i, v}$ and $\varphi_{i, v}^{\vee}$ are fixed by $G_{i}\left(\mathfrak{o}_{F, v}\right)$ and satisfy $\mathcal{B}_{\pi_{i, v}}\left(\varphi_{i, v}, \varphi_{i, v}^{\vee}\right)=1$. In particular, the representations $\pi_{i, v}$ and $\pi_{i, v}^{\vee}$ are unramified.
(iv) We have $\int_{G_{0}\left(\mathfrak{o}_{F, v}\right)} d g_{0, v}=1$.

Proposition 2.2.3. If $v \notin S$ and the defining integral of α_{v} is convergent, then

$$
\alpha_{v}\left(\varphi_{2, v}, \varphi_{2, v}^{\vee}, \varphi_{0, v}, \varphi_{0, v}^{\vee}, \phi_{v}, \phi_{v}^{\vee}\right)=\Delta_{G_{2}, v} \frac{L_{\psi_{v}}\left(\frac{1}{2}, \pi_{2, v} \times \pi_{0, v}\right)}{L_{\psi_{v}}\left(1, \pi_{0, v}, \operatorname{Ad}\right) L_{\psi_{v}}\left(1, \pi_{2, v}, \mathrm{Ad}\right)}
$$

We will prove this proposition in $\S 4$. Note that in this proposition, we do not assume that the representations $\pi_{2, v}$ and $\pi_{0, v}$ are tempered.

2.3 Conjectures

Following [II10] and [Liu16], we say that the representations π_{2} and π_{0} are almost locally generic if for almost all places v of F, the local components $\pi_{2, v}$ and $\pi_{0, v}$ are generic. Suppose that we are in the case of Mp. As explained in [II10], the automorphic representations π_{2} and π_{0} should come from some elliptic Arthur parameters

$$
\Psi_{2}: L_{F} \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \widehat{\widehat{G_{2}}}=\mathrm{Sp}(2 m, \mathbb{C}), \quad \Psi_{0}: L_{F} \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \widehat{G_{0}}=\mathrm{SO}(2 n+1, \mathbb{C})
$$

where L_{F} is the (hypothetical) Langlands group of F. If π_{i} is tempered, then Ψ_{i} is trivial on $\mathrm{SL}_{2}(\mathbb{C})$. It is believed (Ramanujan conjecture) that almost locally generic representations are tempered. We define $S_{\pi_{2}}$ (respectively $S_{\pi_{0}}$) to be the centralizer of the image of Ψ_{2} in $\widehat{G_{2}}$ (respectively $\widehat{G_{0}}$). They are finite abelian 2-groups. In the case Sp , we have the same discussion, except that we replace $\widetilde{G_{2}}$ by G_{2} and replace G_{0} by $\widetilde{G_{0}}$.

Conjecture 2.3.1. Assume that π_{2} and π_{0} are irreducible cuspidal automorphic representations that are almost locally generic. Then the following statements hold.
(i) The defining integral of $\alpha_{v}\left(\varphi_{2, v}, \varphi_{2, v}^{\vee}, \varphi_{0, v}, \varphi_{0, v}^{\vee}, \phi_{v}, \phi_{v}^{\vee}\right)$ is convergent for any K_{i}-finite vectors $\varphi_{i, v}, \varphi_{i, v}^{\vee}$ and K_{0}-finite Schwartz functions $\phi_{v}, \phi_{v}^{\vee}$, where K_{i} is a maximal compact subgroup of $G_{i}\left(F_{v}\right), i=0,2$.
(ii) We have $\alpha_{v}\left(\varphi_{2, v}, \varphi_{0, v}, \phi_{v}\right) \geqslant 0$ for any K_{i}-finite vectors $\varphi_{i, v}$ and K_{0}-finite Schwartz function ϕ_{v}. Moreover, $\alpha_{v}\left(\varphi_{2, v}, \varphi_{0, v}, \phi_{v}\right)=0$ for all K_{i}-finite $\varphi_{i, v}$ and K_{0}-finite ϕ_{v} precisely when

$$
\operatorname{Hom}_{N_{r-1}\left(F_{v}\right) \rtimes\left(H\left(F_{v}\right) \rtimes G_{0}\left(F_{v}\right)\right)}\left(\pi_{2, v} \otimes \pi_{0, v} \otimes \overline{\psi_{r-1, v} \otimes \omega_{\psi_{v}}}, \mathbb{C}\right)=0 .
$$

(iii) Assume that $\varphi_{i}=\bigotimes_{v} \varphi_{i, v} \in \pi_{i}(i=0,2)$ and $\phi=\bigotimes_{v} \phi_{v} \in \mathcal{S}\left(L^{*}\left(\mathbb{A}_{F}\right)\right)$ are factorizable, then

$$
\begin{align*}
\left|\mathcal{F} \mathcal{J}_{\psi}\left(\varphi_{2}, \varphi_{0}, \phi\right)\right|^{2}= & \left.\frac{C_{0} \Delta_{G_{2}}^{S}}{\left|S_{\pi_{2}}\right|\left|S_{\pi_{0}}\right|} \frac{L_{\psi}^{S}\left(s, \pi_{2} \times \pi_{0}\right)}{L_{\psi}^{S}\left(s+\frac{1}{2}, \pi_{2}, \operatorname{Ad}\right) L_{\psi}^{S}\left(s+\frac{1}{2}, \pi_{0}, \mathrm{Ad}\right)}\right|_{s=1 / 2} \\
& \times \prod_{v \in S} \alpha_{v}\left(\varphi_{2, v}, \varphi_{0, v}, \phi_{v}\right) \tag{2.3.1}
\end{align*}
$$

Remark 2.3.2. It follows from the Proposition 2.2.3 that the right-hand side of (2.3.1) does not depend on the finite set S.

Refined global Gan-Gross-Prasad conjecture

Remark 2.3.3. Assume that π_{2} and π_{0} are both tempered. It is then believed that $L_{\psi}^{S}\left(s, \pi_{2} \times \pi_{0}\right)$ and $L_{\psi}^{S}\left(s, \pi_{i}, \mathrm{Ad}\right)$ should be holomorphic for $\Re s>0$. Moreover, $L_{\psi}^{S}\left(1, \pi_{i}, \mathrm{Ad}\right) \neq 0$.

Remark 2.3.4. Without the assumption of almost local genericity of π_{2} and π_{0}, we expect that local linear forms α_{v} can be 'analytically continued' in some way so that it is defined for all representations $\pi_{2, v}$ and $\pi_{0, v}$. This is indeed the case if $v \notin S$. Thus α_{v} is well-defined for all v if π_{2} and π_{0} satisfy the property that $\pi_{2, v}$ and $\pi_{0, v}$ are both tempered if $v \in S$. Moreover, we expect that the identity (2.3.1) holds with the quantity $\left|S_{\pi_{2}}\right|\left|S_{\pi_{0}}\right|$ replaced by some $2^{-\beta}$ where β is an integer. The nature of β, however, remains mysterious at this moment.

We end this section by writing Conjecture 2.3.1(3) in an equivalent form which does not involve the finite set S. We may define the completed L-functions

$$
L_{\psi}\left(s, \pi_{2} \times \pi_{0}\right), \quad L_{\psi}\left(s, \pi_{i}, \mathrm{Ad}\right), \quad i=0,2 .
$$

The actual definition of the local Euler factor of these L-functions is not essential to us since Conjecture 2.3.1 does not depend on the definition of these Euler factors. Put

$$
\mathcal{L}=\left.\Delta_{G_{2}} \frac{L_{\psi}\left(s, \pi_{2} \times \pi_{0}\right)}{L_{\psi}\left(s+\frac{1}{2}, \pi_{2}, \mathrm{Ad}\right) L_{\psi}\left(s+\frac{1}{2}, \pi_{0}, \mathrm{Ad}\right)}\right|_{s=1 / 2}
$$

and let \mathcal{L}_{v} be its local Euler factor evaluated at $s=\frac{1}{2}$ at the place v. Define

$$
\alpha_{v}^{\natural}=\mathcal{L}_{v}^{-1} \alpha_{v} .
$$

Then the identity (2.3.1) can be rewritten as

$$
\begin{equation*}
\mathcal{F} \mathcal{J}_{\psi} \cdot \overline{\mathcal{F} \mathcal{J}_{\psi}}=\frac{C_{0}}{\left|S_{\pi_{2}}\right|\left|S_{\pi_{0}}\right|} \mathcal{L} \cdot \prod_{v} \alpha_{v}^{\natural} \tag{2.3.2}
\end{equation*}
$$

The product is convergent since there are only finitely many terms which do not equal to one. This is an equality of elements in

$$
\operatorname{Hom}\left(\pi_{2} \otimes \pi_{0} \otimes \overline{\psi_{r-1} \otimes \omega_{\psi}}, \mathbb{C}\right) \otimes \overline{\operatorname{Hom}\left(\pi_{2} \otimes \pi_{0} \otimes \overline{\psi_{r-1} \otimes \omega_{\psi}}, \mathbb{C}\right)}
$$

Note that by [Sun12, SZ12, LS13], this space is at most one dimensional. So we know a priori that there is a constant C such that

$$
\mathcal{F} \mathcal{J}_{\psi} \cdot \overline{\mathcal{F} \mathcal{J}_{\psi}}=C \cdot \prod_{v} \alpha_{v}^{\natural} .
$$

The point of Conjecture 2.3 .1 is thus to compute the constant C.

3. Convergence and positivity

For the rest of Part I of this paper, we fix a place v of F and suppress it from all notation. Thus F is a local field of characteristic zero. To shorten notation, for any algebraic group G or $G=\operatorname{Mp}(2 n)$ over F, we denote by G instead of $G(F)$ for its group of F-points. We have fixed a basis $\left\{e_{m}^{*}, \ldots, e_{1}^{*}, e_{1}, \ldots, e_{m}\right\}$ of W_{2}. We thus realize the group G_{2} and its various subgroups as groups of matrices. We also identify W_{i}, L, L^{*} as spaces of row vectors. We put $K_{i}=G_{i}\left(\mathfrak{o}_{F}\right)$. This is a maximal compact subgroup of G_{i}. The group P_{m} consists of upper triangular matrices. The group $P_{m} \cap G_{i}$ is a minimal parabolic subgroup of G_{i}.

Suppose $a=\left(a_{1}, \ldots, a_{n}\right) \in\left(F^{\times}\right)^{n}$. Then we let $d(a) \in G_{0}$ so that $d(a) e_{i}^{*}=a_{i} e_{i}^{*}$ for any $1 \leqslant i \leqslant n$. We also put $\underline{a}=\operatorname{diag}\left[a_{n}, \ldots, a_{1}\right] \in \mathrm{GL}_{n}$.

H. Xue

3.1 Preliminaries

We recall some basic estimates in this subsection. We follow [II10, § 4] rather closely.
Let G be a reductive group over F. Let A_{G} be a maximal split subtorus of G, M_{0} the centralizer of A_{G} in G. We fix a minimal parabolic subgroup P_{0} of G with the Levi decomposition $P_{0}=M_{0} N_{0}$. Let Δ be the set of simple roots of $\left(P_{0}, A_{G}\right)$. Let $\delta_{P_{0}}$ be the modulus character of P_{0}. Let

$$
A_{G}^{+}=\left\{a \in A_{0}| | \alpha(a) \mid \leqslant 1 \text { for all } \alpha \in \Delta\right\} .
$$

We fix a special maximal compact subgroup K of G. Then we have a Cartan decomposition $G=K A_{G}^{+} K$. We also have the Iwasawa decomposition

$$
G=M_{0} N_{0} K, \quad g=m_{0}(g) n_{0}(g) k_{0}(g) .
$$

Let f and f^{\prime} be two nonnegative functions on G. We say that $f \ll f^{\prime}$ if there is a constant C such that $f(g) \leqslant C f^{\prime}(g)$ for all $g \in G$. We say that $f \sim f^{\prime}$ if $f \ll f^{\prime}$ and $f^{\prime} \ll f$. In this case we say that f and f^{\prime} are equivalent.

For any function $f \in L^{1}(G)$,

$$
\begin{equation*}
\int_{G} f(g) d g=\int_{A_{G}^{+}} \nu(m) \iint_{K \times K} f\left(k_{1} m k_{2}\right) d k_{1} d k_{2} d m, \tag{3.1.1}
\end{equation*}
$$

where $\nu(m)$ is a positive function on A_{G}^{+}such that

$$
\begin{equation*}
\nu(m) \sim \delta_{P_{0}}(m)^{-1} . \tag{3.1.2}
\end{equation*}
$$

Let 1 be the trivial representation of M_{0} and let $e(g)=\delta_{P_{0}}\left(m_{0}(g)\right)^{1 / 2}$ be an element in $\operatorname{Ind}_{P_{0}}^{G} 1$. Let $d k$ be the measure on K such that $\operatorname{vol} K=1$. We define the Harish-Chandra function

$$
\Xi(g)=\int_{K} e(k g) d k=\int_{K} \delta_{P_{0}}\left(m_{0}(k g)\right)^{1 / 2} d k .
$$

This function is bi- K-invariant. This function depends on the choice of K. However, different choices of K give equivalent functions on G. So this choice will not affect our estimates.

We define a height function on G. We fix an embedding $\tau: G \rightarrow \mathrm{GL}_{n}$. Write $\tau(g)=\left(a_{i j}\right)$ and $\tau\left(g^{-1}\right)=\left(b_{i j}\right)$. Define

$$
\begin{equation*}
\varsigma(g)=\sup \left\{1, \log \left|a_{i j}\right|, \log \left|b_{i j}\right| \mid 1 \leqslant i, j \leqslant n\right\} . \tag{3.1.3}
\end{equation*}
$$

There is a positive real number d such that

$$
\begin{equation*}
\delta_{0}(a)^{1 / 2} \ll \Xi(a) \ll \delta_{0}(a)^{1 / 2} \varsigma(a)^{d}, \quad a \in A_{0}^{+} . \tag{3.1.4}
\end{equation*}
$$

Now let π be an irreducible admissible tempered representation of G. Let Φ be a smooth matrix coefficient of G. Then there is a constant B such that

$$
\begin{equation*}
|\Phi(g)| \ll \Xi(g) \varsigma(g)^{B} . \tag{3.1.5}
\end{equation*}
$$

This is classical and is called the weak inequality when Φ is K-finite and due to [Sun09] when Φ is smooth.

We finally assume that $G=\operatorname{Mp}(2 n)$. This is not an algebraic group, but it behaves in many ways like an algebraic group. In particular, we have a Cartan decomposition for G, i.e. $G=K A_{G}^{+} K$ where K is the inverse image of a special maximal compact subgroup of $\operatorname{Sp}(2 n)$ (e.g. $\operatorname{Sp}(2 n)\left(\mathfrak{o}_{F}\right)$ if F is non-archimedean and $\mathrm{U}(n)$ is F is archimedean) and A_{G}^{+}is the inverse image of $A_{\mathrm{Sp}(2 n)}^{+}$in G. We define $\Xi_{G}=\Xi_{\mathrm{Sp}(2 n)} \circ p$ where $p: G \rightarrow \mathrm{Sp}(2 n)$ is the canonical projection. Then the weak inequality holds for tempered representations of G.

Refined global Gan-Gross-Prasad conjecture

3.2 Some estimates

Lemma 3.2.1. There is a $d>0$, such that

$$
\int_{N_{i+1} \cap G^{i}} \Xi_{G^{i}}(u m) \varsigma(u)^{-d} d u
$$

is absolutely convergent for all $m \in G_{0}$. Moreover, in this case, there is an $\beta>0$ so that

$$
\int_{N_{i+1} \cap G^{i}} \Xi_{G^{i}}(u m) \varsigma(u)^{-d} d u \ll \Xi_{G^{i+1}}(m) \varsigma(m)^{\beta}, \quad m \in G_{0} .
$$

Proof. In the archimedean case, this is [Har75, §10, Lemma 2]. In the non-archimedean case, this is [Sil79, Theorem 4.3.20].

Lemma 3.2.2. There is some constant $c>0$ so that

$$
\Xi_{G^{i}}\left(g g^{\prime}\right) \ll \Xi_{G^{i}}(g) e^{c \varsigma\left(g^{\prime}\right)} .
$$

In particular, if $g=1$, then we have

$$
\Xi\left(g^{\prime}\right) \gg e^{-c \varsigma\left(g^{\prime}\right)} .
$$

Proof. This can be proved by mimicking the argument in [Wal12, § 3.3] and [Liu16, Lemma 3.11].

Lemma 3.2.3. Fix a real number D. Then there exists some $\beta>0$, such that

$$
\int_{N_{i+1, \gamma} \cap G^{i}} \Xi_{G^{i}}(u m) \varsigma(u)^{D} d u \ll \gamma^{\beta} \varsigma(m)^{\beta} \Xi_{G^{i+1}}(m), \quad m \in G^{i+1} .
$$

Proof. We fix some real number b to be determined later. We denote the left-hand side of the inequality by I. Then, $I=I_{<b}+I_{\geqslant b}$ with

$$
\begin{aligned}
& I_{<b}=\int_{N_{i+1, \gamma} \cap G^{i}} \mathbf{1}_{\varsigma<b}(u) \Xi_{G^{i}}(u m) \varsigma(u)^{D} d u \\
& I_{\geqslant b}=\int_{N_{i+1, \gamma} \cap G^{i}} \mathbf{1}_{\varsigma \geqslant b}(u) \Xi_{G^{i}}(u m) \varsigma(u)^{D} d u,
\end{aligned}
$$

where $\mathbf{1}_{\varsigma<b}$ is the characteristic function of $\left\{u \in N_{i+1} \cap G^{i} \mid \varsigma(u)<b\right\}$ and $\mathbf{1}_{\varsigma \geqslant b}$ is the characteristic function of $\left\{u \in N_{i+1} \cap G^{i} \mid \varsigma(u) \geqslant b\right\}$.

By Lemma 3.2.1, we have

$$
\begin{aligned}
I_{<b} & \ll b^{d} \int_{N_{i+1, \gamma} \cap G^{i}} \mathbf{1}_{\varsigma<b}(u) \Xi_{G^{i}}(u m) \varsigma(u)^{D-d} d u \\
& \ll b^{d} \varsigma(m)^{\beta_{1}} \Xi_{G^{i+1}}(m),
\end{aligned}
$$

where β_{1} is a positive real number and d is a positive real number so that the integral

$$
\int_{N_{i+1} \cap G^{i}} \Xi_{G^{i}}(u m) \varsigma(u)^{D-d} d u
$$

is convergent.

H. XUE

Let $\lambda: N_{i+1} \cap G^{i} \rightarrow F$ be a character defined by $\lambda(n)=q_{2}\left(n e_{m-i}^{*}, e_{m-i-1}\right)$. Then by [Beu15, Corollary B.3.1], there is an $\epsilon>0$, such that the integral

$$
\int_{N_{i+1} \cap G^{i}} \Xi_{G^{i}}(u) e^{\epsilon \varsigma(u)} \varsigma(u)^{D}(1+|\lambda(u)|)^{-1} d u
$$

is convergent. We have $\Xi_{G^{i}}(u m) \ll e^{\alpha \varsigma(m)} \Xi_{G^{i}}(u)$ for some $\alpha>0$, cf. Lemma 3.2.2. It follows that

$$
\begin{aligned}
I_{\geqslant b} & \ll e^{\alpha \varsigma(m)} \int_{N_{i+1, \gamma} \cap G^{i}} \mathbf{1}_{\varsigma \geqslant b}(u) \Xi_{G^{i}}(u) \varsigma(u)^{D} e^{\epsilon \varsigma(u)}(1+|\lambda(u)|)^{-1} e^{-\epsilon \varsigma(u)}(1+|\lambda(u)|) d u \\
& \ll e^{\alpha \varsigma(m)-\epsilon b}\left(1+e^{\gamma}\right) \int_{N_{i+1, \gamma} \cap G^{i}} \mathbf{1}_{\varsigma \geqslant b}(u) \Xi_{G^{i}}(u) \varsigma(u)^{D} e^{\epsilon \varsigma(u)}(1+|\lambda(u)|)^{-1} d u \\
& \ll e^{\alpha \varsigma(m)-\epsilon b}\left(1+e^{\gamma}\right) \int_{N_{i+1} \cap G^{i}} \Xi_{G^{i}}(u) \varsigma(u)^{D} e^{\epsilon \varsigma(u)}(1+|\lambda(u)|)^{-1} d u \\
& \ll e^{\alpha \varsigma(m)-\epsilon b}\left(1+e^{\gamma}\right) .
\end{aligned}
$$

There is a constant $c>0$, such that $\Xi_{G^{i+1}}(m) \gg e^{-c \varsigma(m)}$, then we have

$$
I \ll b^{d} \Xi_{G^{i+1}}(m) \varsigma(m)^{\beta_{1}}+e^{(\alpha+c) \varsigma(m)-\epsilon b}\left(1+e^{\gamma}\right) \Xi_{G^{i+1}}(m) .
$$

We may thus choose $b=\epsilon^{-1}\left(\log \left(1+e^{\gamma}\right)+(\alpha+c) \varsigma(m)\right)$ and get

$$
I \ll\left(\epsilon^{-d} \varsigma(m)^{\beta_{1}}(\gamma+(\alpha+c) \varsigma(m))^{d}+1\right) \Xi_{G^{i+1}}(m) .
$$

Note that α, β_{1}, d and c are constants which are independent of γ or m. We therefore conclude that there is some $\beta>0$, such that

$$
I \ll \gamma^{\beta} \varsigma(m)^{\beta} \Xi_{G^{i+1}}(m) .
$$

This proves the lemma.
Lemma 3.2.4. Fix a real number D. Then there is some $\beta>0$ such that

$$
\int_{N_{i+1,-\infty} \cap G^{i}} \Xi_{G^{i}}(u m) \varsigma(u)^{D} d u \ll \varsigma(m)^{\beta} \Xi_{G^{i+1}}(m), \quad m \in G^{i+1} .
$$

Proof. Choose a subgroup N^{\dagger} of $N_{i+1} \cap G^{i}$ so that the multiplication map $N^{\dagger} \times\left(N_{i+1,-\infty} \cap G^{i}\right) \rightarrow$ $N_{i+1} \cap G^{i}$ is an isomorphism. Recall that $\Xi_{G^{i}}$ is itself a matrix coefficient of a (unitary) tempered representation which we temporarily denote by e. Thus $\Xi_{G^{i}}(g)=\left\langle e(g) v, v^{\vee}\right\rangle$ where $\langle-,-\rangle$ is the inner product on e and $v, v^{\vee} \in e$. It follows from the Dixmier-Milliavin theorem [DM78] that v^{\vee} is a finite linear combination of the elements of the form

$$
\int_{N_{\dagger}} f(n) e\left(n^{-1}\right) v^{\prime \vee} d n
$$

where $f \in \mathcal{C}_{c}^{\infty}\left(N_{\dagger}\right)$. Thus $\Xi_{G^{i}}$ is a finite linear combination of the functions of the form

$$
g \mapsto \int_{N^{\dagger}} f(n) \Phi(n g) d n,
$$

where $f(n)$ is a compactly supported function on N^{\dagger} and Φ is a smooth matrix coefficient of a tempered representation of G^{i}, namely e. The lemma then follows from Lemma 3.2.3.

Refined global Gan-Gross-Prasad conjecture

Lemma 3.2.5. Let f be a nonnegative function on L^{*} such that $P(x) f(x)$ is bounded for any polynomial function $P(x)$ on L^{*} (e.g. f is compactly supported). Let $p: H \rtimes G_{0} \rightarrow L^{*}$ be the projection given by

$$
h g_{0} \mapsto \sum_{i=1}^{n} q_{2}\left(h g_{0} e_{n+1}^{*}, e_{i}\right) e_{i}^{*} .
$$

Then there is a real number B such that

$$
\int_{H} \Xi_{G_{1}}\left(h g_{0}\right) f\left(p\left(h g_{0}\right)\right) d h \ll \Xi_{G_{0}}\left(g_{0}\right) \varsigma\left(g_{0}\right)^{B}, \quad g_{0} \in G_{0} .
$$

Proof. By the Cartan decomposition of G_{0}, we may assume that $g=d(a)$ where $a=\left(a_{1}, \ldots\right.$, $\left.a_{n}\right) \in\left(F^{\times}\right)^{n},\left|a_{n}\right| \leqslant \cdots \leqslant\left|a_{1}\right| \leqslant 1$. Then $p\left(h\left(l+l^{*}, t\right) d(a)\right)=l^{*} \underline{a}$ where $\underline{a}=\operatorname{diag}\left[a_{n}, \ldots, a_{1}\right]$.

We fix some γ which will be determined later. Let $H_{\gamma}=H \cap N_{m, \gamma}$ and H^{γ} be the complement of H_{γ} in H. Then

$$
\int_{H} \Xi_{G_{1}}(h d(a)) f\left(l^{*} \underline{a}\right) d h=\int_{H_{\gamma}} \Xi_{G_{1}}(h d(a)) f\left(l^{*} \underline{a}\right) d h+\int_{H^{\gamma}} \Xi_{G_{1}}(h d(a)) f\left(l^{*} \underline{a}\right) d h .
$$

By Lemma 3.2.3, the first integral is bounded by

$$
\gamma^{\beta} \Xi_{G_{0}}(d(a)) \varsigma(d(a))^{B} .
$$

Write $l^{*}=\left(l_{1}^{*}, \ldots, l_{n}^{*}\right)$ and $l^{* *}=\left(0, l_{2}^{*}, \ldots, l_{n}^{*}\right) \in F^{n}$. Then

$$
\int_{H^{\gamma}} \Xi_{G_{1}}\left(h g_{0}\right) f\left(l^{*} \underline{a}\right) d h=\int_{H^{\gamma}} \Xi_{G_{1}}\left(h\left(l+l^{* *}, t\right) d(a) h\left(l_{1}^{*} a_{n}, 0, \ldots, 0\right)\right) f\left(l^{*} \underline{a}\right) d h .
$$

There is some positive constant α such that

$$
\Xi_{G_{1}}\left(h\left(l+l^{\prime *}, t\right) d(a) h\left(l_{1}^{*} a_{n}, 0\right)\right) \ll \Xi_{G_{1}}\left(h\left(l+l^{\prime *}, t\right) d(a)\right) e^{\alpha \log \max \left\{\left|l_{1}^{*} a_{n}\right|, 1\right\}} .
$$

Therefore,

$$
\int_{H^{\gamma}} \Xi_{G_{1}}(h d(a)) f\left(l^{*} \underline{a}\right) d h \ll \int_{H_{-\infty}} \Xi_{G_{1}}(h d(a)) d h \times \int_{\left|l_{1}^{*} a_{n}\right| \geqslant e^{\gamma}} e^{\alpha \log \max \left\{\left|l_{1}^{*} a_{n}\right|, 1\right\}} f_{1}\left(l_{1}^{*} a_{n}\right) d l_{1}^{*},
$$

where f_{1} is a function on F such that $f_{1}(x) P(x)$ is bounded for any polynomial function P on F. It follows from Lemma 3.2.4 that there is a positive real number D such that

$$
\int_{H_{-\infty}} \Xi_{G_{1}}(h d(a)) d h \ll \Xi_{G_{0}}(d(a)) \varsigma(d(a))^{D} .
$$

Since $f_{1}(x) P(x)$ is bounded for any polynomial function P on F, we have

$$
\int_{\left|l_{1}^{*} a_{n}\right| \geqslant e^{\gamma}} e^{\alpha \log \max \left\{l_{1}^{*} a_{n} \mid, 1\right\}} f_{1}\left(l_{1}^{*} a_{n}\right) d l_{1}^{*} \ll\left|a_{n}\right|^{-1} e^{-\gamma},
$$

where the implicit constant in \ll does not depend on a_{n} or γ. We may choose γ with $\gamma>-\log \left|a_{n}\right|$. Then

$$
\int_{\left|l_{1}^{*} a_{n}\right| \geqslant e^{\gamma}} e^{\alpha \log \max \left\{\left|l_{1}^{*} a_{n}\right|, 1\right\}} f_{1}\left(l_{1}^{*} a_{n}\right) d l_{1}^{*} \ll 1 .
$$

Therefore,

$$
\int_{H^{\gamma}} \Xi_{G_{1}}(h d(a)) f(l \underline{a}) d h \ll \Xi_{G_{0}}(d(a)) \varsigma(d(a))^{D} .
$$

The desired estimate then follows.

H. Xue

LEMMA 3.2.6. Let Φ be a smooth matrix coefficient of a tempered representation π of G_{2}. Then the limit

$$
\lim _{\gamma \rightarrow \infty} \int_{N_{r-1, \gamma}} \Phi(n g) \overline{\psi_{r-1}(n)} d n, \quad g \in G_{2}
$$

exists and defines a continuous function in ψ_{r-1} (for a fixed g). If F is non-archimedean, then the integral is in fact a constant for sufficiently large γ. Moreover if $g \in G_{1}$, then

$$
\left|\lim _{\gamma \rightarrow \infty} \int_{N_{r-1, \gamma}} \Phi(n g) \overline{\psi_{r-1}(n)} d n\right| \ll \Xi_{G_{1}}(g) \varsigma(g)^{D} .
$$

Proof. First recall that N_{r-1} is the unipotent subgroup of some parabolic subgroup P_{r-1} of G_{2}, the Levi part being isomorphic to $G_{1} \times \mathrm{GL}_{1}^{r-1}$. Put $T=\mathrm{GL}_{1}^{r-1}$ and denote an element in T by $a=\left(a_{1}, \ldots, a_{r-1}\right)$ where $a_{i} \in F^{\times}$.

If F is non-archimedean, the constancy of the integral when γ is large can be proved in the same way as [Wal12, Lemma 3.5]. In fact, suppose that $\Phi(g)=\left\langle\pi(g) v, v^{\vee}\right\rangle$ where $v \in \pi, v^{\vee} \in \pi^{\vee}$ and $\langle-,-\rangle$ stands for the pairing between π and its contragradient π^{\vee}. Suppose that K^{\prime} is an open compact subgroup of G_{2} such that v and v^{\vee} are fixed by K^{\prime}. Let $K^{\prime \prime}=K^{\prime} \cap g K^{\prime} g^{-1}$. This is an open compact subgroup of G_{2}. Let $c>0$ and T_{c} be the subgroup of T consisting of elements $a=\left(a_{1}, \ldots, a_{r-1}\right)$ so that $\left|a_{i}-1\right| \leqslant e^{-c}$ for all i. The intersection $T \cap K^{\prime \prime}$ is an open subgroup of T. Moreover, $\pi(g) v$ and v^{\vee} are both fixed by $T \cap K^{\prime \prime}$. Thus there is some $c(g)>0$ depending on g, and $c(g) \simeq \varsigma(g)$, such that $\pi(g) v$ and v^{\vee} are fixed by $T_{c(g)}$. We have

$$
\begin{aligned}
\int_{N_{r-1, \gamma}} \Phi(g) \overline{\psi_{r-1}(n)} d n & =\int_{N_{r-1}, \gamma} \int_{T_{c(g)}}\left\langle\pi\left(a^{-1} n a g\right) v, v^{\vee}\right\rangle \overline{\psi_{r-1}(n)} d a d n \\
& =\int_{N_{r-1}, \gamma}\left\langle\pi(n g) v, v^{\vee}\right\rangle\left(\int_{T_{c(g)}} \overline{\psi_{r-1}\left(a n a^{-1}\right)} d a\right) d n .
\end{aligned}
$$

There is some $c^{\prime}(g), c^{\prime}(g) \simeq \varsigma(g)$, so that if $\gamma>c^{\prime}(g)$ and $n \in N_{r-1, \gamma} \backslash N_{r-1, c^{\prime}(g)}$, then the inner integral vanishes. It follows that if $\gamma>c^{\prime}(g)$, then

$$
\int_{N_{r-1, \gamma}} \Phi(g) \overline{\psi_{r-1}(n)} d n=\int_{N_{r-1, c^{\prime}(g)}} \Phi(g) \overline{\psi_{r-1}(n)} d n
$$

It also follows, by Lemma 3.2.3, that if $\gamma>c^{\prime}(g)$, then there is some $D>0$ so that

$$
\left|\int_{N_{r-1, \gamma}} \Phi(g) \overline{\psi_{r-1}(n)} d n\right| \ll c^{\prime}(g)^{D} \Xi_{G_{1}}(g) \varsigma(g)^{D}, \quad g \in G_{1} .
$$

As $c^{\prime}(g) \simeq \varsigma(g)$, we get the desired estimate (possibly for some larger D). This proves the lemma in the non-archimedean case.

From now on we assume that F is archimedean.
To simplify notation, we put

$$
I(\gamma, g, \Phi)=\int_{N_{r-1, \gamma}} \Phi(n g) \overline{\psi_{r-1}(n)} d n, \quad g \in G_{1}
$$

Note that to prove the limit exists, we may even assume that $g=1$. By the Dixmier-Malliavin theorem, it is enough to prove the lemma for $\lim _{\gamma \rightarrow \infty} I(\gamma, g, f * \Phi)$ where $f \in \mathcal{C}_{c}^{\infty}(T)$ and

$$
f * \Phi(g)=\int_{T} f(t) \Phi\left(t^{-1} g t\right) d t
$$

is a function on G_{2}. When there is no confusion, we write $I(\gamma)=I(\gamma, g, f * \Phi)$ for short.

Let $\left(x_{1}, \ldots, x_{r-1}\right) \in F^{r-1}$ and $n\left(x_{1}, \ldots, x_{r-1}\right) \in N_{r-1}$ so that $n\left(x_{1}, \ldots, n_{r-1}\right) e_{n+i}^{*}=e_{n+i}^{*}+$ $x_{i-1} e_{n+i-1}^{*}$ for $i=2, \ldots, r$. Let $N_{\dagger}=\left\{n\left(x_{1}, \ldots, x_{r-1}\right) \mid\left(x_{1}, \ldots, x_{r-1}\right) \in F^{r-1}\right\}$. It is a subgroup of N_{r-1} which is stable under the conjugation by T and the multiplication map $N_{\dagger} \times N_{r-1,-\infty} \rightarrow$ N_{r-1} is an isomorphism. Let $N_{\dagger}, \gamma=N_{\dagger} \cap N_{r-1, \gamma}$. We denote by $\widehat{N_{\dagger}}$ the group of additive characters of N_{\dagger} and by $\widehat{N}_{\dagger}^{\text {reg }}$ the open subset consisting of generic characters. Then $\psi_{r-1} \in \widehat{N}_{\dagger}^{\text {reg }}$. Let ψ^{t} be the character of N_{\dagger} defined by $\psi^{t}(n)=\psi_{r-1}\left(t n t^{-1}\right)$. The map $t \mapsto \psi^{t}$ defines a homeomorphism from T to $\widehat{N}_{\dagger}^{\text {reg }}$. A compactly supported function on T is then identified with a compactly supported function on $\widehat{N}_{\dagger}^{\mathrm{reg}}$. We may thus talk about the Fourier transform of f, which is a Schwartz function on N_{\dagger}. Let $t_{1}, \ldots, t_{r-1} \in F^{\times}$and $t \in T$ so that $t n\left(x_{1}, \ldots, x_{r-1}\right) t^{-1}=n\left(t_{1} x_{1}\right.$, $\ldots, t_{r-1} x_{r-1}$). The measure $\left|t_{1} \ldots t_{r-1}\right| d t$ is, up to a positive constant, the restriction of the self-dual measure of \widehat{N} to $\widehat{N}^{\text {reg }}$ under this homeomorphism. We may assume that the constant is one.

We have

$$
\begin{align*}
I(\gamma) & =\int_{N_{r-1, \gamma}} \int_{T} f(t) \Phi\left(t^{-1} n t g\right) \overline{\psi_{r-1}(n)} d t d n \\
& =\int_{N_{r-1}} \int_{T} f(t) \mathbf{1}_{N_{r-1, \gamma}}(n) \Phi\left(t^{-1} n t g\right) \overline{\psi_{r-1}(n)} d t d n \\
& =\int_{N_{\dagger}}\left(\int_{T} f(t) \mathbf{1}_{N_{\mathrm{\dagger}, \gamma}}\left(t n t^{-1}\right) \overline{\psi^{t}(n)} d t\right)\left(\int_{N_{r-1,-\infty}} \Phi\left(n n^{\prime} g\right) d n^{\prime}\right) d n \tag{3.2.1}
\end{align*}
$$

where in the last identity, we have made the change of variable $n \mapsto t n t^{-1}$ and split the integral over N_{r-1} as a double integral over $N_{\dagger} \times N_{r-1,-\infty}$.

We claim that there is a constant C which does not depend on γ so that

$$
\begin{equation*}
\left|\int_{T} f(t) \mathbf{1}_{N_{\mathrm{t}, \gamma}}\left(t n t^{-1}\right) \overline{\psi^{t}(n)} d t\right| \leqslant C \prod_{i=1}^{r-1} \max \left\{1,\left|x_{i}\right|\right\}^{-1} \tag{3.2.2}
\end{equation*}
$$

where $n=n\left(x_{1}, \ldots, x_{r-1}\right) \in N_{\dagger}$. In fact, we integrate $t_{i} \in F^{\times}$with $\left|x_{i}\right| \leqslant 1$ via integration by parts. The anti-derivative of $\mathbf{1}_{\left\{| | \leqslant e^{\gamma}\right\}}(x t) \psi(x t)$ is a function of the form $|x|^{-1} X_{\gamma}(x t)$ where X_{γ} is bounded by a constant independent of γ. It then follows that

$$
\int_{T} f(t) \mathbf{1}_{N_{\uparrow, \gamma}}\left(t n t^{-1}\right) \overline{\psi^{t}(n)} d t=\int_{F^{r-1}} \prod_{i:\left|x_{i}\right| \leqslant 1}\left|x_{i}\right|^{-1} X_{\gamma}\left(x_{i} t_{i}\right) \partial f_{1}\left(t_{1}, \ldots, t_{r-1}\right) d t
$$

where $f_{1}\left(t_{1}, \ldots, t_{r-1}\right)=f\left(t_{1}, \ldots, t_{r-1}\right)\left|t_{1} \cdots t_{r-1}\right|^{-1}$ and ∂f_{1} is the partial derivative of f_{1} with respect to all t_{i} such that $\left|x_{i}\right| \leqslant 1$. As f, so f_{1}, are in $\mathcal{C}_{c}^{\infty}(T)$, and X_{γ} is bounded by a constant independent of γ, the desired estimate (3.2.2) follows.

By [Beu15, Corollary B.3.1], the integral

$$
\int_{N_{\dagger}} \int_{N_{r-1,-\infty}} \prod_{i=1}^{r-1} \max \left\{1,\left|x_{i}\right|\right\}^{-1} \Phi\left(n\left(x_{1}, \ldots, x_{r-1}\right) n^{\prime} g\right) d n^{\prime} d n
$$

is convergent. By the Lebesgue dominated convergence theorem, we have

$$
\begin{aligned}
\lim _{\gamma \rightarrow \infty} I(\gamma) & =\int_{N_{\dagger}}\left(\int_{T} \lim _{\gamma \rightarrow \infty} f(t) \mathbf{1}_{N_{\mathrm{+}, \gamma}}\left(t n t^{-1}\right) \overline{\psi^{t}(n)} d t\right)\left(\int_{N_{r-1,-\infty}} \Phi\left(n n^{\prime} g\right) d n^{\prime}\right) d n \\
& =\int_{N_{\dagger}} \int_{N_{r-1,-\infty}} \widehat{f}_{1}(n) \Phi\left(n n^{\prime} g\right) d n^{\prime} d n
\end{aligned}
$$

The rest of the assertions of the lemma follow easily from this expression.

H. Xue

3.3 Proof of Proposition 2.2.1

The case $r=0$ is rather straightforward. Indeed, in this case $G_{0}=G_{1}=G_{2}$. By the weak inequality, we only need to prove that

$$
\int_{G_{0}} \Xi_{G_{0}}(g)^{2}\left|\Phi_{\phi, \phi^{\vee}}(g)\right| d g
$$

is absolutely convergent. By the Cartan decomposition and the estimates (3.1.2) and (3.1.4), the convergence is reduced to the convergence of

$$
\int_{\left|a_{n}\right| \leqslant \cdots \leqslant\left|a_{1}\right| \leqslant 1}\left|a_{1} \cdots a_{n}\right|^{1 / 2}\left(-\sum_{i=1}^{n} \log \left|a_{i}\right|\right)^{D} d a_{1} \cdots d a_{n}
$$

This is clear. Proposition 2.2.1 is thus proved when $r=0$.
The case $r \geqslant 2$ follows from the case $r=1$ by Lemma 3.2.6.
We now treat the case $r=1$. In this case $G_{2}=G_{1}$. The defining integral of α reduces to

$$
\alpha\left(\varphi_{2}, \varphi_{2}^{\vee}, \varphi_{0}, \varphi_{0}^{\vee}, \phi, \phi^{\vee}\right)=\int_{G_{0}} \int_{H} \Phi_{\varphi, \varphi^{\vee}}\left(h g_{0}\right) \Phi_{\varphi_{0}, \varphi_{0}^{\vee}}\left(g_{0}\right) \overline{\Phi_{\phi, \phi} \vee\left(h g_{0}\right)} d h d g_{0}
$$

Since π_{2} and π_{0} are both tempered, we need to prove that

$$
\int_{G_{0}} \int_{H} \Xi_{G_{1}}\left(h g_{0}\right) \Xi_{G_{0}}\left(g_{0}\right)\left|\Phi_{\phi, \phi^{\vee}}\left(h g_{0}\right)\right| d h d g_{0}
$$

is convergent.
Let $g_{0}=k_{1} d(a) k_{2}$ be the Cartan decomposition of g_{0} where $a=\left(a_{1}, \ldots, a_{n}\right) \in\left(F^{\times}\right)^{n}$ with $\left|a_{s}\right| \leqslant \cdots \leqslant\left|a_{1}\right| \leqslant 1$. We first estimate $\left|\Phi_{\phi, \phi \vee}(h d(a))\right|$. We claim that there is a function f on L^{*} so that $f\left(l^{*}\right) P\left(l^{*}\right)$ is bounded for any polynomial function P on L^{*}, such that

$$
\begin{equation*}
\left|\Phi_{\phi, \phi^{\vee}}\left(h\left(l+l^{*}, t\right) d(a)\right)\right| \ll|\operatorname{det} \underline{a}|^{1 / 2} f\left(l^{*} \underline{a}\right) . \tag{3.3.1}
\end{equation*}
$$

Indeed

$$
\left|\Phi_{\phi, \phi^{\vee}}\left(h\left(l+l^{*}, t\right) d(a)\right)\right| \leqslant|\operatorname{det} \underline{a}|^{1 / 2} \int_{L^{*}}\left|\phi\left(x \underline{a}+l^{*} \underline{a}\right) \phi^{\vee}(x)\right| d x .
$$

Thus, to prove (3.3.1), it is enough to prove that for any polynomial function P on L^{*},

$$
\sup _{y \in L^{*}}|P(y)| \int_{L^{*}}\left|\phi(x \underline{a}+y) \phi^{\vee}(x)\right| d x<\infty .
$$

We have

$$
\sup _{y \in L^{*}}|P(y)| \int_{L^{*}}\left|\phi(x \underline{a}+y) \phi^{\vee}(x)\right| d x \leqslant \int_{L^{*}}\left(\sup _{y \in L^{*}}|P(y) \phi(x \underline{a}+y)|\right)\left|\phi^{\vee}(x)\right| d x .
$$

Since P is a polynomial function, we may choose a sufficiently large N, such that

$$
\sup _{y \in L^{*}}|P(y) \phi(x \underline{a}+y)| \ll\left(1+\left|x_{1} a_{n}\right|+\cdots\left|x_{n} a_{1}\right|\right)^{N} \leqslant\left(1+\left|x_{1}\right|+\cdots\left|x_{n}\right|\right)^{N}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in L^{*}$. We have the second inequality because $\left|a_{i}\right| \leqslant 1$ for all i. Then

$$
\int_{L^{*}}\left(\sup _{y \in L^{*}}|P(y) \phi(x \underline{a}+y)|\right)\left|\phi^{\vee}(x)\right| d x \ll \int_{L^{*}}\left(1+\left|x_{1}\right|+\cdots\left|x_{n}\right|\right)^{N}\left|\phi^{\vee}(x)\right| d x<\infty
$$

Refined global Gan-Gross-Prasad conjecture

We have thus proved (3.3.1).
By (3.1.1), to prove the convergence of the defining integral of α, it is enough to show the convergence of

$$
\int_{A_{G_{0}}^{+}} \int_{H} \Xi_{G_{1}}\left(h\left(l+l^{*}, t\right) d(a)\right) \Xi_{G_{0}}(d(a)) \delta_{P_{m} \cap G_{0}}^{-1}(d(a))|\operatorname{det} \underline{a}|^{1 / 2} f\left(l^{*} \underline{a}\right) d h d a .
$$

Then Lemma 3.2.5 reduces the convergence of this integral to the case $r=0$.

3.4 Proof of Proposition 2.2.2

We are going to use the notation in the proof of Lemma 3.2.6, one paragraph before (3.2.1). To simplify notation, we write $\Phi_{\varphi_{i}}=\Phi_{\varphi_{i}, \varphi_{i}}, i=0,2$ and $\Phi_{\phi}=\Phi_{\phi, \phi}$.

To facilitate understanding, we divide the proof into several steps.
Step 1. The goal is to reduce the Proposition to the inequality (3.4.1).
In order to prove that $\alpha\left(\varphi_{2}, \varphi_{0}, \phi\right) \geqslant 0$, it is enough to show that for any function $f \in \mathcal{C}_{c}^{\infty}(T)$, we have

$$
\int_{T} \int_{G_{0}} \int_{H}\left(\lim _{\gamma \rightarrow \infty} \int_{N_{r-1, \gamma}} \Phi_{\varphi_{2}}\left(n h g_{0}\right) \overline{\psi_{r-1}\left(t n t^{-1}\right)} d n\right) \Phi_{\varphi_{0}}\left(g_{0}\right) \overline{\Phi_{\phi}\left(h g_{0}\right)} f(t) \overline{f(t)} d h d g_{0} d t \geqslant 0 .
$$

We denote this expression by I. Since $f(t)$ is compactly supported, by Fubini's theorem, we have

$$
I=\int_{G_{0}} \int_{H}\left(\int_{T} \lim _{\gamma \rightarrow \infty} \int_{N_{r-1, \gamma}} \Phi_{\varphi_{2}}\left(n h g_{0}\right) f(t) \overline{f(t) \overline{\psi_{r-1}\left(t n t^{-1}\right)}} d n d t\right) \Phi_{\varphi_{0}}\left(g_{0}\right) \overline{\Phi_{\phi}\left(h g_{0}\right)} d h d g_{0} .
$$

We denote the integral in the parentheses by $I I$. It follows from Lemma 3.2.6 that

$$
\lim _{\gamma \rightarrow \infty} \int_{N_{r-1, \gamma}} \Phi_{\varphi_{2}}\left(n h g_{0}\right) \overline{\psi_{r-1}\left(t n t^{-1}\right)} d n
$$

is bounded by a constant which depends continuously on ψ_{r-1}. Since f is compactly supported on T, we can choose this constant to be independent of t (but depends on $h g_{0}$). Then by the Lebesgue dominated convergence theorem, we have

$$
I I=\lim _{\gamma \rightarrow \infty} \int_{T} \int_{N_{r-1, \gamma}} \Phi_{\varphi_{2}}\left(n h g_{0}\right) f(t) \overline{f(t) \overline{\psi_{r-1}\left(t n t^{-1}\right)}} d n d t .
$$

Moreover, the double integral on the right-hand side is absolutely convergent. We can thus interchange the order of integration. Finally, we conclude that

$$
I I=\lim _{\gamma \rightarrow \infty} \int_{N_{r-1, \gamma}} \int_{T} \Phi_{\varphi_{2}}\left(n h g_{0}\right) f(t) \overline{f(t) \overline{\psi_{r-1}\left(t n t^{-1}\right)}} d t d n .
$$

Let $f_{1}(t)=f(t)\left|t_{1} \cdots t_{r-1}\right|^{-1 / 2} \in \mathcal{C}_{c}^{\infty}(T)$. Recall that the map $t \mapsto \psi^{t}$ identifies T with $\widehat{N}_{\dagger}^{\text {reg }}$ which is an open subset of \widehat{N}_{\dagger} consisting of generic characters. The measure $\left|t_{1} \cdots t_{r-1}\right| d t$ is identified with the self-dual measure on $\widehat{N_{\dagger}}$ under this map. In this way, f, as well as f_{1}, are viewed as compactly supported functions on \widehat{N}_{\dagger} and we may talk about their Fourier transform \widehat{f} and \widehat{f}_{1} which are functions on N_{\dagger}. The Fourier transform of a product of two functions is the convolution of the Fourier transforms of these two functions. We conclude that

$$
\int_{T} f(t) \overline{f(t) \psi_{r-1}\left(t n t^{-1}\right)} d t=\int_{N_{\dagger}} \widehat{f_{1}}\left(n_{1} n_{2}\right) \widehat{\bar{f}_{1}}\left(n_{2}\right) d n_{2}
$$

H. Xue

Therefore,

$$
\begin{aligned}
I I & =\lim _{\gamma \rightarrow \infty} \int_{N_{\dagger}, \gamma} \int_{N_{r-1,-\infty}} \int_{N_{\dagger}} \Phi_{\varphi_{2}}\left(n_{1} n^{\prime} h g_{0}\right) \widehat{f_{1}}\left(n_{1} n_{2}\right) \widehat{\bar{f}_{1}}\left(n_{2}\right) d n_{2} d n^{\prime} d n_{1} \\
& =\int_{N_{\dagger}} \int_{N_{\dagger}} \int_{N_{r-1,-\infty}} \Phi_{\varphi_{2}}\left(n_{1} n_{2}^{-1} n^{\prime} h g_{0}\right) \widehat{f_{1}}\left(n_{1}\right) \widehat{\bar{f}_{1}}\left(n_{2}\right) d n_{2} d n^{\prime} d n_{1} \\
& =\int_{N_{r-1,-\infty}} \Phi_{\pi_{2}\left(\widehat{f_{1}}\right) \varphi_{2}}\left(n^{\prime} h g_{0}\right) d n^{\prime},
\end{aligned}
$$

where $\pi_{2}\left(\widehat{f}_{1}\right) \varphi_{2}=\int_{N_{\dagger}} \widehat{f}_{1}(n) \pi_{2}(n) \varphi_{2} d n$. This expression makes sense since \widehat{f}_{1} is a Schwartz function on N_{\dagger}. Thus to show that $I \geqslant 0$, it remains to show that

$$
\int_{G_{0}} \int_{H} \int_{N_{r-1,-\infty}} \Phi_{\pi_{2}\left(\hat{f}_{1}\right) \varphi_{2}}\left(n^{\prime} h g_{0}\right) \Phi_{\varphi_{0}}\left(g_{0}\right) \overline{\Phi_{\phi}\left(h g_{0}\right)} d n^{\prime} d h d g_{0} \geqslant 0 .
$$

Actually, we will show that

$$
\begin{equation*}
\int_{G_{0}} \int_{H} \int_{N_{r-1,-\infty}} \Phi_{\varphi_{2}}\left(n^{\prime} h g_{0}\right) \Phi_{\varphi_{0}}\left(g_{0}\right) \overline{\Phi_{\phi}\left(h g_{0}\right)} d n^{\prime} d h d g_{0} \geqslant 0 \tag{3.4.1}
\end{equation*}
$$

for all smooth vectors $\varphi_{2} \in \pi_{2}$ and $\varphi_{0} \in \pi_{0}$. Unlike the proof of [II10, Proposition 1.1] and [Liu16, Theorem 2.1(2)], we cannot apply [He03, Theorem 2.1] directly, as $G_{2} \times H G_{0}$ is not reductive. However, we are going to mimic the proof of [He 03 , Theorem 2.1] to prove (3.4.1).

Step 2. The goal is to reduce (3.4.1) to the case of K-finite vectors.
We claim that it is enough to prove (3.4.1) for a K_{2}-finite (respectively K_{0}-finite) vector $\varphi_{2} \in \pi_{2}$ (respectively $\varphi_{0} \in \pi_{0}$). This is only an issue when F is archimedean. So we assume temporarily that F is archimedean. Since K_{2}-finite vectors are dense in the space of smooth vectors in π_{2}, we may choose a sequence of K_{2}-finite vectors $\varphi_{2}^{(i)}$ which is convergent to φ_{2}. It follows that $\Phi_{\varphi_{2}}$ is approximated pointwisely by $\Phi_{\varphi_{2}^{(i)}}$. Moreover, by [Sun09], there exists an element X in the Lie algebra of G_{2}, which depends on K_{2} only, such that

$$
\Phi_{\varphi_{2}^{(i)}}\left(g_{2}\right) \leqslant \mathcal{B}_{\pi_{2}}\left(\pi_{2}(X) \varphi_{2}^{(i)}, \pi_{2}(X) \varphi_{2}^{(i)}\right) \Xi_{G_{2}}\left(g_{2}\right)=\left|\pi_{2}(X) \varphi_{2}^{(i)}\right|^{2} \Xi_{G_{2}}\left(g_{2}\right)
$$

Since $\varphi_{2}^{(i)}$ is convergent to φ_{2}, we see that $\left|\pi_{2}(X) \varphi_{2}^{(i)}\right|^{2}$ is convergent to $\left|\pi_{2}(X) \varphi_{2}\right|^{2}$. In particular, it is bounded by some constant which is independent of $\varphi_{2}^{(i)}$. Similarly we choose a sequence $\varphi_{0}^{(i)}$ of K_{0}-finite vectors in π_{0} which approximate φ_{0}. Since

$$
\int_{G_{0}} \int_{H} \int_{N_{r-1,-\infty}} \Xi_{G_{2}}\left(n^{\prime} h g_{0}\right) \Xi_{G_{0}}\left(g_{0}\right) \overline{\Phi_{\phi}\left(h g_{0}\right)} d n^{\prime} d h d g_{0}
$$

is absolutely convergent, by the Lebesgue dominated convergence theorem

$$
\begin{aligned}
& \int_{G_{0}} \int_{H} \int_{N_{r-1,-\infty}} \Phi_{\varphi_{2}}\left(n^{\prime} h g_{0}\right) \Phi_{\varphi_{0}}\left(g_{0}\right) \overline{\Phi_{\phi}\left(h g_{0}\right)} d n^{\prime} d h d g_{0} \\
& \quad=\lim _{i \rightarrow \infty} \int_{G_{0}} \int_{H} \int_{N_{r-1,-\infty}} \Phi_{\varphi_{2}^{(i)}}\left(n^{\prime} h g_{0}\right) \Phi_{\varphi_{0}^{(i)}}\left(g_{0}\right) \overline{\Phi_{\phi}\left(h g_{0}\right)} d n^{\prime} d h d g_{0}
\end{aligned}
$$

So the positivity in (3.4.1) for smooth vectors follows from the positivity for K-finite vectors.

Refined global Gan-Gross-Prasad conjecture

From now on, we assume that φ_{2} and φ_{0} in (3.4.1) are K_{2}-finite and K_{0}-finite, respectively. We come back to the situation F being an arbitrary local field of characteristic zero.

Step 3. The goal is to reduce (3.4.1) to the inequality (3.4.2).
Since π_{2} is tempered, by (the proof of) [He03, Theorem 2.1] (which is also valid when F is non-archimedean), one can find a sequence of compactly supported continuous functions $f_{2, j}^{(i)}$ on G_{2} and a sequence of positive real numbers $a_{j}^{(i)}, j=1, \ldots, s_{i}$, such that $\sum_{j=1}^{s_{i}} a_{j}^{(i)}=1$ and the functions

$$
g_{2}^{\prime} \mapsto A^{(i)}\left(g_{2}^{\prime}\right)=\sum_{j=1}^{s_{i}} a_{j}^{(i)} \int_{G_{2}} f_{2, j}^{(i)}\left(g_{2} g_{2}^{\prime}\right) \overline{f_{2, j}^{(i)}\left(g_{2}\right)} d g_{2}
$$

approximate $\Phi_{\varphi_{2}}\left(g_{2}^{\prime}\right)$ pointwisely. Moreover, there is a constant C_{2}, such that

$$
\left|A^{(i)}\left(g_{2}^{\prime}\right)\right| \leqslant C_{2} \Xi_{G_{2}}\left(g_{2}^{\prime}\right) .
$$

Similarly, we can find a sequence of compactly supported continuous functions $f_{0, j}^{(i)}$ on G_{0} and a sequence of positive real numbers $b_{j}^{(i)}, j=1, \ldots, k_{i}$, such that $\sum_{j=1}^{k_{i}} b_{j}^{(i)}=1$ and the functions

$$
g_{0}^{\prime} \mapsto B^{(i)}\left(g_{0}^{\prime}\right)=\sum_{j=1}^{k_{i}} b_{j}^{(i)} \int_{G_{0}} f_{0, j}^{(i)}\left(g_{0} g_{0}^{\prime}\right) \overline{f_{0, j}^{(i)}\left(g_{0}\right)} d g_{0}
$$

approximate $\Phi_{\varphi_{0}}\left(g_{0}^{\prime}\right)$ pointwisely. Moreover, there is a constant C_{0}, such that

$$
\left|B^{(i)}\left(g_{0}^{\prime}\right)\right| \leqslant C_{0} \Xi_{G_{0}}\left(g_{0}^{\prime}\right) .
$$

Since the integral

$$
\int_{G_{0}} \int_{H} \int_{N_{r-1,-\infty}} \Xi_{G_{2}}\left(n^{\prime} h g_{0}\right) \Xi_{G_{0}}\left(g_{0}\right) \Phi_{\phi}\left(h g_{0}\right) d n^{\prime} d h d g_{0}
$$

is absolutely convergent, by the Lebesgue dominated convergence theorem, to prove (3.4.1), it is enough to prove that for any i, j,

$$
\begin{align*}
& \int_{G_{0}} \int_{H} \int_{N_{r-1,-\infty}}\left(\int_{G_{2}} f_{2, j}^{(i)}\left(g_{2} n^{\prime} h g_{0}^{\prime}\right) \overline{f_{2, j}^{(i)}\left(g_{2}\right)} d g_{2}\right) \\
& \quad \times\left(\int_{G_{0}} f_{0, j}^{(i)}\left(g_{0} g_{0}^{\prime}\right) \overline{f_{0, j}^{(i)}\left(g_{0}\right)} d g_{0}\right) \Phi_{\phi}\left(h g_{0}^{\prime}\right) d n^{\prime} d h d g_{0}^{\prime} \geqslant 0 . \tag{3.4.2}
\end{align*}
$$

We denote the left-hand side by Q. Note that this integral is absolutely convergent. To simplify notation, we write $f_{2}=f_{2, j}^{(i)}$ and $f_{0}=f_{0, j}^{(i)}$.

Step 4. Proof of (3.4.2).
We can write the inner product on $\mathcal{S}\left(L^{*}\right)$ as

$$
\mathcal{B}_{\omega_{\psi}}\left(\phi, \phi^{\prime}\right)=\int_{L+F \backslash H} \omega_{\psi}\left(h^{\prime}\right) \phi(0) \overline{\omega_{\psi}\left(h^{\prime}\right) \phi^{\prime}(0)} d h^{\prime} .
$$

H. Xue

Using this expression of the inner product, we have

$$
\begin{aligned}
Q= & \int_{G_{0}} \int_{H} \int_{N_{r-1,-\infty}}\left(\int_{G_{2}} f_{2}\left(g_{2} n^{\prime} h g_{0}^{\prime}\right) \overline{f_{2}\left(g_{2}\right)} d g_{2}\right)\left(\int_{G_{0}} f_{0}\left(g_{0} g_{0}^{\prime}\right) \overline{f_{0}\left(g_{0}\right)} d g_{0}\right) \\
& \times\left(\int_{L+F \backslash H} \overline{\omega_{\psi}\left(h^{\prime} h g_{0}^{\prime}\right) \phi(0)} \omega_{\psi}\left(h^{\prime}\right) \phi(0) d h^{\prime}\right) d n^{\prime} d h d g_{0}^{\prime} \\
= & \int_{G_{0}} \int_{H} \int_{N_{r-1,-\infty}}\left(\int_{G_{2}} f_{2}\left(g_{2} n^{\prime} h g_{0}^{\prime}\right) \overline{f_{2}\left(g_{2}\right)} d g_{2}\right)\left(\int_{G_{0}} f_{0}\left(g_{0} g_{0}^{\prime}\right) \overline{f_{0}\left(g_{0}\right)} d g_{0}\right) \\
& \times\left(\int_{L+F \backslash H} \overline{\omega_{\psi}\left(h^{\prime} g_{0} h g_{0}^{\prime}\right) \phi(0)} \omega_{\psi}\left(h^{\prime} g_{0}\right) \phi(0) d h^{\prime}\right) d n^{\prime} d h d g_{0}^{\prime} .
\end{aligned}
$$

Note that we have used the fact the pairing $\mathcal{B}_{\omega_{\psi}}$ is G_{0}-invariant.
We make the following change of variables

$$
g_{0}^{\prime} \mapsto g_{0}^{-1} g_{0}^{\prime}, \quad h \mapsto g_{0}^{-1} h^{\prime-1} h g_{0}, \quad n^{\prime} \mapsto g_{0}^{-1} h^{\prime-1} n^{\prime} h^{\prime} g_{0}, \quad g_{2} \mapsto g_{2} h^{\prime} g_{0} .
$$

Then

$$
\begin{aligned}
Q= & \int_{G_{2}} \int_{N_{r-1,-\infty}} \iint_{(L+F) \backslash H \times H} \iint_{G_{0} \times G_{0}} f_{2}\left(g_{2} n^{\prime} h g_{0}^{\prime}\right) \overline{f_{2}\left(g_{2} h^{\prime} g_{0}\right)} \\
& \times f_{0}\left(g_{0}^{\prime}\right) \overline{f_{0}\left(g_{0}\right) \omega_{\psi}\left(h g_{0}^{\prime}\right) \phi(0)} \omega_{\psi}\left(h^{\prime} g_{0}\right) \phi(0) d g_{0} d g_{0}^{\prime} d h d h^{\prime} d n^{\prime} d g_{2}
\end{aligned}
$$

where $L+F$ embeds in $H \times H$ diagonally.
Finally we decompose the integral over G_{2} as

$$
\int_{G_{2} /\left(N_{r-1,-\infty} \rtimes(L+F)\right)} \int_{N_{r-1,-\infty}} \int_{L+F} .
$$

We conclude that

$$
Q=\int_{G_{2} /\left(N_{r-1,-\infty} \rtimes(L+F)\right)}\left|\int_{N_{r-1,-\infty}} \int_{H} \int_{G_{0}} f_{2}\left(g_{2} n h g_{0}\right) f_{0}\left(g_{0}\right) \overline{\omega_{\psi, \mu}\left(h g_{0}\right) \phi(0)} d g_{0} d h d n\right|^{2} d g_{2} \geqslant 0 .
$$

We have thus proved (3.4.2) and, hence, Proposition 2.2.2.

3.5 Regularization via stable unipotent integral

In this subsection, we give an alternative but equivalent way to define the linear functional α when F is non-archimedean following [LM15a, Liu16]. This definition is better for the unramified computation and is valid for nontempered representations. In this subsection, F is always assumed to be non-archimedean.

Let N be a unipotent group over F and f a smooth function on N. We say that f is compactly supported on average if there are compact subsets U and U^{\prime} of N, such that $\mathrm{L}\left(\delta_{U^{\prime}}\right) \mathrm{R}\left(\delta_{U}\right) f$ is compactly supported. Here δ_{U} stands for the Dirac measure on U, i.e. $\delta_{U}=(\operatorname{vol} U)^{-1} \mathbf{1}_{U}$, and

$$
\mathrm{L}\left(\delta_{U^{\prime}}\right) \mathrm{R}\left(\delta_{U}\right) f(n)=\int_{N} \int_{N} \delta_{U^{\prime}}\left(u^{\prime}\right) \delta_{U}(u) f\left(u^{\prime} n u\right) d u^{\prime} d u
$$

If f is compactly supported on average, we then define

$$
\int_{N}^{\mathrm{st}} f(n) d n:=\int_{N} \mathrm{~L}\left(\delta_{U^{\prime}}\right) \mathrm{R}\left(\delta_{U}\right) f(n) d n
$$

Refined global Gan-Gross-Prasad conjecture

This is called the stable integral of f on N. The definition is independent of the choice of U and U^{\prime}.

We denote temporarily by G a reductive group over F. Let $P_{\min }=M_{\min } N_{\min }$ be a fixed minimal parabolic subgroup of G. Let $P=M N \supset P_{\min }$ be a parabolic subgroup of G. Let Ψ be a generic character of N, i.e. the stabilizer of Ψ in $M_{\min }$ is the center of $M_{\min }$. Let π be an irreducible admissible representation of G and Φ a matrix coefficient of π. Then we have the following result.

Proposition 3.5.1 [Liu16, Proposition 3.3]. The function $\left.\Phi\right|_{N_{P}} \cdot \Psi$ is compactly supported on average.

Now let $G=\operatorname{Mp}(2 n)$. Then Proposition 3.5.1 still holds. The same proof as in [Liu16, Proposition 3.3] goes through as it uses only the Bruhat decomposition and Jacquet's subrepresentation theorem, which are valid for G.

Now we retain the notation G_{0}, G_{1}, G_{2}, etc. Let Φ be a matrix coefficient on G_{2} (respectively $\widetilde{G_{2}}$). Define

$$
\mathcal{F}_{\psi}^{\mathrm{st}} \Phi(g)=\int_{N_{r-1}}^{\mathrm{st}} \Phi(g n) \overline{\psi_{r-1}(n)} d n
$$

which is a function on G_{2} (respectively $\widetilde{G_{2}}$). This definition makes sense because of Proposition 3.5.1.

Lemma 3.5.2. Assume that Φ is a matrix coefficient of a tempered representation of G_{2} (respectively $\widetilde{G_{2}}$). Then

$$
\mathcal{F}_{\psi}^{\text {st }} \Phi\left(h g_{0}\right)=\mathcal{F}_{\psi} \Phi\left(h g_{0}\right), \quad h \in H, g_{0} \in G_{0},\left(\text { respectively } g_{0} \in \widetilde{G_{0}}\right) .
$$

Proof. By definition,

$$
\mathcal{F}_{\psi}^{\mathrm{st}} \Phi_{2}\left(h g_{0}\right)=\int_{N_{r-1}}\left((\operatorname{vol} U)^{-1} \int_{U} \Phi\left(u n h g_{0}\right) \overline{\psi_{r-1}(u n)} d u\right) d n
$$

where U is an open compact set of N_{r-1}. The inner integral, as a function of n, is compactly supported. Therefore, we may take a sufficiently large γ, such that $N_{r-1, \gamma}$ contains U and the support of the inner integral (as a function of n) and that

$$
\mathcal{F}_{\psi} \Phi_{2}\left(h g_{0}\right)=\int_{N_{r-1, \gamma}} \Phi_{2}\left(n h g_{0}\right) \overline{\psi_{r-1}(n)} d n .
$$

It follows that

$$
\begin{aligned}
\mathcal{F}_{\psi}^{\mathrm{st}} \Phi_{2}\left(h g_{0}\right) & =\int_{N_{r-1, \gamma}}(\operatorname{vol} U)^{-1} \int_{U} \Phi\left(u n h g_{0}\right) \overline{\psi_{r-1}(u n)} d u d n, \\
& =\int_{N_{r-1, r}} \Phi\left(n h g_{0}\right) \overline{\psi_{r-1}(n)} d n \times(\operatorname{vol} U)^{-1} \int_{U} d u \\
& =\mathcal{F}_{\psi} \Phi_{2}\left(h g_{0}\right),
\end{aligned}
$$

where in the second equality, we have made a change of variable $n \mapsto u^{-1} n$.
Thanks to Lemma 3.5.2, if F is non-archimedean, then we may use $\mathcal{F}_{\psi}^{\text {st }}$ instead of \mathcal{F}_{ψ} in the definition of the local linear form α. We will not distinguish $\mathcal{F}_{\psi}^{\text {st }}$ and \mathcal{F}_{ψ} from now on and write just \mathcal{F}_{ψ}.

H. XUE

4. Unramified computations

In this section, we assume the conditions prior to Proposition 2.2.3. In particular, F is a nonarchimedean local field of residue characteristic different from two. The argument is mostly adapted from [Liu16], except that at the end we use a different trick, which avoids the use of the explicit formulae of the Whittkaer-Shintani functions as in [Liu16, Appendix]. Some of the arguments which are identical to [Liu16] are only sketched.

4.1 Setup

For $i=0,1,2$, let $B_{i}=P_{m} \cap G_{i}=T_{i} U_{i}$ be the upper triangular Borel subgroup of G_{i} where T_{i} is the diagonal maximal torus of G_{i}. We have a hyperspecial subgroup $K_{i}=\operatorname{Sp}\left(W_{i}\right)\left(\mathfrak{o}_{F}\right)$ of $\operatorname{Sp}\left(W_{i}\right)$. Recall that the twofold cover $\widetilde{G_{i}} \rightarrow G_{i}$ splits uniquely over K_{i}. We can thus view K_{i} as a subgroup of $\widetilde{G_{i}}$. Let Ξ (respectively ξ) be an unramified character of T_{2} (respectively T_{0}). In the case Sp , we consider the unramified principal series $\pi_{2}=I(\Xi)$ of G_{2} and $\pi_{0}=I(\xi)$ of $\widetilde{G_{0}}$. In the case Mp, we consider the unramified principal series $\pi_{2}=I(\Xi)$ of $\widetilde{G_{2}}$ and $\pi_{0}=I(\xi)$ of G_{0}. Note that the unramified principal series representation of the metaplectic group depends on the additive character ψ, even though this is not reflected in the notation. We frequently identify Ξ with an element in \mathbb{C}^{m} which we also denote by $\Xi=\left(\Xi_{1}, \ldots, \Xi_{m}\right)$, the correspondence being given by

$$
\Xi\left(\operatorname{diag}\left[a_{m}, \ldots, a_{1}, a_{1}^{-1}, \ldots, a_{m}^{-1}\right]\right)=\left|a_{1}\right|^{\Xi_{1}} \cdots\left|a_{m}\right|^{\Xi_{m}}
$$

Similarly we identify ξ with an element in \mathbb{C}^{n}. The contragredient of π_{2} (respectively π_{0}) is $I\left(\Xi^{-1}\right)$ (respectively $I\left(\xi^{-1}\right)$). Let $f_{\Xi} \in I(\Xi), f_{\Xi-1} \in I\left(\Xi^{-1}\right)$ (respectively $f_{\xi} \in I(\xi), f_{\xi^{-1}} \in I\left(\xi^{-1}\right)$) be the K_{2}-fixed (respectively K_{0}-fixed) elements with $f_{\Xi}(1)=f_{\Xi-1}(1)=1$ (respectively $f_{\xi}(1)=$ $\left.f_{\xi^{-1}}(1)=1\right)$. Let

$$
\begin{gathered}
\Phi_{\Xi}\left(g_{2}\right)=\int_{K_{2}} f_{\Xi}\left(k_{2} g_{2}\right) d k_{2}, \quad \Phi_{\xi}\left(g_{0}\right)=\int_{K_{0}} f_{\xi}\left(k_{0} g_{0}\right) d k_{0} \\
\Phi_{\phi}\left(h g_{0}\right)=\int_{L\left(\mathfrak{o}_{F}\right)} \omega_{\psi}\left(h g_{0}\right) \mathbf{1}_{L^{*}\left(\mathfrak{o}_{F}\right)}(x) d x
\end{gathered}
$$

and

$$
I\left(g_{2}, \Xi, \xi, \psi\right)=\int_{G_{0}} \int_{H} \mathcal{F}_{\psi} \Phi_{\Xi}\left(g_{2}^{-1} h g_{0}\right) \Phi_{\xi}\left(g_{0}\right) \overline{\Phi_{\phi}\left(h g_{0}\right)} d h d g_{0}
$$

Then $\alpha\left(f_{\Xi}, f_{\Xi^{-1}}, f_{\xi}, f_{\xi^{-1}}, \phi, \phi\right)=I(1, \Xi, \xi, \psi)$.
Let $J=H \rtimes G_{0}$ and $\widetilde{J}=H \rtimes \widetilde{G_{0}}$. We define the Borel subgroup B_{J} (respectively $B_{\widetilde{J}}$) of J (respectively \widetilde{J}) as a subgroup of J (respectively \widetilde{J}) consisting of elements of the form $h b_{0}$ where $b_{0} \in B_{0}$ (respectively $\widetilde{B_{0}}$, the inverse image of B_{0} in $\widetilde{G_{0}}$) and $h \in H$ is of the form $h(l, t), l \in L$. We define the unramified principal series representation of J (respectively \widetilde{J}) as

$$
I^{J}(\xi, \bar{\psi})=\left\{f \in \mathcal{C}^{\infty}(J) \mid f\left(h(l, t) b_{0} h g_{0}\right)=\delta_{B_{J}}^{1 / 2}\left(b_{0}\right) \xi\left(b_{0}\right) \bar{\psi}(t) f\left(h g_{0}\right)\right\}
$$

respectively

$$
I^{\widetilde{J}}(\xi, \bar{\psi})=\left\{f \in \mathcal{C}^{\infty}(\widetilde{J}) \mid f\left(h(l, t) b_{0} h g_{0}\right)=\delta_{B_{J}}^{1 / 2}\left(b_{0}\right) \xi \chi_{\psi}\left(b_{0}\right) \bar{\psi}(t) f\left(h g_{0}\right)\right\}
$$

where $\xi \chi_{\psi}\left(b_{0}\right)=\xi\left(\operatorname{diag}\left[t_{n}, \ldots, t_{1}, t_{1}^{-1}, \ldots, t_{n}^{-1}\right]\right) \chi_{\psi}\left(t_{1} \cdots t_{n}\right)$ and $t_{n}, \ldots, t_{1}, t_{1}^{-1}, \ldots, t_{n}^{-1}$ are diagonal entries of b_{0}.

Refined global Gan-Gross-Prasad conjecture

The group J (respectively \widetilde{J}) acts on $I^{J}(\xi, \bar{\psi})$ (respectively $I^{\widetilde{J}}(\xi, \bar{\psi})$) via the right translation. Let $K_{J}=J \cap K_{1}$. There is a canonical J (respectively \widetilde{J})-invariant pairing given by

$$
\mathcal{B}_{J}\left(f, f^{\vee}\right)=\int_{L^{*}} \int_{K_{0}} f\left(h\left(l^{*}, 0\right) k_{0}\right) f^{\vee}\left(h\left(l^{*}, 0\right) k_{0}\right) d k_{0} d l^{*}
$$

where $f \in I^{J}(\xi, \bar{\psi}), f^{\vee} \in I^{J}\left(\xi^{-1}, \psi\right)$ (respectively $\left.f \in I^{\widetilde{J}}(\xi, \bar{\psi}), f^{\vee} \in I^{\widetilde{J}}\left(\xi^{-1}, \psi\right)\right)$.
In the case Mp , there is a canonical inner product preserving isomorphism

$$
\omega_{\bar{\psi}} \otimes I(\xi) \rightarrow I^{\widetilde{J}}(\xi, \bar{\psi}), \quad \phi \otimes f_{\xi} \rightarrow f_{\xi, \bar{\psi}}
$$

where $f_{\xi, \bar{\psi}}\left(h g_{0}\right)=\omega_{\bar{\psi}}\left(h g_{0}\right) \phi(0) f_{\xi}\left(g_{0}\right), h \in H$ and $g_{0} \in \widetilde{G_{0}}$. In the case Sp, there is a canonical inner product preserving isomorphism

$$
\omega_{\bar{\psi}} \otimes I(\xi) \rightarrow I^{J}(\xi, \bar{\psi}), \quad \phi \otimes f_{\xi} \rightarrow f_{\xi, \bar{\psi}}
$$

where $f_{\xi, \bar{\psi}}\left(h g_{0}\right)=\omega_{\bar{\psi}}\left(h \iota\left(g_{0}\right)\right) \phi(0) f_{\xi}\left(\iota\left(g_{0}\right)\right)$. Analogous isomorphism also holds in the case Mp.
For the ease of the exposition, we slightly modify our notation in the case Mp for the rest of this section. For $i=0,1,2$, we put $G_{i}=\mathrm{Mp}\left(W_{i}\right)$ and B_{i} the standard Borel subgroup of G_{i}. Denote by $J=H \rtimes \operatorname{Mp}\left(W_{0}\right)$, which is a subgroup of G_{1}, and B_{J} its Borel subgroup. We denote by $K_{i}=\operatorname{Sp}\left(W_{i}\right)\left(\mathfrak{o}_{F}\right)$ a hyperspecial maximal subgroup of $\operatorname{Sp}\left(W_{i}\right)$. The metaplectic cover $\operatorname{Mp}\left(W_{i}\right) \rightarrow \operatorname{Sp}\left(W_{i}\right)$ splits canonically over K_{i}, so we view K_{i} as a compact (but not maximal) subgroup of G_{i} and an element in K_{i} is naturally viewed as an element in G_{i}. Let $K_{J}=K_{1} \cap J$. The subgroup $P_{i}=M_{i} N_{i}(i=1, \ldots, r-1)$ is a parabolic subgroup of $\operatorname{Sp}\left(W_{2}\right)$ as before. The metaplectic double cover splits canonically over N_{i}, so we consider N_{i} as subgroups of G_{2}. By the Weyl group of $\operatorname{Mp}\left(W_{i}\right)$, we mean the Weyl group of $\operatorname{Sp}\left(W_{i}\right)$. We let

$$
w_{2, \text { long }}=\left(\begin{array}{cc}
& \mathbf{w}_{m} \\
-\mathbf{w}_{m} &
\end{array}\right), \quad w_{1, \text { long }}=\left(\begin{array}{cc}
& \mathbf{w}_{n+1} \\
-\mathbf{w}_{n+1} &
\end{array}\right), \quad w_{0, \text { long }}=\left(\begin{array}{cc}
& \mathbf{w}_{n} \\
-\mathbf{w}_{n} &
\end{array}\right)
$$

be representatives of the longest elements in the Weyl groups $W_{G_{2}}, W_{G_{1}}$ and $W_{G_{0}}$, respectively. They are viewed as elements in G_{2}, G_{1} and G_{0}, respectively.

For $\left(\Xi_{1}, \ldots, \Xi_{m}\right) \in \mathbb{C}^{m}$ and $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}$, we denote by Ξ and ξ the genuine character of B_{2} and B_{0}, respectively, defined by

$$
\begin{aligned}
\Xi\left(\left(\operatorname{diag}\left[t_{m}, \ldots, t_{1}, t_{1}^{-1}, \ldots, t_{m}^{-1}\right], \epsilon\right)\right) & =\epsilon \cdot\left(\chi_{\psi} \Xi_{1}\right)\left(t_{1}\right) \cdots\left(\chi_{\psi} \Xi_{m}\right)\left(t_{m}\right) \\
\xi\left(\left(\operatorname{diag}\left[t_{n}, \ldots, t_{1}, t_{1}^{-1}, \ldots, t_{n}^{-1}\right], \epsilon\right)\right) & =\epsilon \cdot\left(\chi_{\psi} \xi_{1}\right)\left(t_{1}\right) \cdots\left(\chi_{\psi} \xi_{n}\right)\left(t_{n}\right)
\end{aligned}
$$

We have the unramified principal series representation $I(\Xi)$ of G_{2} and $I(\xi, \bar{\psi})$ of J. We let $f_{\xi, \bar{\psi}}$ be the K_{J} fixed element in $I(\xi, \bar{\psi})$ such that $f_{\xi, \bar{\psi}}(1)=1$. We will need to integrate over $\operatorname{Mp}\left(W_{0}\right)$. For this, we pick a measure $d x$ on $\operatorname{Mp}\left(W_{0}\right)$, such that for any $f \in \mathcal{C}_{c}^{\infty}\left(\operatorname{Sp}\left(W_{0}\right)\right)$, we have $\int_{\operatorname{Sp}\left(W_{0}\right)} f(g) d g=\int_{\operatorname{Mp}\left(W_{0}\right)} f(x) d x$. When integrating over K_{i} 's or K_{J}, we always use the measure so that the volume of the domain of the integration is one.

With this modification of notation, the integral $I\left(g_{2}, \Xi, \xi, \psi\right)$ in both cases Mp and Sp can be written as

$$
I\left(g_{2}, \Xi, \xi, \psi\right)=\int_{J} \int_{K_{J}} \mathcal{F}_{\psi} \Phi_{\Xi}\left(g_{2}^{-1} g_{J}\right) f_{\xi, \bar{\psi}}\left(k_{J} g_{J}\right) d k_{J} d g_{J}
$$

H. Xue

4.2 Reduction steps: $r \geqslant 1$

We distinguish two cases: $r=0$ and $r \geqslant 1$. We treat the case $r \geqslant 1$ first.
Let $\dot{w}=w_{1, \text { long }}^{-1} w_{2, \text { long }}$ be a representative of the longest element in $W_{G_{1}} \backslash W_{G_{2}}$.
Lemma 4.2.1. If $g_{2} \in G_{2}$ and $g_{J} \in J$, then

$$
\mathcal{F}_{\psi} \Phi_{\Xi}\left(g_{2}^{-1} g_{J}\right)=\mathbf{w}^{-1} \int_{K_{1}} \int_{N_{r-1}}^{\mathrm{st}} \mathcal{F}_{\psi}\left(\pi_{2}\left(g_{J}\right) f_{\Xi}\right)\left(k_{1} \dot{w} n\right)\left(\pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi-1}\right)\left(k_{1} \dot{w} n\right) d n d k_{1},
$$

where

$$
\mathbf{w}=\int_{N_{r-1}} f_{\Xi}(\dot{w} n) f_{\Xi-1}(\dot{w} n) d n=\frac{\Delta_{T_{2}}}{\Delta_{G_{2}}}\left(\frac{\Delta_{T_{1}}}{\Delta_{G_{1}}}\right)^{-1} .
$$

Proof. By definition,

$$
\begin{aligned}
\mathcal{F}_{\psi} \Phi_{\Xi}\left(g_{2}^{-1} g_{J}\right) & =\int_{N_{r-1}}^{\mathrm{st}} \mathcal{B}_{\pi_{2}}\left(\pi_{2}\left(g_{2}^{-1} g_{J} u\right) f_{\Xi}, f_{\Xi-1}\right) \psi(u)^{-1} d u \\
& =\int_{N_{r-1}}^{\mathrm{st}} \mathcal{B}_{\pi_{2}}\left(\pi_{2}\left(g_{J} u\right) f_{\Xi}, \pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi-1}\right) \psi(u)^{-1} d u .
\end{aligned}
$$

By [Liu16, Lemma 3.2] (it is valid also for metaplectic groups since the Bruhat decomposition is valid for metaplectic groups), there is an open compact subgroup U of N_{r-1}, such that $\left(\pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi-1}\right)^{\circ}=\mathrm{R}\left(\delta_{U} \psi\right)\left(\pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi-1}\right)$ and $\left(\pi_{2}\left(g_{2}\right) f_{\Xi}\right)^{\circ}=\mathrm{R}\left(\delta_{U} \psi\right)\left(\pi_{2}\left(g_{2}\right) f_{\Xi}\right)$ are supported in $B_{2} \dot{w} P_{r-1}$. Then

$$
\mathcal{F}_{\psi} \Phi_{\Xi}\left(g_{2}^{-1} g_{J}\right)=\int_{N_{r-1}} \mathcal{B}_{\pi_{2}}\left(\pi_{2}(u)\left(\pi_{2}\left(g_{J}\right) f_{\Xi}\right)^{\circ},\left(\pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi-1}\right)^{\circ}\right) \psi(u)^{-1} d u
$$

We use the following realization of $\mathcal{B}_{\pi_{2}}$:

$$
\mathcal{B}_{\pi_{2}}\left(\varphi, \varphi^{\vee}\right)=\mathbf{w}^{-1} \int_{K_{1}} \int_{N_{r-1}}^{\mathrm{st}} \varphi\left(k_{1} \dot{w} n\right) \varphi^{\vee}\left(k_{1} \dot{w} n\right) d n d k_{1},
$$

where

$$
\mathbf{w}=\int_{N_{r-1}} f_{\Xi}(\dot{w} n) f_{\Xi-1}(\dot{w} n) d n=\frac{\Delta_{T_{2}}}{\Delta_{G_{2}}}\left(\frac{\Delta_{T_{1}}}{\Delta_{G_{1}}}\right)^{-1}
$$

In fact, the pairing is G_{2} invariant since $B_{2} K_{1} \dot{w} N_{r-1}$ is an open subset of G_{2}. The evaluation of \mathbf{w} is as follows. Denote temporarily by $f_{i}(i=1,2)$ the function on $\operatorname{Sp}\left(W_{i}\right)$ which satisfies $\left.f_{i}\right|_{K_{i}}=1, f_{i}(b g)=\delta_{i}(b) f_{i}(g)$ for all $b \in B_{i}$ where B_{i} is the Borel subgroup of $\operatorname{Sp}\left(W_{i}\right)$ and δ_{i} is the modulus character of B_{i}. Define a function f_{1}^{\prime} on $\operatorname{Sp}\left(W_{1}\right)$ by

$$
f_{1}^{\prime}(g)=\int_{N_{r-1}} f_{2}(\dot{w} n g) d n
$$

Then $\mathbf{w}=f_{1}^{\prime}(1)$. Since $f_{1}^{\prime}(b g)=\delta_{1}(b) f_{1}^{\prime}(g)$ and $\left.f_{1}^{\prime}\right|_{K_{1}}$ is a constant, it follows that $f_{1}^{\prime}=\mathbf{w} f_{1}$. Therefore,

$$
\int_{N_{m} \cap \operatorname{Sp}\left(W_{1}\right)} f_{1}^{\prime}\left(w_{1, \text { long } n)} d n=\mathbf{w} \int_{N_{m} \cap \operatorname{Sp}\left(W_{1}\right)} f_{1}\left(w_{1, \text { long }} n\right) d n .\right.
$$

The left-hand side equals

$$
\int_{N_{m}} f_{2}\left(w_{2, \text { long }} n\right) d n
$$

Refined global Gan-Gross-Prasad conjecture

by the definition of f_{1}^{\prime}. It follows from [Gro97, Proposition 4.7] that

$$
\int_{N_{m} \cap \mathrm{Sp}\left(W_{i}\right)} f_{i}\left(w_{i, \text { long }} n\right) d n=\frac{\Delta_{T_{i}}}{\Delta_{G_{i}}} .
$$

We then conclude that

$$
\mathbf{w}=\frac{\Delta_{T_{2}}}{\Delta_{G_{2}}}\left(\frac{\Delta_{T_{1}}}{\Delta_{G_{1}}}\right)^{-1} .
$$

We continue the computation of $\mathcal{F}_{\psi} \Phi_{\Xi}\left(g_{2}^{-1} g_{J}\right)$. We have
$\mathcal{F}_{\psi} \Phi_{\Xi}\left(g_{2}^{-1} g_{J}\right)=\mathbf{w}^{-1} \int_{N_{r-1}} \int_{K_{1}} \int_{N_{r-1}}\left(\pi_{2}\left(g_{J}\right) f_{\Xi}\right)^{\circ}\left(k_{1} \dot{w} n u\right)\left(\pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi}{ }^{-1}\right)^{\circ}\left(k_{1} \dot{w} n\right) \psi(u)^{-1} d n d k_{1} d u$, where the integrand is compactly supported. It equals

$$
\begin{aligned}
& \mathbf{w}^{-1} \int_{K_{1}} \int_{N_{r-1}} \mathcal{F}_{\psi}\left(\pi_{2}\left(g_{J}\right) f_{\Xi}\right)\left(k_{1} \dot{w} n\right)\left(\pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi-1}\right)^{\circ}\left(k_{1} \dot{w} n\right) d n d k_{1} \\
& \quad=\mathbf{w}^{-1} \int_{K_{1}} \int_{N_{r-1}}^{\mathrm{st}} \mathcal{F}_{\psi}\left(\pi_{2}\left(g_{J}\right) f_{\Xi}\right)\left(k_{1} \dot{w} n\right)\left(\pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi-1}\right)\left(k_{1} \dot{w} n\right) d n d k_{1} .
\end{aligned}
$$

By Lemma 4.2.1, we have
$I\left(g_{2}, \Xi, \xi, \psi\right)=\mathbf{w}^{-1} \int_{J} \int_{K_{1}} \int_{N_{r-1}}^{\mathrm{st}} \int_{K_{J}} \mathcal{F}_{\psi} f_{\Xi}\left(k_{1} \dot{w} n g_{J}\right) \pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi-1}\left(k_{1} \dot{w} n\right) f_{\xi, \bar{\psi}}\left(k_{J} g_{J}\right) d k_{J} d n d k_{1} d g_{J}$.
Let

$$
l_{0}^{*}=(1, \ldots, 1) \in L^{*}, \quad \eta_{1}=w_{1, \operatorname{long}} h\left(l_{0}^{*}, 0\right) \in G_{1}, \quad \eta=\dot{w} \eta_{1} \in G_{2} .
$$

Lemma 4.2.2. The double coset $B_{2} \eta\left(N_{r-1} \rtimes B_{J}\right)$ is open dense in G_{2}.
Proof. This is straightforward to check.
Thanks to this lemma, we can define a function $Y_{\Xi, \xi, \psi}$ on G_{2} with the following properties:
(i) $Y_{\Xi, \xi, \psi}\left(b_{2} g_{2} h(l, t) b_{0} u\right)=\left(\Xi^{-1} \delta_{B_{2}}^{1 / 2}\right)\left(b_{2}\right)\left(\xi \delta_{B_{J}}^{-1 / 2}\right)\left(b_{0}\right) \overline{\psi(t) \psi_{r-1}(u)} Y_{\Xi, \xi, \psi}\left(g_{2}\right)$ for any $b_{2} \in B_{2}, b_{0} \in$ $B_{0}, l \in L$ and $u \in N_{r-1}$;
(ii) the support of $Y_{\Xi, \xi, \psi}$ is $B_{2} \eta\left(N_{r-1} \rtimes B_{J}\right)$;
(iii) $Y_{\Xi, \xi, \psi}(\eta)=1$.

The space of functions that satisfy the first two conditions is one dimensional by Lemma 4.2.2. We have

$$
Y_{\Xi, \xi, \psi}\left(b_{2} \eta h(l, t) b_{0} u\right)=\left(\Xi^{-1} \delta_{2}^{1 / 2}\right)\left(b_{2}\right)\left(\xi \delta_{B_{J}}^{-1 / 2}\right)\left(b_{0}\right) \overline{\psi(t) \psi_{r-1}(u)},
$$

for $b_{2} \in B_{2}, b_{0} \in B_{0}, l \in L$ and $u \in N_{r-1}$. We define a function $T_{\Xi, \xi, \psi}$ on G_{2} as

$$
T_{\Xi, \xi, \psi}\left(g_{2}\right)= \begin{cases}\int_{J} \mathcal{F}_{\psi} f_{\Xi}\left(g_{2} g_{J}\right) f_{\xi, \bar{\psi}}\left(g_{J}\right) d g_{J} & g_{2} \in B_{2} \eta\left(N_{r-1} \rtimes B_{J}\right), \\ 0 & \text { otherwise } .\end{cases}
$$

If the defining integral of $T_{\Xi, \xi, \psi}$ is convergent, then we have

$$
T_{\Xi, \xi, \psi}\left(g_{2}\right)=T_{\Xi, \xi, \psi}(\eta) Y_{\Xi}{ }^{-1}, \xi^{-1}, \psi^{-1}\left(g_{2}\right), \quad g_{2} \in G_{2} .
$$

H. Xue

We assume that the defining integral of $T_{\Xi, \xi, \psi}$ is convergent for the moment. This will be proved later. It follows that

$$
\begin{aligned}
I\left(g_{2},\right. & \Xi, \xi, \psi) \\
& =\mathbf{w}^{-1} \int_{K_{1}} \int_{N_{r-1}}^{\mathrm{st}} \int_{K_{J}} T_{\Xi, \xi, \psi}\left(k_{1} \dot{w} n k_{J}\right) \pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi^{-1}}\left(k_{1} \dot{w} n\right) d k_{J} d n d k_{1} \\
& =\mathbf{w}^{-1} T_{\Xi, \xi, \psi}(\eta) \int_{K_{1}} \int_{N_{r-1}}^{\mathrm{st}} \int_{K_{J}} Y_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}\left(k_{1} \dot{w} n k_{J}\right) \pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi-1}\left(k_{1} \dot{w} n\right) d k_{J} d n d k_{1} .
\end{aligned}
$$

Define

$$
\begin{equation*}
S_{\Xi-1, \xi^{-1}, \psi^{-1}}^{\prime}\left(g_{2}\right)=\mathbf{w}^{-1} \int_{K_{1}} \int_{N_{r-1}}^{\mathrm{st}} \int_{K_{J}} Y_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}\left(k_{1} \dot{w} n k_{J}\right) \pi_{2}^{\vee}\left(g_{2}\right) f_{\Xi^{-1}}\left(k_{1} \dot{w} n\right) d k_{J} d n d k_{1} . \tag{4.2.1}
\end{equation*}
$$

Then we have

$$
I\left(g_{2}, \Xi, \xi, \psi\right)=T_{\Xi, \xi, \psi}(\eta) S_{\Xi-1, \xi^{-1}, \psi^{-1}}^{\prime}\left(g_{2}\right)
$$

4.3 Reduction steps: $r=0$

We now treat the case $r=0$.
The integral we need to compute is

$$
I\left(g_{J}, \Xi, \xi, \psi\right)=\int_{G_{0}} \int_{K_{J}} \int_{K_{0}} f_{\Xi}\left(k_{0} g\right) f_{\xi, \bar{\psi}}\left(k_{J} g_{J}^{-1} g\right) d k_{0} d k_{J} d g .
$$

We define

$$
l_{0}=(1, \ldots, 1) \in L, \quad \eta=w_{0, \text { long }} h\left(l_{0}, 0\right) \in J .
$$

Similar to Lemma 4.2.2, it is straightforward to prove the following lemma.
Lemma 4.3.1. The double coset $B_{J} \eta B_{0}$ is open dense in J.
We define a function $Y_{\Xi, \xi, \psi}$ on J which is supported on $B_{J} \eta B_{0}$ by

$$
Y_{\Xi, \xi, \psi}\left(h(l, t) b_{0}^{\prime} \eta b_{0}\right)=\left(\xi^{-1} \delta_{J}^{1 / 2}\right)\left(b_{0}^{\prime}\right)\left(\Xi \delta_{0}^{1 / 2}\right)\left(b_{0}\right) \psi(t), \quad b_{0}, b_{0}^{\prime} \in B_{0}, l \in L .
$$

We define the function $T_{\Xi, \xi, \psi}$ on J by

$$
T_{\Xi, \xi, \psi}\left(g_{J}\right)= \begin{cases}\int_{G_{0}} f_{\Xi}(g) f_{\xi, \bar{\psi}}\left(g_{J} g\right) d g & g_{J} \in B_{J} \eta B_{0} \\ 0 & \text { otherwise }\end{cases}
$$

and the function $S_{\Xi, \xi, \psi}$ by

$$
S_{\Xi, \xi, \psi}\left(g_{J}\right)=\int_{K_{J}} \int_{K_{0}} Y_{\Xi, \xi, \psi}\left(k_{J} g_{J}^{-1} k_{0}\right) d k_{0} d k_{J} .
$$

It follows that

$$
I\left(g_{J}, \Xi, \xi, \psi\right)=T_{\Xi, \xi, \psi}(\eta) S_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}\left(g_{J}\right)
$$

Refined global Gan-Gross-Prasad conjecture

We now prove the convergence of the defining integral of $T_{\Xi, \xi, \psi}$ and $S_{\Xi}{ }_{\Xi} 1, \xi^{-1}, \psi^{-1}$. Assume that $r \geqslant 0$.

Lemma 4.3.2. The defining integrals for $T_{\Xi, \xi, \psi}$ and $S_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}$ are absolutely convergent if Ξ^{\prime} and ξ are sufficiently close to the unitary axis, where Ξ^{\prime} is the restriction of Ξ to T_{1}.

Proof. If $r=0$, then it follows from Proposition 2.2 .1 (or its proof, applied to $|\Xi|$ and $|\xi|$) that $I\left(g_{J}, \Xi, \xi, \psi\right)$ is convergent if Ξ and ξ are sufficiently close to the unitary axis. It then follows that for a fixed $g_{J} \in J$, the defining integral of $T_{\Xi, \xi, \psi}\left(k_{J} g_{J} k_{0}\right)$ is convergent for almost all $k_{J} \in K_{J}$ and $k_{0} \in K_{0}$ such that $k_{J} g_{J}^{-1} k_{0} \in B_{J} \eta B_{0}$. By the definition of $T_{\Xi, \xi, \psi}$, its defining integral is convergent for some $g_{J} \in B_{J} \eta B_{0}$ is and only if it is convergent for all $g_{J} \in B_{J} \eta B_{0}$. Therefore, the defining integral of $T_{\Xi, \xi, \psi}(\eta)$ is convergent. This then implies that the defining integral of $S_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}$ is convergent.

The convergence in the case of $r=1$ can be proved similarly. We only need to change the notation at several places.

Now assume that $r \geqslant 2$. By [Liu16, Lemma 3.3], there is an open compact subgroup U of N_{r-1}, such that for all $g_{J} \in J$,

$$
\mathcal{F}_{\psi} f_{\Xi\left(\eta g_{J}\right)=\int_{U} f_{\Xi}\left(\eta g_{J} u\right) \overline{\psi_{r-1}(u)} d u}
$$

Therefore there is a constant C, such that

$$
\left|\mathcal{F}_{\psi} f_{\Xi}\left(\eta g_{J}\right)\right| \leqslant C \times f_{\left|\Xi^{\prime}\right|}\left(\eta_{1} g_{J}\right) .
$$

The lemma in the case $r \geqslant 2$ then follows from the case $r=1$.

4.4 Proof of Proposition 2.2.3

Assume that $r \geqslant 1$. Let $\Xi^{0}=\left(\Xi_{1}, \ldots, \Xi_{n}\right) \in \mathbb{C}^{n}$. Let σ be the unramified principal series representation of G_{0} defined by Ξ^{0}. We let τ be the unramified principal series representation of GL_{r} defined by the unramified characters $\left(\Xi_{n+1}, \ldots, \Xi_{m}\right)$.

Following the notation of [II10] and [Liu16], we shall denote $T_{\Xi, \xi, \psi}(\eta)$ by $\zeta(\Xi, \xi, \psi)$.
Lemma 4.4.1. We have

$$
\zeta(\Xi, \xi, \psi)= \begin{cases}\frac{L_{\psi}\left(\frac{1}{2}, \pi_{0} \times \tau\right)}{L(1, \sigma \times \tau) L\left(1, \tau, \wedge^{2}\right)} \prod_{1 \leqslant i<j \leqslant r} \frac{1}{L\left(1, \Xi_{n+i} \Xi_{n+j}^{-1}\right)} \zeta\left(\Xi^{0}, \xi, \psi\right) & \text { Case } \mathrm{Sp} \\ \frac{L\left(\frac{1}{2}, \pi_{0} \times \tau\right)}{L_{\psi}(1, \sigma \times \tau) L\left(1, \tau, \mathrm{Sym}^{2}\right)} \prod_{1 \leqslant i<j \leqslant r} \frac{1}{L\left(1, \Xi_{n+i} \Xi_{n+j}^{-1}\right)} \zeta\left(\Xi^{0}, \xi, \psi\right) & \text { Case Mp. }\end{cases}
$$

Proof. Recall that $l_{0}^{*}=(1, \ldots, 1) \in L^{*}$. By definition,

$$
\begin{equation*}
\zeta(\Xi, \xi, \psi)=\int_{G_{0}} \int_{H} \int_{N_{r-1}} f_{\Xi}\left(w_{2, \text { long }} h\left(l_{0}^{*}, 0\right) u h g_{0}\right) f_{\xi}\left(g_{0}\right) \overline{\psi_{r-1}(u) \omega_{\psi}\left(h g_{0}\right) \phi(0)} d u d h d g_{0} \tag{4.4.1}
\end{equation*}
$$

We combine the integral over H and N_{r-1} to get an integral over N_{r} and get

$$
\zeta(\Xi, \xi, \psi)=\int_{G_{0}} \int_{N_{r}} f_{\Xi}\left(w_{2, \text { long }} h\left(l_{0}^{*}, 0\right) v g_{0}\right) f_{\xi}\left(g_{0}\right) \overline{\psi_{r-1}(v) \omega_{\psi}\left(\ell(v) g_{0}\right) \phi(0)} d v d g_{0}
$$

H. Xue

where $\ell: N_{r} \rightarrow H$ is the natural projection whose kernel is N_{r-1}. We make a change of variable $v \mapsto h\left(l_{0}^{*}, 0\right)^{-1} v$ and get

$$
\begin{aligned}
& \zeta(\Xi, \xi, \psi)=\int_{G_{0}} \int_{N_{r}} f_{\Xi\left(w_{2, \text { long }} v g_{0}\right) f_{\xi}\left(g_{0}\right) \overline{\psi_{r-1}(v) \omega_{\psi}\left(h\left(l_{0}^{*}, 0\right)^{-1} \ell(v) g_{0}\right) \phi(0)} d v d g_{0}} \\
&=\int_{G_{0}} \int_{N_{r}} f_{\Xi\left(w_{2, \text { long }} g_{0} v\right) f_{\xi}\left(g_{0}\right) \overline{\psi_{r-1}(v) \omega_{\psi}\left(h\left(l_{0}^{*}, 0\right)^{-1} g_{0} \ell(v)\right) \phi(0)} d v d g_{0}} .
\end{aligned}
$$

where in the second equality we made a chance of variable $v \mapsto g_{0} v g_{0}^{-1}$ and used the fact that $\psi_{r-1}\left(g_{0} v g_{0}^{-1}\right)=\psi_{r-1}(v)$.

Let N_{R} be the unipotent radical of the upper triangular Borel subgroup of GL_{r} and

$$
f_{W_{\tau}, \Xi^{0}}(g)=\int_{N_{R}} f_{\Xi}\left(\mathrm{w}_{r} n g\right) \overline{\psi_{r}(n)} d n, \quad g \in G_{2} .
$$

Then by the Casselman-Shalika formula, we have

$$
f_{W_{\tau}, \Xi^{0}}(1)=\prod_{1 \leqslant i<j \leqslant r} \frac{1}{L\left(1, \Xi_{n+i} \Xi_{n+j}^{-1}\right)} .
$$

We can then write the integral (4.4.1) as

$$
\prod_{1 \leqslant i<j \leqslant r} \frac{1}{L\left(1, \Xi_{n+i} \Xi_{n+j}^{-1}\right)} \times \int_{N_{R} \backslash N_{r}} \int_{G_{0}} f_{W_{\tau}, \Xi^{0}}\left(w_{0, \text { long }} g_{0} \ddot{w} v\right) f_{\xi}\left(g_{0}\right) \overline{\omega\left(h\left(l_{0}^{*}, 0\right)^{-1} g_{0} \ell(v)\right) \phi(0)} d v d g_{0}
$$

where $\ddot{w}=\left({ }_{-1_{r}}^{1_{2 n}}{ }^{1_{r}}\right)$. We make a change of variable $g \mapsto w_{0, \text { long }}^{-1} g w_{0, \text { long }}$ and $v \mapsto$ $w_{0, \text { long }}^{-1} v w_{0, \text { long }}$. Then since $w_{0, \text { long }} \in K_{0}$ and $f_{W_{\tau}, \Xi^{0}}, f_{\xi}, \phi$ are all K_{0}-fixed, we conclude that

$$
\begin{aligned}
\zeta(\Xi, \xi, \psi)= & \prod_{1 \leqslant i<j \leqslant r} \frac{1}{L\left(1, \Xi_{n+i} \Xi_{n+j}^{-1}\right)} \\
& \times \int_{N_{R} \backslash N_{r}} \int_{G_{0}} f_{W_{\tau}, \Xi^{0}}(g \ddot{w} v) f_{\xi}\left(w_{0, \text { long }} g\right) \overline{\omega\left(w_{0, \text { long }} h\left(l_{0}^{*}, 0\right) g \ell(v)\right) \phi(0)} d v d g .
\end{aligned}
$$

By definition,

$$
\zeta\left(\Xi^{0}, \xi, \psi\right)=\int_{G_{0}} f_{\Xi^{0}}(g) f_{\xi}\left(w_{0, \text { long }} g\right) \overline{\omega_{\psi}\left(w_{0, \text { long }} h\left(l_{0}^{*}, 0\right) g\right) \phi(0)} d g
$$

We then apply [GJRS11, Theorem 4.3] and [GJRS11, End of §4, (4.7)] to get the lemma. (In the notation of [GJRS11], we apply this to the case $r=0$ and $b_{\nu}\left(f_{\Xi^{0}}, f_{\xi}, \phi\right)=\zeta\left(\Xi^{0}, \xi, \psi\right)$.)

We now compute $S_{\Xi^{-1}, \xi^{-1}, \psi^{-1}}^{\prime}(1)$. Define the projection $\mathrm{pr}_{2}: \mathcal{C}_{c}^{\infty}\left(G_{2}\right) \rightarrow I(\Xi)$ by

$$
\operatorname{pr}_{2}\left(F_{2}\right)\left(g_{2}\right)=\int_{B_{2}} F_{2}\left(b_{2} g_{2}\right)\left(\Xi^{-1} \delta_{2}^{1 / 2}\right)\left(b_{2}\right) d b_{2}
$$

where the measure $d b_{2}$ is the left invariant measure on B_{2} so that $\operatorname{pr}_{2}\left(\mathbf{1}_{K_{2}}\right)=f_{\Xi}$. Then we define

$$
l_{\Xi, \xi, \psi} \in \operatorname{Hom}_{N_{r-1} \rtimes J}\left(I(\Xi), I^{J}\left(\xi^{-1}, \psi\right) \otimes \psi_{r-1}\right)
$$

by

$$
l_{\Xi, \xi, \psi}\left(f_{2}\right)\left(g_{J}\right)=\int_{G_{2}} f_{2}^{\prime}\left(g_{2} g_{J}\right) Y_{\Xi, \xi, \psi}\left(g_{2}\right) d g_{2}
$$

where f_{2}^{\prime} is any element in $\mathcal{C}_{c}^{\infty}\left(G_{2}\right)$ with $\operatorname{pr}_{2}\left(f_{2}^{\prime}\right)=f_{2}$. It is not hard to check that $l_{\Xi, \xi, \psi}$ is independent of the choice of f_{2}^{\prime}. We define

$$
S_{\Xi, \xi, \psi}\left(g_{2}\right)=\mathcal{B}_{I^{J}(\xi, \bar{\psi})}\left(f_{\xi, \bar{\psi}}, l_{\Xi, \xi, \psi}\left(\pi_{2}\left(g_{2}\right) f_{\Xi}\right)\right) .
$$

The defining integral of $l_{\Xi, \xi, \psi}$ is convergent if $Y_{\Xi, \xi, \psi}$ is continuous. By [She14, § 3], whose method is valid for both cases Mp and $\mathrm{Sp}, Y_{\Xi, \xi, \psi}$ is continuous if (Ξ, ξ) lie in some (nonempty) open subset of $\mathbb{C}^{r+s} \times \mathbb{C}^{s}$. We refer the readers to $[$ She14, § 3] for a precise description of this open subset.

Lemma 4.4.2. We have $S_{\Xi, \xi, \psi}^{\prime}=S_{\Xi, \xi, \psi}$.
Proof. We check that $S_{\Xi, \xi, \psi}$ and $S_{\Xi, \xi, \psi}^{\prime}$ agree when $Y_{\Xi, \xi, \psi}$ is continuous. We divide the proof into two steps.
Step 1. The goal is to reduce the lemma to the identity (4.4.2).
Let $\Xi^{1}=\left(\Xi_{1}, \ldots, \Xi_{n+1}\right)$ and $I\left(\Xi^{1}\right)$ be the unramified principal series representation of G_{1} defined by the character Ξ^{1}. Let $\mathcal{F}_{\psi}^{\prime}\left(f_{2}\right)\left(g_{2}\right):=\mathcal{F}_{\psi}\left(f_{2}\right)\left(g_{2} \dot{w}\right)$. Then $\left.\mathcal{F}_{\psi}^{\prime}\left(f_{2}\right)\right|_{G_{1}} \in I\left(\Xi^{1}\right)$. Define the projection $\operatorname{pr}_{1}: \mathcal{C}_{c}^{\infty}\left(G_{1}\right) \rightarrow I\left(\Xi^{1}\right)$ by

$$
\operatorname{pr}_{1}(F)\left(g_{1}\right)=\int_{B_{1}} F\left(b_{1} g_{1}\right)\left(\left(\Xi^{1}\right)^{-1} \delta_{1}^{1 / 2}\right)\left(b_{1}\right) d b_{1},
$$

where the left invariant measure $d b_{1}$ is the one so that $\operatorname{pr}_{1}\left(\mathbf{1}_{K_{1}}\right)=f_{\Xi^{1}}$. Note that pr_{1} is surjective and for any element $f \in I\left(\Xi^{1}\right)$, one can choose F whose support lies in K_{1} such that $\operatorname{pr}_{1}(F)=f$.

Define the intertwining operator $l_{\Xi, \xi, \psi}^{\prime} \in \operatorname{Hom}_{N_{r-1} \rtimes J}\left(I(\Xi), I^{J}\left(\xi^{-1}, \psi\right) \otimes \psi_{r-1}\right)$ by

$$
l_{\Xi, \xi, \psi}^{\prime}\left(f_{2}\right)\left(g_{J}\right)=\int_{G_{1}} f_{2}^{\prime \prime}\left(g_{1} g_{J}\right) Y_{\Xi, \xi, \psi}\left(g_{1} \dot{w}\right) d g_{1}
$$

where $f_{2}^{\prime \prime}$ is any element in $\mathcal{C}_{c}^{\infty}\left(G_{1}\right)$ with $\operatorname{pr}_{1}\left(f_{2}^{\prime \prime}\right)=\left.\mathcal{F}_{\psi}^{\prime}\left(f_{2}\right)\right|_{G_{1}}$.
Fix $g_{2} \in G_{2}$ and let $f_{2}^{\prime \prime} \in \mathcal{C}_{c}^{\infty}\left(G_{1}\right)$ be a smooth function whose support is contained in K_{1} and $\operatorname{pr}_{1}\left(f_{2}^{\prime \prime}\right)=\left.\mathcal{F}_{\psi}^{\prime}\left(\pi_{2}\left(g_{2}\right) f_{\Xi}\right)\right|_{G_{1}}$. Then

$$
\begin{aligned}
S_{\Xi, \xi, \psi}^{\prime}\left(g_{2}\right) & =\mathbf{w}^{-1} \int_{K_{1}} \int_{K_{J}} Y_{\Xi, \xi, \psi}\left(k_{1} \dot{w} k_{J}\right) \mathcal{F}_{\psi}^{\prime}\left(\pi_{2}\left(g_{2}\right) f_{\Xi}\right)\left(k_{1}\right) d k_{J} d k_{1} \\
& =\mathbf{w}^{-1} \int_{K_{1}} \int_{K_{J}} Y_{\Xi, \xi, \psi}\left(k_{1} \dot{w} k_{J}\right) f_{2}^{\prime \prime}\left(k_{1}\right) d k_{J} d k_{1} \\
& =\mathbf{w}^{-1} \int_{K_{1}} \int_{K_{J}} Y_{\Xi, \xi, \psi}\left(k_{1} \dot{w}\right) f_{2}^{\prime \prime}\left(k_{1} k_{J}\right) d k_{J} d k_{1} \\
& =\mathbf{w}^{-1} \mathcal{B}_{I^{J}(\xi, \bar{\psi})}\left(f_{\xi, \bar{\psi}}, l_{\Xi, \xi, \psi}^{\prime}\left(\pi_{2}\left(g_{2}\right) f_{\Xi}\right)\right) .
\end{aligned}
$$

Therefore, in order to prove the lemma, we only need to show $\mathbf{w} \cdot l_{\Xi, \xi, \psi}=l_{\Xi, \xi, \psi}^{\prime}$. We have

$$
\operatorname{dim} \operatorname{Hom}_{N_{r-1} \ngtr J}\left(I(\Xi), I^{J}\left(\xi^{-1}, \psi\right) \otimes \psi_{r-1}\right)=1
$$

H. Xue

This is proved in [She14] in the case Sp , but the proof works equally well in the case Mp as it uses only the decomposition $G_{i}=B_{i} K_{i}$. Therefore, we only have to find a function $\varphi \in I(\Xi)$ such that $l_{\Xi, \xi, \psi}(\varphi)(1) \neq 0$ and show that

$$
\begin{equation*}
l_{\Xi, \xi, \psi}^{\prime}(\varphi)(1) / l_{\Xi, \xi, \psi}(\varphi)(1)=\mathbf{w} \tag{4.4.2}
\end{equation*}
$$

Step 2. Proof of (4.4.2).
Let $K_{i}^{(1)}$ be the Iwahori subgroup of K_{i}. Let $T_{i}^{(0)}=T_{i}\left(\mathfrak{o}_{F}\right)$ and $T_{i}^{(1)}$ be the kernel of the reduction map $T_{i}^{(0)} \rightarrow T_{i}\left(\mathfrak{o}_{F} / \varpi\right)$. Note here that by T_{i}, we mean the diagonal torus of $\operatorname{Sp}\left(W_{i}\right)$ in both cases Sp and Mp . Let \bar{B}_{i} be the opposite Borel subgroup of G_{i} and \bar{N}_{i} be its unipotent radical. Let $N_{i}^{(0)}=N_{i} \cap K_{i}, \bar{N}_{i}^{(1)}=\bar{N}_{i} \cap K_{i}^{(1)}$ and $N_{i}^{(1)}=w_{i, \text { long }}^{-1} \bar{N}_{i}^{(1)} w_{i, \text { long }}$. Let $N_{r-1}^{(1)}=N_{r-1} \cap$ $N_{2}^{(1)}$. Note that in the case Mp, these subgroups of K_{i} are considered as subgroups of G_{i} via the splitting $K_{i} \rightarrow G_{i}$.

Let $\varphi=\operatorname{pr}_{2}\left(\mathbf{1}_{K_{2}^{(1)} \eta}\right) \in \mathcal{C}_{c}^{\infty}\left(G_{2}\right)$. Then

$$
l_{\Xi, \xi, \psi\left(\mathbf{1}_{K_{2}^{(1)} \eta}\right)(1)=\int_{K_{2}^{(1)}} Y_{\Xi, \xi, \psi}\left(k_{2} \eta\right) d k_{2}}
$$

Recall that $l_{0}^{*}=(1, \ldots, 1) \in L^{*}$ and $\eta=w_{2, \text { long }} h\left(l_{0}^{*}, 0\right)$. By the Iwahori decomposition of $K_{2}^{(1)}$, it is not hard to check that

$$
\begin{equation*}
K_{2}^{(1)} \eta=T_{2}^{(0)} N_{2}^{(0)} w_{2, \text { long }} h\left(l_{0}^{*}, 0\right) T_{0}^{(1)} N_{J}^{(1)} N_{r-1}^{(1)} \tag{4.4.3}
\end{equation*}
$$

Therefore, $Y_{\Xi, \xi, \psi}\left(k_{2} \eta\right)=Y_{\Xi, \xi, \psi}(\eta)=1$ for any $k_{2} \in K_{2}^{(1)}$. Thus,

$$
l_{\Xi, \xi, \psi}\left(\mathbf{1}_{K_{2}^{(1)} \eta}\right)(1)=\operatorname{vol} K_{2}^{(1)}
$$

We now compute $l_{\Xi, \xi, \psi}^{\prime}\left(\operatorname{pr}_{2}\left(\mathbf{1}_{K_{2}^{(1)} \eta}\right)\right)(1)$. First

$$
\mathcal{F}_{\psi}^{\prime}\left(\operatorname{pr}_{2}\left(\mathbf{1}_{K_{2}^{(1)} \eta}\right)\right)\left(g_{1}\right)=\int_{N_{r-1}} \int_{B_{2}} \mathbf{1}_{K_{2}^{(1)} \eta}\left(b_{2} g_{1} \dot{w} u\right)\left(\Xi^{-1} \delta_{2}^{1 / 2}\right)\left(b_{2}\right) \overline{\psi_{r-1}(u)} d b_{2} d u, \quad g_{1} \in G_{1} .
$$

By the decomposition (4.4.3) again, for any $u \in N_{r-1}$, if $b_{2} g_{1} \dot{w} u \in K_{2}^{(1)} \eta$, then $u \in N_{r-1}^{(1)}$ and $b_{2} g_{1} \dot{w} \in K_{2}^{(1)} \eta$. Therefore,

$$
\begin{aligned}
\mathcal{F}_{\psi}^{\prime}\left(\operatorname{pr}_{2}\left(\mathbf{1}_{K_{2}^{(1)} \eta}\right)\right)\left(g_{1}\right) & =\operatorname{vol} N_{r-1}^{(1)} \cdot \int_{B_{2}} \mathbf{1}_{K_{2}^{(1)} \eta}\left(b_{2} g_{1} \dot{w}\right)\left(\Xi^{-1} \delta_{2}^{1 / 2}\right)\left(b_{2}\right) d b_{2} \\
& =\operatorname{vol} N_{r-1}^{(1)} \cdot \int_{B_{1}} \mathbf{1}_{K_{2}^{(1)} \eta}\left(b_{1} g_{1} \dot{w}\right)\left(\left(\Xi^{1}\right)^{-1} \delta_{2}^{1 / 2}\right)\left(b_{1}\right) d b_{1} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
l_{\Xi, \xi, \psi}^{\prime}\left(\operatorname{pr}_{2}\left(\mathbf{1}_{K_{2}^{(1)} \eta}\right)\right)(1) & =\operatorname{vol} N_{r-1}^{(1)} \cdot \int_{G_{1}} \mathbf{1}_{K_{2}^{(1)} \eta}\left(g_{1} \dot{w}\right) Y_{\Xi^{1}, \xi, \psi}\left(g_{1} \dot{w}\right) d g_{1} \\
& =\operatorname{vol} N_{r-1}^{(1)} \cdot \operatorname{vol} K_{1}^{(1)}
\end{aligned}
$$

The lemma then follows since $\operatorname{vol} N_{r-1}^{(1)} \cdot \operatorname{vol} K_{1}^{(1)}=\mathbf{w} \operatorname{vol} K_{2}^{(1)}$.

Refined global Gan-Gross-Prasad conjecture

Lemma 4.4.3. We have

$$
S_{\Xi, \xi, \psi}(1)=\frac{\Delta_{G_{2}}}{\Delta_{T_{2}} \Delta_{T_{0}}} \zeta(\Xi, \xi, \psi), \quad S_{\Xi^{0}, \xi, \psi}(1)=\frac{\Delta_{G_{0}}}{\Delta_{T_{0}}^{2}} \zeta\left(\Xi^{0}, \xi, \psi\right) .
$$

Proof. We claim that the restriction of the measure $d g$ to the open subset $B_{2} \eta B_{J} N_{r-1}$ decomposes as

$$
\left.d g\right|_{B_{2} \eta B_{J} N_{r-1}}=\frac{\Delta_{G_{2}}}{\Delta_{T_{2}} \Delta_{T_{0}}} d b_{2} d n_{r-1} d b_{J},
$$

where $d b_{J}=d b_{0} d l d t$ if $b_{J}=b_{0} h(l, t)$. In fact, on the one hand,

$$
\int_{G_{2}} \mathbf{1}_{K_{2}^{(1)} \eta}(g) d g=\left[K_{2}: K_{2}^{(1)}\right]^{-1}=q^{-\operatorname{dim} G_{2}+\operatorname{dim} N_{2}+\operatorname{dim} T_{2}} \frac{\Delta_{G_{2}}}{\Delta_{T_{2}}} .
$$

On the other hand, it follows from (4.4.3) that

$$
\int_{B_{2}} \int_{N_{r-1}} \int_{B_{J}} \mathbf{1}_{K_{2}^{(1)} \eta}\left(b_{2} \eta b_{J} n_{r-1}\right) d b_{2} d n_{r-1} d b_{J}=q^{-\operatorname{dim} T_{0}-\operatorname{dim} N_{J}-\operatorname{dim} N_{r-1}} \Delta_{T_{0}} .
$$

The claim then follows. Therefore,

$$
l_{\Xi, \xi, \psi}\left(f_{\Xi}\right)\left(g_{J}\right)=\frac{\Delta_{G_{2}}}{\Delta_{T_{2}} \Delta_{T_{0}}} \int_{B_{J}} \int_{N_{r-1}} f_{\Xi}\left(\eta b_{J} n_{r-1} g_{J}\right)\left(\xi \delta_{J}^{-1 / 2}\right)\left(b_{J}\right) \overline{\psi_{r-1}\left(n_{r-1}\right)} d b_{J} d n_{r-1} .
$$

We have

$$
\begin{aligned}
S_{\Xi, \xi, \psi}(1)= & \frac{\Delta_{G_{2}}}{\Delta_{T_{2}} \Delta_{T_{0}}} \int_{L^{*}} \int_{K_{0}} \int_{B_{J}} \int_{N_{r-1}} f_{\Xi}\left(w_{2, \text { long }} h\left(l_{0}^{*}, 0\right) b_{J} n_{r-1} h\left(l^{*}, 0\right) k\right) \\
& \times\left(\xi^{-1} \delta_{J}^{1 / 2}\right)\left(b_{J}\right) \overline{\psi_{r-1}\left(n_{r-1}\right)} f_{\xi, \bar{\psi}}\left(h\left(l^{*}, 0\right) k\right) d n_{r-1} d b_{J} d k d l^{*} .
\end{aligned}
$$

We combine the integration over L, K_{0} and B_{J} as an integral over J and then conclude that

$$
\begin{aligned}
S_{\Xi, \xi, \psi}(1) & =\frac{\Delta_{G_{2}}}{\Delta_{T_{2}} \Delta_{T_{0}}} \int_{J} \int_{N_{r-1}} f_{\Xi}\left(w_{2, \text { long }} h\left(l_{0}^{*}, 0\right) n_{r-1} g_{J}\right) \overline{\psi_{r-1}\left(n_{r-1}\right)} f_{\xi, \bar{\psi}}\left(g_{J}\right) d n_{r-1} d g_{J} \\
& =\frac{\Delta_{G_{2}}}{\Delta_{T_{2}} \Delta_{T_{0}}} \zeta(\Xi, \xi, \psi) .
\end{aligned}
$$

The equality

$$
S_{\Xi^{0}, \xi, \psi}(1)=\frac{\Delta_{G_{0}}}{\Delta_{T_{0}}^{2}} \zeta\left(\Xi^{0}, \xi, \psi\right)
$$

can be proved similarly. In fact,

$$
\left.d g_{J}\right|_{B_{J} \eta B_{0}}=\frac{\Delta_{G_{0}}}{\Delta_{T_{0}}^{2}} d b_{J} d b_{0} .
$$

Therefore,

$$
\begin{aligned}
S_{\Xi^{0}, \xi, \psi}(1) & =\int_{J} \int_{G_{0}} \mathbf{1}_{K_{J}}\left(g_{J}\right) \mathbf{1}_{K_{0}}\left(g_{0}\right) Y_{\Xi^{0}, \xi, \psi}\left(g_{J} g_{0}^{-1}\right) d g_{J} d g_{0} \\
& =\frac{\Delta_{G_{0}}}{\Delta_{T_{0}}^{2}} \int_{G_{0}} \int_{B_{J}} \int_{B_{0}} \mathbf{1}_{K_{J}}\left(b_{J} \eta b_{0} g_{0}\right) \mathbf{1}_{K_{0}}\left(g_{0}\right) Y_{\Xi^{0}, \xi, \psi}\left(b_{J} \eta b_{0}\right) d b_{J} d b_{0} d g_{0} \\
& =\frac{\Delta_{G_{0}}}{\Delta_{T_{0}}^{2}} \zeta\left(\Xi^{0}, \xi, \psi\right) .
\end{aligned}
$$

H. Xue

Proof of Proposition 2.2.3. If $r=0$, then Proposition 2.2.3 can be proved in exactly the same way as [Xue16, Appendix D.3]. We omit the details. See also Lemma 7.2.2.

Assume that $r \geqslant 1$. Suppose that we are in the case Sp . It follows from Lemmas 4.4.1 and 4.4.3 that

$$
\begin{aligned}
I(1, \Xi, \xi, \psi)= & \left(\frac{\Delta_{T_{2}}}{\Delta_{G_{2}}}\right)^{-1}\left(\frac{\Delta_{T_{0}}}{\Delta_{G_{0}}}\right)\left(\frac{L_{\psi}\left(\frac{1}{2}, \pi_{0} \times \tau\right)}{L(1, \sigma \times \tau) L\left(1, \tau, \wedge^{2}\right)} \prod_{1 \leqslant i<j \leqslant r} \frac{1}{L\left(1, \Xi_{n+i} \Xi_{n+j}^{-1}\right)}\right) \\
& \times\left(\frac{L_{\psi}\left(\frac{1}{2}, \pi_{0}^{\vee} \times \tau^{\vee}\right)}{L\left(1, \sigma^{\vee} \times \tau^{\vee}\right) L\left(1, \tau^{\vee}, \wedge^{2}\right)} \prod_{1 \leqslant i<j \leqslant r} \frac{1}{L\left(1, \Xi_{n+i}^{-1} \Xi_{n+j}\right)}\right) I\left(1, \xi, \Xi^{0}, \psi\right) .
\end{aligned}
$$

Proposition 2.2.3 in the case $r \geqslant 1$ is then reduced to the case $r=0$. The case Mp can be proved in the same way. We only need to change notation at all necessary places.

Part II. Compatibility with the Ichino-Ikeda conjecture

The notation in this part of the paper is independent from Part I. We keep the notation and convention from the Introduction. Additional notation will be fixed in each section.

5. Some assumptions and remarks

5.1 Parameters

We will prove that Conjecture $2.3 .1(3)$ is compatible with the Ichino-Ikeda conjecture [II10, Conjecture 2.1]. The most subtle part is the appearance of the size of the centralizer of the global L-parameters in the formula. To address this issue, of course, one has to assume that the Langlands correspondence exists and satisfies some expected properties. We begin by setting down the precise hypotheses that we require. We remark that for orthogonal groups and symplectic groups, they follow from the work of Arthur [Art13] and the recent work of Atobe and Gan [AG16]. For metaplectic groups, they should eventually follow from the on-going work of Wen-Wei Li (e.g. [Li15]).

We first state the hypothesis on the local Langlands correspondences.
Hypothesis (LLC). We assume the Hypotheses (LLC), (Local factors), (Plancherel measures) from [GI14, Appendix C] at all non-archimedean places v of F. Thus [GI14, Theorem C.5] holds if v is non-archimedean. It also holds if v is archimedean by [Pau05].

We note that if v is an archimedean place, then the Hypothesis (LLC) is established by Langlands [Lan89]. Hypothesis (Local factors) is proved in [LR05]. Hypothesis (Plancherel measures) is proved by [Art89]. If v is non-archimedean, then they should follow from [Art13, Theorems 1.5.1, 9.4.1, Conjecture 9.4.2].

Thus, if v is a place of F and π_{v} is an irreducible admissible representation of $G\left(F_{v}\right)$, where $G=\mathrm{SO}(2 n+1)$ (respectively $\mathrm{SO}(2 n)$, respectively $\mathrm{Sp}(2 n)$) gives rise to a $2 n$ (respectively $2 n$, respectively $(2 n+1)$)-dimensional selfdual representation $\Psi_{\pi_{v}}$ of the Weil-Deligne group $\mathrm{WD}\left(F_{v}\right)$ of sign -1 (respectively +1 , respectively +1). We call it the local L-parameter of π_{v}.

Let π_{v} be an irreducible admissible genuine representation of $\operatorname{Mp}(2 n)\left(F_{v}\right)$ and $\Theta_{\psi_{v}}\left(\pi_{v}\right)$ be the restriction to $\mathrm{SO}(V)\left(F_{v}\right)$ of its theta lift to $\mathrm{O}(V)\left(F_{v}\right)$ where V is a $(2 n+1)$-dimensional orthogonal space over F_{v} of discriminant 1. By [GI14, Theorem 1.1], the map $\pi_{v} \mapsto \Theta_{\psi_{v}}\left(\pi_{v}\right)$ gives a bijection between the set of irreducible admissible genuine representations of $\operatorname{Mp}(2 n)\left(F_{v}\right)$ and the union of the sets of irreducible admissible representations of $\operatorname{SO}(V)\left(F_{v}\right)$ where V ranges
over all $(2 n+1)$-dimensional orthogonal spaces over F_{v} of discriminant 1 . This bijection satisfies several expected properties (cf. [GI14, Theorem 1.3] for a list). The local L-parameter of π_{v} is defined to be $\Psi_{\Theta_{\psi_{v}}\left(\pi_{v}\right)}$. Note that the local L-parameter of π_{v} depends on ψ_{v}.

We now turn to the global Langlands correspondences. We shall be concerned only with tempered cuspidal automorphic representations. To avoid mentioning the hypothetical Langlands group L_{F}, we use the following substitute of the global L-parameters following [Art13, § 1.4] and [GGP12, § 25, pp. 103-105].

Let π be an irreducible cuspidal tempered automorphic representation of $G\left(\mathbb{A}_{F}\right)$, where $G=\mathrm{SO}(2 n+1)$ (respectively $\mathrm{SO}(2 n), \mathrm{Sp}(2 n), \mathrm{Mp}(2 n))$. By the global L-parameter of π, we mean the following data:

- a partition $N=N_{1}+\cdots+N_{r}$, where $N=2 n$ (respectively $2 n, 2 n+1,2 n$);
- a collection of pairwisely inequivalent selfdual irreducible cuspidal automorphic representations Π_{i} of $\mathrm{GL}_{N_{i}}\left(\mathbb{A}_{F}\right)$ of sign -1 (respectively $+1,+1,-1$), $i=1, \ldots, r$;
which satisfy the condition that for all places v of $F, \Psi_{\pi_{v}} \simeq \bigoplus_{i=1}^{r} \Psi_{\Pi_{i, v}}$ as representations of $\mathrm{WD}\left(F_{v}\right)$, where $\Psi_{\Pi_{i, v}}$ is an N_{i}-dimensional representation of $\mathrm{WD}\left(F_{v}\right)$ associated to $\Pi_{i, v}$ by the local Langlands correspondences for $\mathrm{GL}_{N_{i}}$ (which is known due to [HT01] and [Hen00]). By [JS81, Theorem 4.4], the global L-parameter of π is unique if it exists. We write formally $\Psi_{\pi}=\boxplus_{i=1}^{r} \Pi_{i}$.

We now state the hypothesis on the global Langlands correspondences.
Hypothesis GLC. The global L-parameter of π exists.
For orthogonal and symplectic groups, a weaker version of this (namely, replacing the requirement 'for all places v ' by 'for almost all places v ') follows from [Art13, Theorems 1.5.2, 9.5.3]. For metaplectic groups, this should follow from the work of Wen-Wei Li.

With this reformulation of the L-parameter of π, we (re-)define the centralizer

$$
S_{\pi}=S_{\Psi_{\pi}}=\left\{\left(a_{i}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{r} \mid a_{1}^{N_{1}} \cdots a_{r}^{N_{r}}=1\right\} .
$$

From now on, when we speak of the global L-parameters and their centralizers, we always mean the one defined here.

We end this subsection by some discussions on the automorphic representations on the even orthogonal groups. Suppose that π is an irreducible cuspidal tempered automorphic representation of $\mathrm{O}(2 n)\left(\mathbb{A}_{F}\right)$. We are interested in the restriction $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$. Here by $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$, we mean the following. Suppose that π is realized on V, which is a subspace of the cuspidal automorphic spectrum of $\mathrm{O}(2 n)\left(\mathbb{A}_{F}\right)$. Let $V^{0}=\left\{\left.f\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)} \mid f \in V\right\}$. Then $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$ stands for the natural action of $\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)$ on V^{0}. We summarize some recent results of Atobe and Gan [AG16] as the following Hypothesis O.

Hypothesis O. Each tempered automorphic representation π appears with multiplicity one in the discrete spectrum of $\mathrm{O}(2 n)\left(\mathbb{A}_{F}\right)$. The following three cases exhaust all possibilities of $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$.
(i) We have that $\left.\pi\right|_{\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)}$ is irreducible and appears with multiplicity one in the discrete spectrum of $\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)$.
(ii) We have that $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$ is irreducible and appears with multiplicity two in the discrete spectrum of $\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)$. In this case, there is an automorphic representation π^{\prime} of $\mathrm{O}(2 n)\left(\mathbb{A}_{F}\right)$ such that $\pi \neq \pi^{\prime}$ and $\left.\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)} \oplus \pi^{\prime}\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$ is the $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$-isotypic component of the discrete spectrum of $\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)$. Note that π^{\prime} is not uniquely determined.

H. Xue

(iii) We have $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}=\pi^{+} \oplus \pi^{-}$where π^{+}and π^{-}are inequivalent automorphic representations of $\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)$. Both π^{+}and π^{-}appear with multiplicity one in the discrete spectrum of $\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)$. Moreover, $\Psi_{\pi^{+}}=\Psi_{\pi^{-}}$.

In each case, let π^{0} be an irreducible component of $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$. Then we define the L parameter Ψ_{π} of π by $\Psi_{\pi}=\Psi_{\pi^{0}}$. Suppose that $\Psi_{\pi}=\Pi_{1} \boxplus \cdots \boxplus \Pi_{r}$ where Π_{i} is an irreducible cuspidal automorphic representation of $\mathrm{GL}_{N_{i}}\left(\mathbb{A}_{F}\right)$. Then in the first (respectively second and third) case (respectively cases), at least one of N_{i} is odd (respectively all N_{i} are even).

Let $\epsilon \in \mathrm{O}(2 n)(F) \backslash \mathrm{SO}(2 n)(F)$. Conjugation by ϵ induces an outer automorphism of order two of $\mathrm{SO}(2 n)$ which does not depend on the choice of the element ϵ. We denote this outer automorphism also by ϵ. If $n \neq 2$, then this is the unique nontrivial outer automorphism of $\mathrm{SO}(2 n)$. For any automorphic representation σ of $\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)$, we let σ^{ϵ} be its twist by ϵ. In the first two cases, $\left(\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}\right)^{\epsilon}=\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$. In the third case, $\left(\pi^{ \pm}\right)^{\epsilon}=\pi^{\mp}$. Here we use ' $=$ ' to indicate that not only the automorphic representations are isomorphic, but the spaces on which they realize are the same.

The automorphic representation π appears with multiplicity one in the discrete spectrum of $\mathrm{O}(2 n)\left(\mathbb{A}_{F}\right)$, so the space on which it realizes is canonical. Suppose that $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)}$ is irreducible and appears with multiplicity two in the discrete spectrum of $\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)$. The restrictions of π and π^{\prime} to $\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)$ are canonical subspaces of the discrete spectrum of $\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)$ and give a canonical decomposition of the $\left.\pi\right|_{\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)^{- \text {-isotypic }}}$ component of the discrete spectrum of $\mathrm{SO}(2 n)\left(\mathbb{A}_{F}\right)$ (we are not able to distinguish the restrictions of π and $\left.\pi^{\prime}\right)$. Moreover, these subspaces are characterized by the fact that they are invariant under the outer twist ϵ. In other words, if π^{0} (as an abstract representation) is an automorphic representation of $\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)$ and appears with multiplicity two in the discrete spectrum of $\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)$, then there are precisely two automorphic realizations V_{1} and V_{2} of π^{0} that are invariant under the outer twist by ϵ. Both V_{1} and V_{2} can be extended to automorphic representations of $\mathrm{O}(2 n)\left(\mathbb{A}_{F}\right)$. Moreover, V_{1} and V_{2} are orthogonal in the discrete spectrum of $\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)$ and $V_{1} \oplus V_{2}$ is the π^{0}-isotypic component of the discrete spectrum of $\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)$.

Finally, assume that $\mathrm{SO}(2 n)$ is quasi-split and π^{0} is an irreducible cuspidal tempered generic automorphic representation of $\operatorname{SO}(2 n)\left(\mathbb{A}_{F}\right)$ which appears with multiplicity two in the discrete spectrum. Suppose that $\Psi_{\pi^{0}}=\Pi_{1} \boxplus \cdots \boxplus \Pi_{r}$. Then (at least conjecturally) the descent construction [GRS11] provides us with an automorphic realization of π^{0} which is invariant under the outer twist ϵ. We refer the reader to [LM15c, §5] for some further discussions on the descent construction.

Convention. We assume the Hypotheses LLC, GLC and O from now on, unless otherwise specified.

5.2 Theta correspondences

We are going to use the Rallis inner product formula in the later sections of this paper. We will not recall the precise form of this formula in various cases, but refer the readers to [Yam11, Yam14] for the formula in the first term range and to [GQT14] for the formula in the second term range.

We now consider the behavior of the L-parameters under theta correspondences.
Lemma 5.2.1. Let V be a $2 n$-dimensional orthogonal space over F and π an irreducible cuspidal tempered automorphic representation of $\mathrm{O}(V)\left(\mathbb{A}_{F}\right)$. Let $\Theta_{\psi}(\pi)$ be its theta lift to $\operatorname{Sp}(2 n)\left(\mathbb{A}_{F}\right)$ with additive character ψ. Suppose that $\Theta_{\psi}(\pi)$ is nonzero and cuspidal. Let $\Psi_{\pi}=\boxplus_{i=1}^{r} \Pi_{i}$ be the L-parameter of π. Then $\Pi_{i} \neq \mathbf{1}$ (the trivial character of \mathbb{A}_{F}^{\times}) for all i.

Proof. Suppose that $\Pi_{i}=\mathbf{1}$ for some i. We may assume that $i=1$. Then by Hypothesis O , $\left.\pi\right|_{\mathrm{SO}(V)\left(\mathbb{A}_{F}\right)}$ is irreducible. We prove that π has a nonzero theta lift to $\operatorname{Sp}(2 n-2)\left(\mathbb{A}_{F}\right)$. The lemma then follows from the tower property of the theta lift [Ral84].

If π has a nonzero theta lift to $\operatorname{Sp}(2 n-2 r)\left(\mathbb{A}_{F}\right)$ for some $r>1$, then by the tower property of the theta lift, π has a nonzero theta lift to $\operatorname{Sp}(2 n-2)\left(\mathbb{A}_{F}\right)$. Thus, we may assume that π does not have a nonzero theta lift to any $\operatorname{Sp}(2 n-2 r)\left(\mathbb{A}_{F}\right)$ for any $r>1$.

We fix a sufficiently large finite set S of places of F which contains all the archimedean places, so that if $v \notin S$, then π (hence, Π_{i}) is unramified. By the Hypotheses LLC and GLC,

$$
L^{S}(s, \pi)=\prod_{i=1}^{r} L^{S}\left(s, \Pi_{i}\right)
$$

where the left-hand side is the standard L-function of π defined by the doubling method and the right-hand side is the standard L-function of Π_{i}. If $i \neq 1$, then $L^{S}\left(s, \Pi_{i}\right)$ is holomorphic and does not vanish at $s=1$ (see [JS76/77]) and $L^{S}(s, \mathbf{1})$ have a simple pole at $s=1$. Therefore, $L^{S}(s, \pi)$ has a simple pole at $s=1$.

Let v be a place of F. By assumption, $\left.\pi_{v}\right|_{\mathrm{SO}(V)\left(F_{v}\right)}$ is irreducible. By [GI14, Theorem C.5], there is an irreducible admissible representation σ of $\operatorname{Sp}(2 n-2)\left(F_{v}\right)$ such that $\pi_{v}=\Theta_{\psi_{v}}(\sigma)$. This means that π_{v} has a nonzero theta lift to $\operatorname{Sp}(2 n-2)\left(F_{v}\right)$.

It then follows from [Yam14, Theorem 10.1] that π has a nonzero theta lift to $\operatorname{Sp}(2 n-2)\left(\mathbb{A}_{F}\right)$. This proves the lemma.

Lemma 5.2.2. Let V be a $2 n+1$ (respectively $2 n$)-dimensional orthogonal space over F and π be an irreducible cuspidal tempered automorphic representation of $\mathrm{O}(V)\left(\mathbb{A}_{F}\right)$. Let $\Theta_{\psi}(\pi)$ be its theta lift to $\operatorname{Mp}(2 n)\left(\mathbb{A}_{F}\right)$ (respectively $\left.\operatorname{Sp}(2 n)\left(\mathbb{A}_{F}\right)\right)$ with additive character ψ. Assume that $\Theta_{\psi}(\pi)$ is cuspidal and nonzero. Then

$$
\Psi_{\Theta_{\psi}(\pi)}=\Psi_{\pi} \otimes \chi_{V}, \quad \text { respectively } \Psi_{\Theta_{\psi}(\pi)}=\left(\Psi_{\pi} \boxplus \mathbf{1}\right) \otimes \chi_{V},
$$

where 1 stands for the trivial character of \mathbb{A}_{F}^{\times}.
Proof. Let v be a place of F. By [GI14, Theorem C.5] and [GS12], we see that

$$
\Psi_{\Theta_{\psi_{v}}\left(\pi_{v}\right)}=\Psi_{\pi_{v}} \otimes \chi_{V, v}, \quad \text { respectively } \Psi_{\Theta_{\psi_{v}}\left(\pi_{v}\right)}=\left(\Psi_{\pi_{v}} \oplus \mathbf{1}_{v}\right) \otimes \chi_{V, v}
$$

By the previous lemma, in the case $\operatorname{dim} V=2 n, \Psi_{\pi}$ does not contain 1 . The lemma then follows from [JS81, Theorem 4.4].

Lemma 5.2.3. Let π be an irreducible cuspidal tempered automorphic representation of $\mathrm{O}(V)\left(\mathbb{A}_{F}\right)$ where V is a $2 n$-dimensional orthogonal space over F. There is a canonical injective map $S_{\pi} \rightarrow S_{\Theta_{\psi}(\pi)}$. It is not bijective if and only if $\Psi_{\pi}=\Pi_{1} \boxplus \cdots \boxplus \Pi_{r}$ where Π_{i} is an irreducible cuspidal automorphic representation of $\mathrm{GL}_{N_{i}}\left(\mathbb{A}_{F}\right)$ with N_{i} being even. In this case, S_{π} is an index two subgroup of $S_{\Theta_{\psi}(\pi)}$.

Proof. Suppose that $\Psi_{\pi}=\boxplus_{i=1}^{r} \Pi_{i}$, where Π_{i} is an irreducible cuspidal automorphic representation of $\mathrm{GL}_{N_{i}}\left(\mathbb{A}_{F}\right)$ and $\sum_{i=1}^{r}=2 n$. By Lemma 5.2.2,

$$
S_{\pi}=\left\{\left(a_{i}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{r} \mid a_{1}^{N_{1}} \cdots a_{r}^{N_{r}}=1\right\}, \quad S_{\Theta_{\psi}(\pi)}=\left\{\left(a_{i}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{r+1} \mid a_{1}^{N_{1}} \cdots a_{r}^{N_{r}} a_{r+1}=1\right\} .
$$

The map $\left(a_{1}, \ldots, a_{r}\right) \mapsto\left(a_{1}, \ldots, a_{r}, 1\right)$ is clearly injective. It is not bijective if and only if there are elements $\left(a_{1}, \ldots, a_{r}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{r}$ so that $a_{1}^{N_{1}} \cdots a_{r}^{N_{r}}=-1$. This is equivalent to that at least one of the N_{i} is odd.

H. Xue

6. The Ichino-Ikeda conjecture for the full orthogonal group

We review in this section the conjecture of Ichino and Ikeda [II10] and extend it to the full orthogonal group. There are minor inaccuracies in the formulation of the conjecture in [II10] when the automorphic representation on the even orthogonal group appears with multiplicity two in the discrete automorphic spectrum. We will take care of this issue in §6.2. The Ichino-Ikeda conjecture for the full orthogonal groups is stated in $\S 6.3$. We will show that it follows from the Ichino-Ikeda conjecture for the special orthogonal groups. The argument is close to [GI11, $\S \S 2,3]$ at various points. We give details on the new difficulties that arise in our situation (mainly due to the failure of multiplicity one in the discrete automorphic spectrum) and only state the result when its proof is identical to that in [GI11].

6.1 Inner products

Let F be a number field and $\left(U, q_{U}\right)$ be an n-dimensional orthogonal group over F. Let $H=\mathrm{O}(U)$ and $H^{0}=\mathrm{SO}(U)$. Recall that there is an exact sequence

$$
1 \rightarrow H^{0} \rightarrow H \rightarrow \mu_{2} \rightarrow 1
$$

We view μ_{2} as an algebraic group over F. We write t for the nonidentity element in $\mu_{2}(F)$ and t_{v} its image in $\mu_{2}\left(F_{v}\right)$ for each place v of F. Note that if n is odd, then we may take $t=-1$. The sequence splits canonically and gives an isomorphism $H \simeq H^{0} \times \mu_{2}$.

Let $d \epsilon_{v}$ be the measure on $\mu_{2}\left(F_{v}\right)$ so that $\operatorname{vol} \mu_{2}\left(F_{v}\right)=1$. Then $d \epsilon=\prod_{v} d \epsilon_{v}$ is the Tamagawa measure of $\mu_{2}\left(\mathbb{A}_{F}\right)$. Let Z be the center of H^{0}. Note that the group Z is trivial unless $n=2$. Let $d h$ and $d h^{0}$ be the Tamagawa measure of $Z\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)$ and $Z\left(\mathbb{A}_{F}\right) \backslash H^{0}\left(\mathbb{A}_{F}\right)$, respectively. Then we have

$$
\int_{Z\left(\mathbb{A}_{F}\right) H(F) \backslash H\left(\mathbb{A}_{F}\right)} f(h) d h=\int_{\mu_{2}(F) \backslash \mu_{2}\left(\mathbb{A}_{F}\right)} \int_{Z\left(\mathbb{A}_{F}\right) H^{0}(F) \backslash H^{0}\left(\mathbb{A}_{F}\right)} f\left(h^{0} \epsilon\right) d h^{0} d \epsilon,
$$

for all $f \in L^{1}\left(Z\left(\mathbb{A}_{F}\right) H(F) \backslash H\left(\mathbb{A}_{F}\right)\right)$.
We fix a decomposition $d h=\prod_{v} d h_{v}$ where $d h_{v}$ is a measure on $H\left(F_{v}\right)$. Let $d h_{v}^{0}=\left.2 d h_{v}\right|_{H^{0}\left(F_{v}\right)}$ be a measure on $H^{0}\left(F_{v}\right)$. Then $d h^{0}=\prod_{v} d h_{v}^{0}$.

Let π be an irreducible cuspidal automorphic representation of $H\left(\mathbb{A}_{F}\right)$. We denote by V the space of automorphic functions on which π is realized. Let $\pi^{0}=\left.\pi\right|_{H^{0}\left(\mathbb{A}_{F}\right)}$ and $V^{0}=\left\{\left.f\right|_{H^{0}\left(\mathbb{A}_{F}\right)} \mid\right.$ $f \in V\}$. Let \mathfrak{S} be the set of places v of F such that $\left.\pi_{v}\right|_{H^{0}\left(F_{v}\right)}$ is reducible. This is also the set of places v of F so that $\pi_{v} \otimes \operatorname{det}_{v} \simeq \pi_{v}$. Let \mathcal{B}_{π} be the Petersson inner product on V given by

$$
\mathcal{B}_{\pi}\left(f, f^{\prime}\right)=\int_{Z\left(\mathbb{A}_{F}\right) H(F) \backslash H\left(\mathbb{A}_{F}\right)} f(h) \overline{f^{\prime}(h)} d h, \quad f, f^{\prime} \in V,
$$

We fix a decomposition $\mathcal{B}_{\pi}=\prod_{v} \mathcal{B}_{\pi_{v}}$ where $\mathcal{B}_{\pi_{v}}$ is an inner product on π_{v}.
We distinguish two cases.
Case I: $\mathfrak{S}=\emptyset$. In this case, π^{0} is irreducible and the restriction to $H^{0}\left(\mathbb{A}_{F}\right)$ as functions induces an isomorphism $V \simeq V^{0}$ as representations of $H^{0}\left(\mathbb{A}_{F}\right)$. Let $\mathcal{B}_{\pi^{0}}$ be the Petersson inner product on V^{0} (defined using the Tamagawa measure on $\left.H^{0}\left(\mathbb{A}_{F}\right)\right)$.

Lemma 6.1.1. For any $f, f^{\prime} \in V$, we have

$$
\mathcal{B}_{\pi^{0}}\left(\left.f\right|_{H^{0}\left(\mathbb{A}_{F}\right)},\left.f^{\prime}\right|_{H^{0}\left(\mathbb{A}_{F}\right)}\right)=2 \mathcal{B}_{\pi}\left(f, f^{\prime}\right) .
$$

Refined global Gan-Gross-Prasad conjecture

Proof. This can be proved in the same way as [GI11, Lemma 2.1].

Case II: $\mathfrak{S} \neq \emptyset$. We fix an isomorphism

$$
V \simeq \underset{S}{\underset{S}{\lim }}\left(\bigotimes_{v \in S} V_{v}\right) \otimes\left(\bigotimes_{v \notin S} \phi_{v}\right),
$$

where V_{v} is the space on which π_{v} is realized and ϕ_{v} is an $H\left(\mathfrak{o}_{F, v}\right)$-invariant vector in V_{v} for $v \notin S$.

If $v \in \mathfrak{S}$, then $\pi_{v} \otimes \operatorname{det}_{v} \not 千 \pi_{v}$ and $\pi_{v}^{0} \simeq \pi_{v}^{+} \oplus \pi_{v}^{-}$where $\pi_{v}^{ \pm}$are irreducible admissible representations of $H^{0}\left(F_{v}\right)$. We have $V_{v}^{0} \simeq V_{v}^{+} \oplus V_{v}^{-}$where V_{v}^{*} is the space on which π_{v}^{*} are realized and $*= \pm$ or 0 . Note that $V_{v}^{-} \simeq \pi_{v}(t) V_{v}^{+}$. For almost all places $v \in \mathfrak{S}$, we have $\phi_{v}=\phi_{v}^{+}+\phi_{v}^{-}$where $\phi_{v}^{ \pm}$is an $H^{0}\left(\mathfrak{o}_{F, v}\right)$-invariant element in $V_{v}^{ \pm}$and $\phi_{v}^{-}=\pi_{v}\left(t_{v}\right) \phi_{v}^{+}$. If $v \notin \mathfrak{S}$, then π_{v}^{0} is an irreducible admissible representation on the space V_{v}.

In this case, by the Hypothesis O , there are two irreducible cuspidal automorphic representations π^{+}and π^{-}so that $\pi^{0} \simeq \pi^{+} \oplus \pi^{-}, \pi^{-} \simeq \pi^{+} \circ \mathrm{Ad} t, V^{0}=V^{+} \oplus V^{-}$where $V^{ \pm}$are the spaces on which $\pi^{ \pm}$are realized. We may label the two irreducible components of π_{v}^{0} for $v \in \mathfrak{S}$ so that

$$
\begin{aligned}
\pi^{ \pm} & \simeq\left(\bigotimes_{v \in \mathfrak{S}} \pi_{v}^{ \pm}\right) \otimes\left(\bigotimes_{v \notin \mathfrak{S}} \pi_{v}^{0}\right), \\
V^{ \pm} & =\underset{S}{\lim }\left(\bigotimes_{\substack{v \in S \\
v \in \mathscr{S}}} V_{v}^{ \pm}\right) \otimes\left(\bigotimes_{\substack{v \in S \\
v \notin \mathfrak{S}}} V_{v}\right) \otimes\left(\bigotimes_{\substack{v \notin S \\
v \in \mathfrak{S}}} \phi_{v}^{ \pm}\right) \otimes\left(\bigotimes_{\substack{v \notin S \\
v \notin \mathfrak{S}}} \phi_{v}\right) .
\end{aligned}
$$

Let $\mathcal{B}_{\pi^{+}}$be the Petersson inner product on V^{+}with a fixed decomposition

$$
\mathcal{B}_{\pi^{+}}=\prod_{v \in \mathfrak{S}} \mathcal{B}_{\pi_{v}^{+}} \prod_{v \notin \mathfrak{S}} \mathcal{B}_{\pi_{v}},
$$

where:

- $\mathcal{B}_{\pi_{v}^{+}}$is an $H^{0}\left(F_{v}\right)$ invariant pairing on V_{v}^{+}if $v \in \mathfrak{S}$ and $\mathcal{B}_{\pi_{v}}$ is an $H\left(F_{v}\right)$ invariant pairing on V_{v} if $v \notin \mathfrak{S}$;
$-\mathcal{B}_{\pi_{v}^{+}}\left(\phi_{v}^{+}, \phi_{v}^{+}\right)=\mathcal{B}_{v}(\phi, \phi)=1$ for almost all v.
If $v \in \mathfrak{S}$, we define an $H^{0}\left(F_{v}\right)$ invariant pairing on V_{v}^{-}by $\mathcal{B}_{v}^{-}\left(\phi_{v}, \phi_{v}\right)=\mathcal{B}_{v}^{+}\left(\pi_{v}\left(t_{v}\right) \phi_{v}\right.$, $\left.\pi_{v}\left(t_{v}\right) \phi_{v}\right)$. Then for almost all v, we have $\mathcal{B}_{v}^{-}\left(\phi_{v}^{-}, \phi_{v}^{-}\right)=1$. We then define an $H\left(F_{v}\right)$ invariant pairing on V_{v} by

$$
\mathcal{B}_{v}^{\natural}\left(\phi_{v}, \phi_{v}\right)= \begin{cases}\frac{1}{2}\left(\mathcal{B}_{v}^{+}\left(\phi_{v}^{+}, \phi_{v}^{+}\right)+\mathcal{B}_{v}^{-}\left(\phi_{v}^{-}, \phi_{v}^{-}\right)\right) & \text {if } v \in \mathfrak{S}, \\ \mathcal{B}_{v}\left(\phi_{v}, \phi_{v}\right) & \text { if } v \notin \mathfrak{S} .\end{cases}
$$

Then for almost all $v, \mathcal{B}_{v}^{\natural}\left(\phi_{v}, \phi_{v}\right)=1$.
Lemma 6.1.2. We have

$$
\mathcal{B}_{\pi}=\prod_{v} \mathcal{B}_{v}^{\natural} .
$$

Proof. This can be proved in the same way as [GI11, Lemma 2.3].

H. Xue

6.2 The Ichino-Ikeda conjecture for special orthogonal groups

We review the Ichino-Ikeda conjecture [II10, Conjecture 2.1] in this subsection. There is a slight inaccuracy in its original formulation in [II10] when the multiplicity of the automorphic representation on the even orthogonal group in the discrete automorphic spectrum is two. We will make some modifications to the conjecture in this case.

Let $n \geqslant 2$ and U_{n+1} and U_{n} be orthogonal spaces of dimension $n+1$ and n with an embedding $U_{n} \subset U_{n+1}$. Let $H_{i}^{0}=\operatorname{SO}\left(U_{i}\right)(i=n, n+1)$. Let $d h$ be the Tamagawa measure on $H_{n}^{0}\left(\mathbb{A}_{F}\right)$ and we fix a decomposition $d h=\prod_{v} d h_{v}$ where $d h_{v}$ is a Haar measure on $H_{n}^{0}\left(F_{v}\right)$ and $\operatorname{vol} H_{n}^{0}\left(\mathfrak{o}_{F, v}\right)=1$ for almost all v.

Let $\pi_{n+1}=\bigotimes_{v} \pi_{n+1, v}$ and $\pi_{n}=\bigotimes_{v} \pi_{n, v}$ be irreducible cuspidal tempered automorphic representations of $H_{n+1}^{0}\left(\mathbb{A}_{F}\right)$ and $H_{n}^{0}\left(\mathbb{A}_{F}\right)$, respectively. Let $V_{n+1}=\bigotimes_{v} V_{n+1, v}$ and $V_{n}=\bigotimes_{v} V_{n, v}$ be the space on which π_{n+1} and π_{n} are realized, respectively. Let $\mathcal{B}_{\pi_{n+1}}$ and $\mathcal{B}_{\pi_{n}}$ be the Petersson inner products on V_{n+1} and V_{n}, respectively. We fix a decomposition

$$
\mathcal{B}_{\pi_{n+1}}=\prod_{v} \mathcal{B}_{\pi_{n+1, v}}, \quad \mathcal{B}_{\pi_{n}}=\prod_{v} \mathcal{B}_{\pi_{n, v}}
$$

where $\mathcal{B}_{\pi_{n+1, v}}$ and $\mathcal{B}_{\pi_{n, v}}$ are inner products on $V_{n+1, v}$ and $V_{n, v}$ respectively.
Let $f_{n+1}=\bigotimes f_{n+1, v}, f_{n+1}^{\prime}=\bigotimes f_{n+1, v}^{\prime} \in V_{n+1}$ and $f_{n}=\bigotimes f_{n, v}, f_{n}^{\prime}=\bigotimes f_{n, v}^{\prime} \in V_{n}$. Define

$$
\mathcal{J}\left(f_{n+1}, f_{n+1}^{\prime}, f_{n}, f_{n}^{\prime}\right)=\int_{H_{n}^{0}(F) \backslash H_{n}^{0}\left(\mathbb{A}_{F}\right)} f_{n+1}(h) f_{n}(h) d h \cdot \int_{H_{n}^{0}(F) \backslash H_{n}^{0}\left(\mathbb{A}_{F}\right)} f_{n+1}^{\prime}(h) f_{n}^{\prime}(h) d h .
$$

For each place v, we define
$\mathcal{J}_{v}\left(f_{n+1, v}, f_{n+1, v}^{\prime}, f_{n, v}, f_{n, v}^{\prime}\right)=\int_{H_{n}^{0}\left(F_{v}\right)} \mathcal{B}_{n+1, v}\left(\pi_{n+1, v}\left(h_{v}\right) f_{n+1, v}, f_{n+1, v}^{\prime}\right) \mathcal{B}_{n, v}\left(\pi_{n, v}\left(h_{v}\right) f_{n, v}, f_{n, v}^{\prime}\right) d h_{v}$.
Let S be a sufficiently large finite set of places of F containing all archimedean places so that if $v \notin S$, then $f_{n+1, v}, f_{n+1, v}^{\prime}$ (respectively $f_{n, v}, f_{n, v}^{\prime}$) are $H_{n+1}^{0}\left(\mathfrak{o}_{F, v}\right)$ (respectively $H_{n}^{0}\left(\mathfrak{o}_{F, v}\right)$) fixed and $\mathcal{B}_{\pi_{n+1, v}}\left(f_{n+1, v}, f_{n+1, v}^{\prime}\right)=\mathcal{B}_{\pi_{n, v}}\left(f_{n, v}, f_{n, v}^{\prime}\right)=1$. In particular, $\pi_{n+1, v}$ and $\pi_{n, v}$ are both unramified if $v \notin S$. Let $\left\{\alpha_{1, v}, \ldots, \alpha_{[(n+1) / 2], v}\right\}$ and $\left\{\beta_{1, v}, \ldots, \beta_{[n / 2], v}\right\}$ be the Satake parameters of $\pi_{n+1, v}$ and $\pi_{n, v}$, respectively. Let

$$
\begin{aligned}
A_{n+1, v} & =\operatorname{diag}\left[\alpha_{1, v}, \ldots, \alpha_{[(n+1) / 2], v}, \alpha_{[(n+1) / 2], v}^{-1}, \ldots, \alpha_{1, v}^{-1}\right] \\
A_{n, v} & =\operatorname{diag}\left[\beta_{1, v}, \ldots, \beta_{[n / 2], v}, \beta_{[n / 2], v}^{-1}, \ldots, \beta_{1, v}^{-1}\right] .
\end{aligned}
$$

Let

$$
L^{S}\left(s, \pi_{n+1} \times \pi_{n}\right)=\prod_{v \notin S} \operatorname{det}\left(1-A_{n+1, v} \otimes A_{n, v} \cdot q_{v}^{-s}\right)^{-1}
$$

be the tensor product L-function and $L^{S}\left(s, \pi_{n+1}, \mathrm{Ad}\right)$ and $L^{S}\left(s, \pi_{n}, \mathrm{Ad}\right)$ be the adjoint L functions.

Conjecture 6.2.1 (Ichino-Ikeda [II10, Conjecture 2.1]). (i) Suppose that π_{n+1} and π_{n} appear with multiplicity one in the discrete spectrum. Then the automorphic realization V_{n+1} (respectively V_{n}) of π_{n+1} (respectively π_{n}) is canonical. We have

$$
\begin{aligned}
\mathcal{J}\left(f_{n+1}, f_{n+1}^{\prime}, f_{n}, f_{n}^{\prime}\right)= & \frac{1}{\left|S_{\pi_{n+1}}\right|\left|S_{\pi_{n}}\right|} \Delta_{H_{n+1}^{0}}^{S} \frac{L^{S}\left(\frac{1}{2}, \pi_{n+1} \times \pi_{n}\right)}{L^{S}\left(1, \pi_{n+1}, \mathrm{Ad}\right) L^{S}\left(1, \pi_{n}, \mathrm{Ad}\right)} \\
& \times \prod_{v \in S} \mathcal{J}_{v}\left(f_{n+1, v}, f_{n+1, v}^{\prime}, f_{n, v}, f_{n, v}^{\prime}\right) .
\end{aligned}
$$

Refined global Gan-Gross-Prasad conjecture

(ii) Suppose that n is odd and π_{n+1} appears with multiplicity two in the discrete spectrum of $H_{n+1}^{0}\left(\mathbb{A}_{F}\right)$. Then the automorphic realization V_{n} of π_{n} is canonical. Let $L_{\pi_{n+1}}^{2}$ be the isotypic component of π_{n+1} in the discrete automorphic spectrum of $H_{n+1}^{0}\left(\mathbb{A}_{F}\right)$. Then there are two possibilities.
(a) The linear form \mathcal{J} is identically zero on $L_{\pi_{n+1}}^{2} \times \mathrm{E}_{\pi_{n+1}}^{2} \times V_{n} \times V_{n}$. This is equivalent to that either $\operatorname{Hom}_{H_{n}^{0}\left(\mathbb{A}_{F}\right)}\left(\pi_{n+1} \otimes \pi_{n}, \mathbb{C}\right)=0$ or $L^{S}\left(\frac{1}{2}, \pi_{n+1} \times \pi_{n}\right)=0$.
(b) There is a unique irreducible subrepresentation V_{n+1} of $L_{\pi_{n+1}}^{2}$ such that it is invariant under the outer automorphism of H_{n+1}^{0} and \mathcal{J} is not identically zero on $V_{n+1} \times V_{n+1} \times V_{n} \times V_{n}$. We have

$$
\begin{aligned}
\mathcal{J}\left(f_{n+1}, f_{n+1}^{\prime}, f_{n}, f_{n}^{\prime}\right)= & \frac{2}{\left|S_{\pi_{n+1}}\right|\left|S_{\pi_{n}}\right|} \Delta_{H_{n+1}^{0}}^{S} \frac{L^{S}\left(\frac{1}{2}, \pi_{n+1} \times \pi_{n}\right)}{L^{S}\left(1, \pi_{n+1}, \mathrm{Ad}\right) L^{S}\left(1, \pi_{n}, \mathrm{Ad}\right)} \\
& \times \prod_{v \in S} \mathcal{I}_{v}\left(f_{n+1, v}, f_{n+1, v}^{\prime}, f_{n, v}, f_{n, v}^{\prime}\right),
\end{aligned}
$$

if $f_{n+1}, f_{n+1}^{\prime} \in V_{n+1}, f_{n}, f_{n}^{\prime} \in V_{n}$. Let $V_{n+1}^{\prime}\left(\neq V_{n+1}\right)$ be the other irreducible subrepresentation of $L_{\pi_{n+1}}^{2}$ that is invariant under the outer automorphism of H_{n+1}^{0}. Then \mathcal{J} is identically zero on $V_{n+1}^{\prime} \times V_{n+1}^{\prime} \times V_{n} \times V_{n}$.
If n is even, then we have a similar statement, with the role of π_{n+1} and π_{n} being switched.
Remark 6.2.2. The same inaccuracy also occurs in [Liu16]. One also needs to modify [Liu16, Conjecture 2.5] in a similar way when the automorphic representation on the even orthogonal group has multiplicity two. In this case, the automorphic realization is required to be invariant under the outer twist and (in the notation of [Liu16]) $1 /\left|S_{\Psi\left(\pi_{2}\right)}\right|\left|S_{\Psi\left(\pi_{0}\right)}\right|$ needs to be replaced by $2 /\left|S_{\Psi\left(\pi_{2}\right)}\right|\left|S_{\Psi\left(\pi_{0}\right)}\right|$.

6.3 The Ichino-Ikeda conjecture for full orthogonal groups

Let U_{n+1} and U_{n} be orthogonal spaces of dimension $n+1$ and n with an embedding $U_{n} \subset U_{n+1}$. Let $H_{i}=\mathrm{O}\left(U_{i}\right)$ and $H_{i}^{0}=\mathrm{SO}\left(U_{i}\right)(i=n, n+1)$. Let $d h$ be the Tamagawa measure on $H_{n}\left(\mathbb{A}_{F}\right)$ and we fix a decomposition $d h=\prod_{v} d h_{v}$ where $d h_{v}$ is a Haar measure on $H_{n}\left(F_{v}\right)$ and vol $H_{n}\left(\mathfrak{o}_{F, v}\right)=1$ for almost all v.

Let $\pi_{n+1}=\bigotimes_{v} \pi_{n+1, v}$ and $\pi_{n}=\bigotimes_{v} \pi_{n, v}$ be irreducible cuspidal tempered automorphic representations of $H_{n+1}\left(\mathbb{A}_{F}\right)$ and $H_{n}\left(\mathbb{A}_{F}\right)$, respectively. Let $V_{n+1}=\bigotimes_{v} V_{n+1, v}$ and $V_{n}=\bigotimes_{v} V_{n, v}$ be the space on which π_{n+1} and π_{n} are realized, respectively. Let $\mathcal{B}_{\pi_{n+1}}$ and $\mathcal{B}_{\pi_{n}}$ be the Petersson inner products on V_{n+1} and V_{n}, respectively. We fix a decomposition

$$
\mathcal{B}_{\pi_{n+1}}=\prod_{v} \mathcal{B}_{\pi_{n+1, v}}, \quad \mathcal{B}_{\pi_{n}}=\prod_{v} \mathcal{B}_{\pi_{n, v}}
$$

where $\mathcal{B}_{\pi_{n+1, v}}$ and $\mathcal{B}_{\pi_{n, v}}$ are inner products on $V_{n+1, v}$ and $V_{n, v}$, respectively.
Let $f_{n+1}=\bigotimes f_{n+1, v} \in V_{n+1}$ and $f_{n}=\bigotimes f_{n, v} \in V_{n}$. Define

$$
\begin{equation*}
\mathcal{I}\left(f_{n+1}, f_{n}\right)=\int_{H_{n}(F) \backslash H_{n}\left(\mathbb{A}_{F}\right)} f_{n+1}(h) f_{n}(h) d h \cdot \overline{\int_{H_{n}(F) \backslash H_{n}\left(\mathbb{A}_{F}\right)} f_{n+1}(h) f_{n}(h) d h} . \tag{6.3.1}
\end{equation*}
$$

For each place v, we define

$$
\begin{equation*}
\mathcal{I}_{v}\left(f_{n+1, v}, f_{n, v}\right)=\int_{H_{n}\left(F_{v}\right)} \mathcal{B}_{n+1, v}\left(\pi_{n+1, v}\left(h_{v}\right) f_{n+1, v}, f_{n+1, v}\right) \mathcal{B}_{n, v}\left(\pi_{n, v}\left(h_{v}\right) f_{n, v}, f_{n, v}\right) d h_{v} \tag{6.3.2}
\end{equation*}
$$

H. Xue

Let S be a sufficiently large finite set of places of F containing all archimedean places so that if $v \notin S$, then $f_{n+1, v}$ (respectively $f_{n, v}$) is $H_{n+1}\left(\mathfrak{o}_{F, v}\right)$ (respectively $\left.H_{n}\left(\mathfrak{o}_{F, v}\right)\right)$ fixed and $\mathcal{B}_{\pi_{n+1, v}}\left(f_{n+1, v}, f_{n+1, v}\right)=\mathcal{B}_{\pi_{n, v}}\left(f_{n, v}, f_{n, v}\right)=1$. In particular, $\pi_{n+1, v}$ and $\pi_{n, v}$ are both unramified if $v \notin S$. We define the partial L-functions

$$
L^{S}\left(s, \pi_{n+1} \times \pi_{n}\right)=L^{S}\left(s, \dot{\pi}_{n+1} \times \dot{\pi}_{n}\right), \quad L^{S}\left(s, \pi_{i}, \mathrm{Ad}\right)=L^{S}\left(s, \dot{\pi}_{i}, \mathrm{Ad}\right), \quad i=n, n+1
$$

where $\dot{\pi}_{i}$ is an irreducible constituent of π_{i}^{0} which is invariant by the nontrivial outer automorphism ϵ. The L-functions on the right-hand side of each equality is independent of the choice of this irreducible constituent.

The Ichino-Ikeda conjecture for the full orthogonal group is the following.
Conjecture 6.3.1. We have

$$
\begin{equation*}
\mathcal{I}\left(f_{n+1}, f_{n}\right)=\frac{2^{\gamma}}{\left|S_{\pi_{n+1}}\right|\left|S_{\pi_{n}}\right|} \Delta_{H_{n+1}}^{S} \frac{L^{S}\left(\frac{1}{2}, \pi_{n+1} \times \pi_{n}\right)}{L^{S}\left(1, \pi_{n+1}, \operatorname{Ad}\right) L^{S}\left(1, \pi_{n}, \mathrm{Ad}\right)} \prod_{v \in S} \mathcal{I}_{v}\left(f_{n+1, v}, f_{n, v}\right) \tag{6.3.3}
\end{equation*}
$$

where γ is given as follows. Suppose that n is even (respectively odd). Let $\Psi_{\pi_{n}}=\boxplus \Pi_{i}$ (respectively $\Psi_{\pi_{n+1}}=\boxplus \Pi_{i}$) where Π_{i} is an irreducible cuspidal automorphic representation of $\mathrm{GL}_{N_{i}}\left(\mathbb{A}_{F}\right)$. Then $\gamma=0$ (respectively 1) if at least one of N_{i} is odd (respectively all N_{i} are even).

Remark 6.3.2. We may have a neater formulation of the conjecture if we replace our definition of the centralizers $S_{\pi_{i}}$ by the one given in [AG16] for parameters of full orthogonal groups. We stick to our current formulation as it is more convenient for the applications in this paper.

Similar to Conjecture 2.3.1, we may rewrite the identity (6.3.3) in an equivalent form, which does not involve the finite set S. We may define the completed L-function

$$
L\left(s, \pi_{n+1} \times \pi_{n}\right)=\prod_{v} L\left(s, \pi_{n+1, v} \times \pi_{n, v}\right), \quad L\left(s, \pi_{i}, \mathrm{Ad}\right)=\prod_{v} L\left(s, \pi_{i, v}, \mathrm{Ad}\right), \quad i=n, n+1
$$

The actually definition of the local Euler factors outside the set S is irrelevant to our discussion since the conjecture does not reply on how these Euler factors are defined. Let

$$
\mathcal{L}=\Delta_{H_{n+1}} \frac{L\left(\frac{1}{2}, \pi_{n+1} \times \pi_{n}\right)}{L\left(1, \pi_{n+1}, \mathrm{Ad}\right) L\left(1, \pi_{n}, \mathrm{Ad}\right)},
$$

and by \mathcal{L}_{v} the Euler factor of \mathcal{L} at the place v. We define

$$
\mathcal{I}_{v}^{\natural}=\mathcal{L}_{v}^{-1} \cdot \mathcal{I}_{v} .
$$

Then Conjecture 6.3.1 can be written as a decomposition of linear forms

$$
\begin{equation*}
\mathcal{I}=\frac{2^{\gamma}}{\left|S_{\pi_{n+1}}\right|\left|S_{\pi_{n}}\right|} \mathcal{L} \cdot \prod_{v} \mathcal{I}_{v}^{\natural} \tag{6.3.4}
\end{equation*}
$$

The product on the right-hand side ranges over all places v of F. It is convergent since for almost all v, i.e. $v \notin S, \mathcal{I}_{v}^{\natural}=1$. We may write Conjecture 6.2 .1 in a similar forms.

Refined global Gan-Gross-Prasad conjecture

Proposition 6.3.3. Conjecture 6.3.1 follows from Conjecture 6.2.1.

Proof. We assume that n is odd. The case n being even can be handled similarly, with modifications of notation at various places. Then $H_{n} \simeq H_{n}^{0} \times \mu_{2}$. So $\pi_{n, v}^{0}$ is irreducible for all places v of F. Let \mathfrak{S} be the set of places of F such that $\pi_{n+1, v}^{0}$ is reducible.

If $v \notin S$, then $f_{n+1, v}=\phi_{n+1, v}$ is fixed by $H_{n+1}\left(\mathfrak{o}_{F, v}\right)$ and $f_{n, v}$ is fixed by $H_{n}\left(\mathfrak{o}_{F, v}\right)$. We may further assume that $f_{n+1, v}=f_{n+1, v}^{+} \in V_{n+1, v}^{+}$if $v \in S \cap \mathfrak{S}$. Thus,

$$
f_{n+1, v}=\prod_{v \in S \cap \mathfrak{S}} f_{n+1, v}^{+} \prod_{v \in S, v \notin \mathfrak{S}} f_{n+1, v} \prod_{v \notin S} \phi_{n+1, v} .
$$

Put

$$
S^{\prime}=S \backslash(S \cap \mathfrak{S}), \quad s=|S \cap \mathfrak{S}|, \quad s^{\prime}=\left|S^{\prime}\right|
$$

For any finite set of places T of F, we define $F_{T}=\prod_{v \in T} F_{v}$.
If $\mathfrak{S} \neq \emptyset$, then

$$
\begin{aligned}
& \int_{H_{n}(F) \backslash H_{n}\left(\mathbb{A}_{F}\right)} f_{n+1}(h) f_{n}(h) d h \\
& \quad=\frac{1}{2^{s+s^{\prime}+1}} \sum_{\epsilon \in \mu_{2}\left(F_{S}\right)} \int_{H_{n}^{0}(F) \backslash H_{n}^{0}\left(\mathbb{A}_{F}\right)} f_{n+1}(h \epsilon) f_{n}(h \epsilon) d h \\
& \quad=\frac{1}{2^{s+s^{\prime}+1}} \sum_{\epsilon \in \mu_{2}\left(F_{S^{\prime}}\right)} \int_{H_{n}^{0}(F) \backslash H_{n}^{0}\left(\mathbb{A}_{F}\right)}\left(f_{n+1}(h \epsilon) f_{n}(h \epsilon)+f_{n+1}(h \epsilon t) f_{n}(h \epsilon t)\right) d h \\
& \quad=\frac{1}{2^{s+s^{\prime}}} \sum_{\epsilon \in \mu_{2}\left(F_{S^{\prime}}\right)} \int_{H_{n}^{0}(F) \backslash H_{n}^{0}\left(\mathbb{A}_{F}\right)} f_{n+1}(h \epsilon) f_{n}(h \epsilon) d h .
\end{aligned}
$$

If $\mathfrak{S}=\emptyset$, then

$$
\int_{H_{n}(F) \backslash H_{n}\left(\mathbb{A}_{F}\right)} f_{n+1}(h) f_{n}(h) d h=\frac{1}{2^{s^{\prime}+1}} \sum_{\epsilon \in \mu_{2}\left(F_{S}\right)} \int_{H_{n}^{0}(F) \backslash H_{n}^{0}\left(\mathbb{A}_{F}\right)} f_{n+1}(h \epsilon) f_{n}(h \epsilon) d h .
$$

We fix a decomposition

$$
\mathcal{B}_{\pi_{n+1}^{+}}=\prod_{v \in \mathfrak{S}} \mathcal{B}_{\pi_{n+1, v}^{+}} \prod_{v \notin \mathfrak{S}} \mathcal{B}_{\pi_{n+1, v}^{0}}, \quad \text { respectively } \mathcal{B}_{\pi_{n+1}^{0}}=2 \prod_{v} \mathcal{B}_{\pi_{n+1, v}^{0}}
$$

if $\mathfrak{S} \neq \emptyset$ (respectively $\mathfrak{S}=\emptyset$), so that $\mathcal{B}_{\pi_{n+1, v}}=\mathcal{B}_{\pi_{n+1, v}}^{\natural}$ if $v \in \mathfrak{S}$ (respectively $\mathcal{B}_{\pi_{n+1, v}}=\mathcal{B}_{\pi_{n+1, v}^{0}}$ if $v \notin \mathfrak{S}$). We fix a decomposition

$$
\mathcal{B}_{\pi_{n}^{0}}=2 \prod_{v} \mathcal{B}_{\pi_{n, v}^{0}},
$$

so that $\mathcal{B}_{\pi_{n, v}}=\mathcal{B}_{\pi_{n, v}^{0}}$.
We say that we are in the exceptional case if the following conditions are satisfied.

- We have that π_{n+1}^{0} is irreducible and appears with multiplicity two in the discrete spectrum of $H_{n+1}^{0}\left(\mathbb{A}_{F}\right)$.
- The period integral

$$
\int_{H_{n}^{0}(F) \backslash H_{n}^{0}\left(\mathbb{A}_{F}\right)} f_{n+1}(h) f_{n}(h) d h
$$

is identically zero on $V_{n+1}^{0} \times V_{n}^{0}$, where we denote as before $V_{i}^{0}=\left\{\left.f\right|_{H_{i}^{0}\left(\mathbb{A}_{F}\right)} \mid f \in V_{i}\right\}$, $i=n, n+1$.

H. Xue

- The period integral is not identically zero on the isotypic component of π_{n+1}^{0}.

Suppose that we are not in the exceptional case. Then Conjecture 6.2.1 implies that

$$
\begin{aligned}
\mathcal{I}\left(f_{n+1}, f_{n}\right)= & \frac{2^{m+\gamma^{\prime}}}{2^{2 s+2 s^{\prime}}\left|S_{\pi_{n+1}}\right|\left|S_{\pi_{n}}\right|} \Delta_{H_{n+1}}^{S} \frac{L^{S}\left(\frac{1}{2}, \pi_{n+1} \times \pi_{n}\right)}{L^{S}\left(1, \pi_{n+1}, \operatorname{Ad}\right) L^{S}\left(1, \pi_{n}, \mathrm{Ad}\right)} \\
& \times \sum_{\epsilon, \epsilon^{\prime} \in \mu_{2}\left(F_{S^{\prime}}\right)} \prod_{v \in S} \mathcal{J}_{v}\left(\pi_{n+1}(\epsilon) f_{n+1, v}, \pi_{n+1}\left(\epsilon^{\prime}\right) f_{n+1, v}, \pi_{n}(\epsilon) f_{n, v}, \pi_{n}\left(\epsilon^{\prime}\right) f_{n, v}\right),
\end{aligned}
$$

where:

- $\gamma^{\prime}=1$ (respectively 0) if π_{n+1}^{0} is reducible (respectively irreducible);
- $m=1$ (respectively 0) if π_{n+1}^{0} is irreducible and appears with multiplicity two (respectively any irreducible constituent appears with multiplicity one) in the discrete spectrum of $H_{n+1}^{0}\left(\mathbb{A}_{F}\right)$.
We note that $\gamma=m+\gamma^{\prime}$. In fact, in the first (respectively second, respectively third) case in Hypothesis O, we have $\gamma=\gamma^{\prime}=m=0$ (respectively $\gamma=1, m=1, \gamma^{\prime}=0$, respectively $\gamma=1, m=0, \gamma^{\prime}=1$). Therefore, to deduce Conjecture 6.3.1 from Conjecture 6.2.1, we only need to prove the following two identities. If $v \in \mathfrak{S}$, then

$$
\frac{1}{4} \mathcal{J}_{v}\left(f_{n+1, v}, f_{n+1, v}, f_{n, v}, f_{n, v}\right)=\mathcal{I}_{v}\left(f_{n+1, v}, f_{n, v}\right) .
$$

If $v \notin \mathfrak{S}$, then

$$
\frac{1}{4} \sum_{\epsilon, \epsilon^{\prime} \in \mu_{2}\left(F_{v}\right)} \mathcal{J}_{v}\left(\pi_{n+1}(\epsilon) f_{n+1, v}, \pi_{n+1}\left(\epsilon^{\prime}\right) f_{n+1, v}, \pi_{n}(\epsilon) f_{n, v}, \pi_{n}\left(\epsilon^{\prime}\right) f_{n, v}\right)=\mathcal{I}_{v}\left(f_{n+1, v}, f_{n, v}\right)
$$

These two identities can be proved in the same way as [II10, Lemma 3.4]. Therefore Conjecture 6.3.1 follows from Conjecture 6.2.1 if we are not in the exceptional case.

Now assume that we are in the exceptional case. Let $\pi_{n+1}^{\prime 0}$ be an irreducible cuspidal automorphic representation of $H_{n+1}^{0}\left(\mathbb{A}_{F}\right)$ which realizes on $V_{n+1}^{\prime 0}$ such that $V_{n+1}^{\prime 0}$ is invariant under the outer automorphism of $H_{n+1}^{0}, V_{n+1}^{\prime 0} \neq V_{n+1}^{0}$ and $\pi_{n+1}^{\prime 0}$ is isomorphic to π_{n+1}^{0} (as abstract representations). Then the period integral

$$
\int_{H_{n}^{0}(F) \backslash H_{n}^{0}\left(\mathbb{A}_{F}\right)} f_{n+1}(h) f_{n}(h) d h
$$

is not identically zero on $V_{n+1}^{\prime 0} \times V_{n}^{0}$. Therefore,

$$
\operatorname{Hom}_{H_{n}^{0}\left(\mathbb{A}_{F}\right)}\left(\pi_{n+1}^{\prime 0} \otimes \pi_{n}^{0}, \mathbb{C}\right) \neq 0
$$

Since $V_{n+1}^{\prime 0}$ is invariant under the outer automorphism of H_{n+1}^{0}, there is an automorphic representation π_{n+1}^{\prime} of $H_{n+1}\left(\mathbb{A}_{F}\right)$ which is realized on V_{n+1}^{\prime} whose restriction to $H_{n+1}^{0}\left(\mathbb{A}_{F}\right)$ is $V_{n+1}^{\prime 0}$.

Let T be a finite subset of places of F and we let det_{T} be the character of $H_{n+1}\left(\mathbb{A}_{F}\right)$ defined by

$$
\left(g_{v}\right) \mapsto \prod_{v \in T} \operatorname{det} g_{v} \in\{ \pm 1\}, \quad\left(g_{v}\right) \in H_{n+1}\left(\mathbb{A}_{F}\right)
$$

Then det_{T} is automorphic if and only if $|T|$ is even.

Refined global Gan-Gross-Prasad conjecture

Note that $n \geqslant 3$ in this case. Let $Z_{n} \simeq \mu_{2}$ be the center of H_{n} and it is identified with a subgroup of H_{n+1} via the embedding $H_{n} \rightarrow H_{n+1}$. Let $l=\bigotimes l_{v} \in \operatorname{Hom}_{H_{n}^{0}\left(\mathbb{A}_{F}\right)}\left(\pi_{n+1}^{\prime} \otimes \pi_{n}, \mathbb{C}\right)$ and $\theta=\left(\theta_{v}\right) \in Z_{n}\left(\mathbb{A}_{F}\right)$. Let $l^{\theta}=\otimes l_{v}^{\theta_{v}} \in \operatorname{Hom}_{H_{n}^{0}\left(\mathbb{A}_{F}\right)}\left(\pi_{n+1}^{\prime} \otimes \pi_{n}, \mathbb{C}\right)$ be defined by

$$
l_{v}^{\theta_{v}}\left(\xi_{n+1, v} \otimes \xi_{n, v}\right)=l_{v}\left(\pi_{n+1, v}\left(\theta_{v}\right) \xi_{n+1, v} \otimes \pi_{n, v}\left(\theta_{v}\right) \xi_{n, v}\right)
$$

Since $\theta_{v}^{2}=1$ and $\operatorname{dim} \operatorname{Hom}_{H_{n}^{0}\left(F_{v}\right)}\left(\pi_{n+1, v}^{\prime} \otimes \pi_{n, v}, \mathbb{C}\right)=1$, we have $l_{v}^{\theta_{v}}= \pm l_{v}$. It follows that there is finite set T of places of F so that $l^{\theta}=\operatorname{det}_{T}(\theta) \cdot l$. Since π_{n+1}^{\prime} and π_{n} are automorphic, det_{T} is also automorphic. It follows that $|T|$ is even.

Let $\pi_{n+1}^{\prime \prime}=\pi_{n+1}^{\prime} \otimes \operatorname{det}_{T}$. Then $\pi_{n+1}^{\prime \prime}$ is an automorphic representation of $H_{n+1}\left(\mathbb{A}_{F}\right)$ and is realized on $V_{n+1}^{\prime \prime}$. Its restriction to $H_{n+1}^{0}\left(\mathbb{A}_{F}\right)$ is $V_{n+1}^{\prime 0}$. Moreover, for any place v of F,

$$
\operatorname{Hom}_{H_{n}\left(F_{v}\right)}\left(\pi_{n+1, v}^{\prime \prime} \otimes \pi_{n, v}, \mathbb{C}\right) \neq 0
$$

Since π_{n+1} and $\pi_{n+1}^{\prime \prime}$ are not isomorphic but their restrictions to $H_{n+1}^{0}\left(\mathbb{A}_{F}\right)$ are isomorphic, there is at least one place v, such that $\pi_{n+1, v} \simeq \pi_{n+1, v}^{\prime \prime} \otimes \operatorname{det}_{v}$. We claim that

$$
\operatorname{Hom}_{H_{n}\left(F_{v}\right)}\left(\pi_{n+1, v} \otimes \pi_{n, v}, \mathbb{C}\right)=0
$$

In fact, $\operatorname{Hom}_{H_{n}\left(F_{v}\right)}\left(\pi_{n+1, v}^{\prime \prime} \otimes \pi_{n, v}, \mathbb{C}\right) \neq 0$ is the +1 eigenspace of $\theta_{v}=-1 \in Z_{n}\left(F_{v}\right)$ on $\operatorname{Hom}_{H_{n}^{0}\left(F_{v}\right)}\left(\pi_{n+1, v}^{0} \otimes \pi_{n, v}^{0}, \mathbb{C}\right)$ while $\operatorname{Hom}_{H_{n}\left(F_{v}\right)}\left(\pi_{n+1, v} \otimes \pi_{n, v}, \mathbb{C}\right)$ is the -1 eigenspace. Since $\operatorname{dim} \operatorname{Hom}_{H_{n}^{0}\left(F_{v}\right)}\left(\pi_{n+1, v}^{0} \otimes \pi_{n, v}^{0}, \mathbb{C}\right)=\operatorname{dim} \operatorname{Hom}_{H_{n}\left(F_{v}\right)}\left(\pi_{n+1, v}^{\prime \prime} \otimes \pi_{n, v}, \mathbb{C}\right)=1$, we conclude that $\operatorname{Hom}_{H_{n}\left(F_{v}\right)}\left(\pi_{n+1, v} \otimes \pi_{n, v}, \mathbb{C}\right)=0$.

It follows that the linear form \mathcal{I}_{v} is identically zero in the exceptional case. Therefore, both sides of (6.3.3) are zero.

7. Compactibility with the Ichino-Ikeda conjecture: $\operatorname{Sp}(2 n) \times \operatorname{Mp}(2 n)$

7.1 The theorem

The goal of this section is to study Conjecture 2.3 .1 for $\operatorname{Sp}(2 n) \times \operatorname{Mp}(2 n)$. We are going to show that Conjecture 2.3.1 is compatible with the Ichino-Ikeda conjecture for $\mathrm{SO}(2 n+1) \times \mathrm{SO}(2 n)$ in some cases. A result of this sort for unitary groups appeared in [Xue16, Proposition 1.4.1]. The local counterpart of this argument has been used to establish the local Gan-Gross-Prasad conjecture for the Fourier-Jacobi models [Ato15, GI16].

Let $\lambda \in F^{\times}$. Let $\left(V, q_{V}\right)$ be a $(2 n+1)$-dimensional orthogonal space and V_{λ} is a $2 n$-dimensional subspace such that V_{λ}^{\perp} is a one-dimensional orthogonal space of discriminant λ. Let $H=\mathrm{O}(V)$ and $H_{\lambda}=\mathrm{O}\left(V_{\lambda}\right)$ and $\iota_{\lambda}: H_{\lambda} \rightarrow H$ be the natural embedding.

Let W be a $2 n$-dimensional symplectic space and $G=\operatorname{Sp}(W), \widetilde{G}=\operatorname{Mp}(W)$. Let $\widetilde{\Omega}_{\psi}$ (respectively $\left.\Omega_{\psi}\right)$ be the Weil representation of $\widetilde{G}\left(\mathbb{A}_{F}\right) \times H\left(\mathbb{A}_{F}\right)$ (respectively $G\left(\mathbb{A}_{F}\right) \times H_{\lambda}\left(\mathbb{A}_{F}\right)$) which is realized on $\mathcal{S}\left(V\left(\mathbb{A}_{F}\right)^{n}\right)$ (respectively $\mathcal{S}\left(V_{\lambda}\left(\mathbb{A}_{F}\right)^{n}\right)$). Let $\omega_{\psi_{\lambda}}$ be the Weil representation of $\widetilde{G}\left(\mathbb{A}_{F}\right)$ realized on $\mathcal{S}\left(\mathbb{A}_{F}^{n}\right)$. Then we have the theta series

$$
\widetilde{\Theta}_{\psi}(\widetilde{g}, h, \Phi), \quad \Theta_{\psi}\left(g, h_{\lambda}, \Phi_{\lambda}\right), \quad \theta_{\psi_{\lambda}}(\widetilde{g}, \phi)
$$

on $\widetilde{G}\left(\mathbb{A}_{F}\right) \times H\left(\mathbb{A}_{F}\right), G\left(\mathbb{A}_{F}\right) \times H_{\lambda}\left(\mathbb{A}_{F}\right)$ and $\widetilde{G}\left(\mathbb{A}_{F}\right)$ respectively, where $\Phi \in \mathcal{S}\left(V\left(\mathbb{A}_{F}\right)^{n}\right), \Phi_{\lambda} \in$ $\mathcal{S}\left(V_{\lambda}\left(\mathbb{A}_{F}\right)^{n}\right)$ and $\phi \in \mathcal{S}\left(\mathbb{A}_{F}^{n}\right)$.

Let π be an irreducible cuspidal tempered genuine automorphic representation of $\widetilde{G}\left(\mathbb{A}_{F}\right)$. Let $\widetilde{\Theta}_{\psi}(\pi)$ be the theta lift of π to $H\left(\mathbb{A}_{F}\right)$, i.e. the automorphic representation generated by the functions of the form

$$
\widetilde{\Theta}_{\psi}(\varphi, \Phi)(\cdot)=\int_{G(F) \backslash G\left(\mathbb{A}_{F}\right)} \overline{\varphi(g)} \widetilde{\Theta}_{\psi}(g, \cdot, \Phi) d g, \quad \varphi \in \pi, \Phi \in \mathcal{S}\left(V\left(\mathbb{A}_{F}\right)^{n}\right)
$$

H. Xue

Let σ be an irreducible cuspidal tempered automorphic representation of $H_{\lambda}\left(\mathbb{A}_{F}\right)$. Let $\Theta_{\psi}(\sigma)$ be the theta lift of σ to $G\left(\mathbb{A}_{F}\right)$, i.e. the automorphic representation generated by the functions of the form

$$
\Theta_{\psi}\left(f, \Phi_{\lambda}\right)(\cdot)=\int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \overline{f\left(h_{\lambda}\right)} \Theta_{\psi}\left(\cdot, h_{\lambda}, \Phi_{\lambda}\right) d h_{\lambda}, \quad f \in \sigma, \Phi_{\lambda} \in \mathcal{S}\left(V_{\lambda}\left(\mathbb{A}_{F}\right)^{n}\right)
$$

Theorem 7.1.1. Suppose that $\widetilde{\Theta}_{\psi_{-1}}(\pi)$ and $\Theta_{\psi}(\sigma)$ are both cuspidal (possibly zero). If Conjecture 6.3.1 holds for $\left(\widetilde{\Theta}_{\psi_{-1}}(\pi), \sigma\right)$, then Conjecture 2.3.1(3) holds for $\left(\pi, \Theta_{\psi}(\sigma)\right)$ with the additive character $\psi_{-\lambda}$.

Remark 7.1.2. We have shown in Proposition 6.3.3 that Conjecture 6.3 .1 can be deduced from the original conjecture of Ichino-Ikeda (Conjecture 6.2.1). The theorem thus says that Conjecture 2.3.1(3) and Ichino-Ikeda's conjecture are compatible in this situation. The same remark also applies to Theorem 8.1.1 in the next section.

7.2 A seesaw diagram

The proof of Theorem 7.1.1 is very similar to [Xue16, Proposition 1.4.1]. It makes use of the following seesaw diagram.

Suppose that $f=\bigotimes f_{v} \in \sigma, \varphi=\bigotimes \varphi_{v} \in \pi, \Phi_{\lambda}=\bigotimes \Phi_{\lambda, v} \in \mathcal{S}\left(V_{\lambda}\left(\mathbb{A}_{F}\right)^{n}\right)$ and $\phi=\bigotimes \phi_{v} \in$ $\mathcal{S}\left(\mathbb{A}_{F}^{n}\right)$ are all factorizable.

Lemma 7.2.1. We have

$$
\mathcal{F} \mathcal{J}_{\psi_{-\lambda}}\left(\varphi, \Theta_{\psi}\left(f, \Phi_{\lambda}\right), \phi\right)=\overline{\int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} f(h) \widetilde{\Theta}_{\psi_{-1}}\left(\varphi, \overline{\Phi_{\lambda}} \otimes \phi\right)\left(\iota_{\lambda}(h)\right) d h} .
$$

Proof. We have

$$
\begin{aligned}
& \mathcal{F} \mathcal{J}_{\psi_{-\lambda}}\left(\varphi, \Theta_{\psi}\left(f, \Phi_{\lambda}\right), \phi\right) \\
&=\int_{G(F) \backslash G\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \varphi(g) \overline{f(h)} \Theta_{\psi}\left(g, h, \Phi_{\lambda}\right) \overline{\theta_{\psi_{-\lambda}}(g, \phi)} d h d g \\
&=\int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \int_{G(F) \backslash G\left(\mathbb{A}_{F}\right)} \varphi(g) \widetilde{\Theta}_{\psi}\left(g, \iota_{\lambda}(h), \Phi_{\lambda} \otimes \bar{\phi}\right) \overline{f(h)} d g d h \\
&=\int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} f(h) \widetilde{\Theta}_{\psi_{-1}}\left(\varphi, \overline{\Phi_{\lambda}} \otimes \phi\right)\left(\iota_{\lambda}(h)\right) d h .
\end{aligned}
$$

Let v be a place of F. We use \mathcal{B} to denote the inner products on various unitary representations.

Lemma 7.2.2. The integral

$$
\int_{H_{\lambda}\left(F_{v}\right)} \int_{G\left(F_{v}\right)} \overline{\mathcal{B}\left(\sigma_{v}(h) f_{v}, f_{v}\right)} \mathcal{B}\left(\Omega_{\psi_{v}}(g, h) \Phi_{\lambda, v}, \Phi_{\lambda, v}\right) \mathcal{B}\left(\pi_{v}(g) \varphi_{v}, \varphi_{v}\right) \overline{\mathcal{B}\left(\omega_{\psi_{-\lambda, v}}(g) \phi_{v}, \phi_{v}\right)} d g d h
$$

is absolutely convergent.

Refined global Gan-Gross-Prasad conjecture

Proof. To simplify notation, we suppress the subscript v from the notation in the proof. Put

$$
\Upsilon(x)= \begin{cases}1 & |x| \leqslant 1 \\ |x|^{-1} & |x|>1\end{cases}
$$

By the weak inequality (3.1.5) and the estimates (3.1.2), (3.1.4), it is enough to prove that the double integral

$$
\begin{equation*}
\int_{A_{H_{\lambda}}^{+}} \int_{A_{G}^{+}} \delta_{H_{\lambda}}^{-1 / 2}(b) \delta_{G}^{-1 / 2}(a)\left|a_{1} \cdots a_{n}\right|^{(2 n+1) / 2} \prod_{i=1}^{n} \prod_{j=1}^{r} \Upsilon\left(a_{i} b_{j}^{-1}\right) \varsigma(a)^{M} \varsigma(b)^{M} d a d b \tag{7.2.1}
\end{equation*}
$$

is convergent, where M is some positive real number, r is the Witt index of V_{λ} and

$$
a=\operatorname{diag}\left[a_{1}, \ldots, a_{n}, a_{n}^{-1}, \ldots, a_{1}^{-1}\right] \in A_{G}^{+}, \quad b=\operatorname{diag}\left[b_{1}, \ldots, b_{r}, 1, \ldots, 1, b_{r}^{-1}, \ldots, b_{1}^{-1}\right] \in A_{H_{\lambda}}^{+}
$$

We assume that $r<n$. The case $r=n$ is very similar and needs only a slight modification. We left it to the interested readers.

We have $\left|b_{1}\right| \leqslant \cdots \leqslant\left|b_{r}\right| \leqslant 1$. Let $\underline{j}=\left(j_{1}, \ldots, j_{r}\right)$ be r nonnegative integers such that $j_{1}+\cdots+j_{r} \leqslant n$ and let $I_{\underline{j}}$ be the subset of $A_{G}^{+} \times A_{H_{\lambda}}^{+}$consisting of elements

$$
a_{1} \leqslant \cdots \leqslant a_{j_{1}} \leqslant b_{1} \leqslant a_{j_{1}+1} \leqslant \cdots \leqslant a_{j_{1}+j_{2}} \leqslant b_{2} \leqslant \cdots \leqslant b_{r} \leqslant a_{j_{1}+\cdots+j_{r}+1} \leqslant \cdots \leqslant a_{n} \leqslant 1
$$

Then $A_{G}^{+} \times A_{H_{\lambda}}^{+}=\bigcup_{\underline{j}} I_{\underline{j}}$. Thus, it is enough to prove the convergence of (7.2.1) when the domain is replaced by $I_{\underline{j}}$.

Over the region $I_{\underline{j}}$, the integrand of (7.2.1) equals

$$
\begin{aligned}
& \left|a_{1}\right|^{1 / 2} \cdots\left|a_{j_{1}}\right|^{\left(2 j_{1}+1\right) / 2}\left|b_{1}\right|^{-j_{1}+1}\left|a_{j_{1}+1}\right|^{\left(2 j_{1}+1\right) / 2} \cdots\left|a_{j_{1}+j_{2}}\right|^{\left(2 j_{1}+2 j_{2}-3\right) / 2}\left|b_{2}\right|^{-j_{1}-j_{2}+2} \\
& \cdots\left|b_{r}\right|^{-j_{1}-\cdots-j_{r}+r}\left|a_{j_{1}+\cdots+j_{r}+1}\right|^{\left(2\left(j_{1}+\cdots+j_{r}\right)+1-2 r\right) / 2} \cdots\left|a_{n}\right|^{(2 n-1-2 r) / 2} .
\end{aligned}
$$

Then lemma then follows from the following elementary fact.
Fact. Fix D a positive real number. The integral

$$
\int_{\left|x_{1}\right| \leqslant \cdots \leqslant\left|x_{s}\right| \leqslant 1}\left|x_{1}\right|^{n_{1}-1} \cdots\left|x_{s}\right|^{n_{s}-1}\left(-\sum_{i=1}^{s} \log \left|x_{i}\right|\right)^{D} d x_{1} \cdots d x_{s}
$$

is convergent if $n_{1}+\cdots+n_{t}>0$ for all $1 \leqslant t \leqslant s$.

7.3 Proof of Theorem 7.1.1

Let S be a sufficiently large finite set of places of F, such that if $v \notin S$, then the following conditions hold:
(i) v is non-archimedean, 2 and λ are in $\mathfrak{o}_{F, v}^{\times}$, the conductor of ψ_{v} is $\mathfrak{o}_{F, v}$;
(ii) the group A is unramified with a hyperspecial subgroup $A\left(\mathfrak{o}_{F, v}\right)$, where $A=H, H_{\lambda}, G$;
(iii) f_{v} is $H_{\lambda}\left(\mathfrak{o}_{F, v}\right)$ fixed and φ_{v} is $G\left(\mathfrak{o}_{F, v}\right)$ fixed; moreover $\mathcal{B}\left(f_{v}, f_{v}\right)=\mathcal{B}\left(\varphi_{v}, \varphi_{v}\right)=1$;
(iv) Φ_{λ} is the characteristic function of $V_{\lambda}\left(\mathfrak{o}_{F, v}\right)^{n}$ and ϕ_{v} is the characteristic function of $\mathfrak{o}_{F, v}^{n}$;
(v) the volume of the hyperspecial subgroup $K_{A_{v}}$ is 1 under the chosen measure on $A\left(F_{v}\right)$, where $A=H, H_{\lambda}, G$.

H. Xue

We may assume that $\widetilde{\Theta}_{\psi^{-1}}(\pi) \neq 0$. If this is not the case, it follows from the computation below that both sides of Conjecture 2.3.1(3) vanish. Applying Lemma 7.2.1, Conjecture 6.3.1 and the Rallis inner product formula (for theta lifting from \widetilde{G} to H), we get

$$
\begin{align*}
\left|\mathcal{F} \mathcal{J}_{\psi_{\lambda}}\left(\varphi, \Theta_{\psi}\left(f, \Phi_{\lambda}\right), \phi\right)\right|^{2}= & \frac{2^{\gamma-1} \Delta_{H}^{S}}{\left|S_{\tilde{\Theta}_{\psi_{-1}}(\pi)}\right|\left|S_{\sigma}\right|} \\
& \times \frac{L^{S}\left(\frac{1}{2}, \widetilde{\Theta}_{\psi_{-1}}(\pi) \times \sigma\right)}{L^{S}\left(1, \widetilde{\Theta}_{\psi_{-1}}(\pi), \mathrm{Ad}\right) L^{S}(1, \sigma, \mathrm{Ad})} \frac{L_{\psi_{-1}}^{S}\left(\frac{1}{2}, \pi \times \chi_{V}\right)}{\prod_{i=1}^{n} \zeta_{F}^{S}(2 i)} \\
& \times \prod_{v \in S} \int_{H_{\lambda}\left(F_{v}\right)} \int_{G\left(F_{v}\right)} \overline{\mathcal{B}\left(\sigma_{v}(h) f_{v}, f_{v}\right)} \mathcal{B}\left(\Omega_{\psi_{v}}(g, h) \Phi_{\lambda, v}, \Phi_{\lambda, v}\right) \\
& \times \mathcal{B}\left(\pi_{v}(g) \varphi_{v}, \varphi_{v}\right) \overline{\mathcal{B}\left(\omega_{\psi_{-\lambda, v}}(g) \phi_{v}, \phi_{v}\right)} d g d h \tag{7.3.1}
\end{align*}
$$

where γ is described as in Conjecture 6.3.1. We explain the use the Rallis inner product formula here in detail. In the remaining part of this paper, we are going to apply the same sort of argument several times. We will simply say that we apply the Rallis inner product for the rest of the paper.

First by Lemma 7.2.1, we have

$$
\left|\mathcal{F} \mathcal{J}_{\psi_{\lambda}}\left(\varphi, \Theta_{\psi}\left(f, \Phi_{\lambda}\right), \phi\right)\right|^{2}=\mathcal{I}\left(f, \widetilde{\Theta}_{\psi_{-1}}\left(\varphi, \overline{\Phi_{\lambda}} \otimes \phi\right)\right)
$$

where \mathcal{I} is defined in $\S 6.3$. Apply Conjecture 6.3 .1 (in the form (6.3.4)), we have

$$
\mathcal{I}=\frac{2^{\gamma} \Delta_{H}}{\left|S_{\widetilde{\Theta}_{\psi_{-1}}(\pi)}\right|\left|S_{\sigma}\right|} \frac{L\left(\frac{1}{2}, \widetilde{\Theta}_{\psi_{-1}}(\pi) \times \sigma\right)}{L\left(1, \widetilde{\Theta}_{\psi_{-1}}(\pi), \operatorname{Ad}\right) L(1, \sigma, \operatorname{Ad})} \prod_{v} \mathcal{I}_{v}^{\natural} .
$$

Note that here the local linear form $\mathcal{I}_{v}^{\natural}$ is defined using an inner product \mathcal{B}_{v} on $\widetilde{\Theta}_{\psi_{-1}}(\pi)_{v}$ so that $\prod_{v} \mathcal{B}_{v}$ equals the Petersson inner product on $\widetilde{\Theta}_{\psi_{-1}}(\pi)$ (defined using the Tamagawa measure on $\left.H\left(\mathbb{A}_{F}\right)\right)$. We view the Rallis inner product as another decomposition of the Petersson inner product on $\widetilde{\Theta}_{\psi_{-1}}(\pi)$. The integral

$$
\int_{G\left(F_{v}\right)} \mathcal{B}\left(\widetilde{\Omega}_{\psi_{v}}(g, 1) \Phi_{v}, \Phi_{v}^{\prime}\right) \mathcal{B}\left(\pi_{v}(g) \varphi_{v}, \varphi_{v}^{\prime}\right) d g
$$

where we have used \mathcal{B} to denote inner products on $\widetilde{\Omega}_{\psi_{v}}$ and on π_{v} by abuse of notation, defines a linear form on

$$
\widetilde{\Omega}_{\psi_{v}} \otimes \pi_{v} \otimes \widetilde{\widetilde{\Omega}}_{\psi_{v} \otimes \pi_{v}}
$$

which descends to an inner product on $\widetilde{\Theta}_{\psi_{-1, v}}\left(\pi_{v}\right)$ which we denote by \mathcal{B}_{v}^{\prime}. Put

$$
\mathcal{B}_{v}^{\prime \emptyset}=\mathcal{B}_{v}^{\prime}\left(\frac{L_{\psi_{v,-1}}\left(\frac{1}{2}, \pi_{v} \times \chi_{V, v}\right)}{\prod_{i=1}^{n} \zeta_{F_{v}}(2 i)}\right)^{-1}
$$

Then in this case, the Rallis inner product formula claims that

$$
\frac{1}{2} \frac{L_{\psi_{-1}}\left(\frac{1}{2}, \pi \times \chi_{V}\right)}{\prod_{i=1}^{n} \zeta_{F}(2 i)} \prod_{v} \mathcal{B}_{v}^{\prime \emptyset}
$$

Refined global Gan-Gross-Prasad conjecture

equals the Petersson inner product on $\widetilde{\Theta}_{\psi_{-1}}(\pi)$. Let \mathcal{I}_{v}^{\prime} be the linear form defined in the same way as \mathcal{I}_{v} but using the inner product \mathcal{B}_{v}^{\prime}. Define

$$
\mathcal{I}_{v}^{\prime \emptyset}=\mathcal{I}_{v}^{\prime} \cdot\left(\Delta_{H_{v}} \frac{L\left(\frac{1}{2}, \widetilde{\Theta}_{\psi_{-1}, v}\left(\pi_{v}\right) \times \sigma_{v}\right)}{L\left(1, \widetilde{\Theta}_{\psi_{-1}, v}\left(\pi_{v}\right), \operatorname{Ad}\right) L\left(1, \sigma_{v}, \mathrm{Ad}\right)} \frac{L_{\psi_{v,-1}}\left(\frac{1}{2}, \pi_{v} \times \chi_{V, v}\right)}{\prod_{i=1}^{n} \zeta_{F_{v}}(2 i)}\right)^{-1} .
$$

It follows that we have a decomposition

$$
\begin{equation*}
\mathcal{I}=\frac{2^{\gamma-1} \Delta_{H}}{\left|S_{\widetilde{\Theta}_{\psi_{-1}}(\pi)}\right|\left|S_{\sigma}\right|} \frac{L\left(\frac{1}{2}, \widetilde{\Theta}_{\psi_{-1}}(\pi) \times \sigma\right)}{L\left(1, \widetilde{\Theta}_{\psi_{-1}}(\pi), \mathrm{Ad}\right) L(1, \sigma, \mathrm{Ad})} \frac{L_{\psi_{-1}}\left(\frac{1}{2}, \pi \times \chi_{V}\right)}{\prod_{i=1}^{n} \zeta_{F}(2 i)} \prod_{v} \mathcal{I}_{v}^{\prime 申} . \tag{7.3.2}
\end{equation*}
$$

This is an identity of elements in

$$
\operatorname{Hom}_{\widetilde{G}\left(\mathbb{A}_{F}\right) \times H_{\lambda}\left(\mathbb{A}_{F}\right)}\left(\widetilde{\Omega}_{\psi} \otimes \pi \otimes \bar{\sigma}, \mathbb{C}\right) \otimes{\overline{\operatorname{Hom}}{\widetilde{G}\left(\mathbb{A}_{F}\right) \times H_{\lambda}\left(\mathbb{A}_{F}\right)}\left(\widetilde{\Omega}_{\psi} \otimes \pi \otimes \bar{\sigma}, \mathbb{C}\right)}
$$

which descends to an identity of elements in

$$
\operatorname{Hom}_{H_{\lambda}\left(\mathbb{A}_{F}\right)}\left(\widetilde{\Theta}_{\psi_{-1}}(\pi) \otimes \bar{\sigma}, \mathbb{C}\right) \otimes \overline{\left.\operatorname{Hom}_{H_{\lambda}\left(\mathbb{A}_{F}\right)}\right)\left(\widetilde{\Theta}_{\psi_{-1}}(\pi) \otimes \bar{\sigma}, \mathbb{C}\right)} .
$$

We now compute $\mathcal{I}\left(f, \widetilde{\Theta}_{\psi_{-1}}\left(\varphi, \overline{\Phi_{\lambda}} \otimes \phi\right)\right)$ using decomposition (7.3.2). Note that

$$
\left.\widetilde{\Omega}_{\psi}\right|_{\tilde{G}\left(\mathbb{A}_{F}\right) \times H_{\lambda}\left(\mathbb{A}_{F}\right)} \simeq \Omega_{\psi} \otimes \omega_{\psi_{\lambda}},
$$

where $\widetilde{G}\left(\mathbb{A}_{F}\right)$ acts on both factors on the right-hand side and $H_{\lambda}\left(\mathbb{A}_{F}\right)$ acts only on Ω_{ψ}. We also note that if $v \notin S$, then

$$
\mathcal{I}_{v}^{\prime \boldsymbol{}}\left(\overline{\Phi_{\lambda, v}} \otimes \phi_{v}, \overline{\varphi_{v}}, f_{v}\right)=1
$$

Then the identity (7.3.1) follows.
We continue the proof of Theorem 7.1.1. The double integral on the right-hand side of (7.3.1) is absolutely convergent by Lemma 7.2.2. Thus, we can change the order of integration by integrating over $g \in G\left(F_{v}\right)$ first. Then we apply Rallis inner product formula (for theta lifting from H_{λ} to G), and get

$$
\begin{aligned}
& \mid \mathcal{F} \mathcal{J}_{\left.\psi_{\lambda}(\varphi, \xi, \phi)\right|^{2}} \\
& =\frac{2^{\gamma-1} \Delta_{H}^{S}}{\left|S_{\widetilde{\Theta}_{\psi_{-1}}(\pi)}\right|\left|S_{\sigma}\right|} \cdot \frac{L^{S}\left(\frac{1}{2}, \widetilde{\Theta}_{\psi_{-1}}(\pi) \times \sigma\right)}{L^{S}\left(1, \widetilde{\Theta}_{\psi_{-1}}(\pi), \operatorname{Ad}\right) L^{S}(1, \sigma, \mathrm{Ad})}\left(\frac{L^{S}(1, \sigma)}{\prod_{i=1}^{n} \zeta_{F}^{S}(2 i)}\right)^{-1} \\
& \quad \times \frac{L_{\psi_{-1}}^{S}\left(\frac{1}{2}, \pi \times \chi_{V}\right)}{\prod_{i=1}^{n} \zeta_{F}^{S}(2 i)} \prod_{v \in S} \int_{H_{\lambda}\left(F_{v}\right)} \mathcal{B}\left(\Theta_{\psi_{v}}\left(\sigma_{v}\right)(g) \xi_{v}, \xi_{v}\right) \mathcal{B}\left(\pi_{v}(g) \varphi_{v}, \varphi_{v}\right) \overline{\mathcal{B}\left(\omega_{\psi_{-\lambda}}(g) \phi_{v}, \phi_{v}\right)} d g,
\end{aligned}
$$

where $\Theta_{\psi}\left(f, \Phi_{\lambda}\right)=\xi=\bigotimes \xi_{v} \in \Theta_{\psi}(\sigma)$. Here we fixed a surjective map $\vartheta_{v}: \bar{\sigma}_{v} \otimes \Omega_{\psi_{v}} \rightarrow \Theta_{\psi_{v}}\left(\sigma_{v}\right)$ for each v and put $\vartheta_{v}\left(f_{v}, \Phi_{\lambda, v}\right)=\xi_{v}$, so that $\xi=\bigotimes \xi_{v}$ holds. By Lemma 5.2.3, $\left|S_{\tilde{\Theta}_{\psi_{-1}}(\pi)}\right|\left|S_{\sigma}\right|=$ $2^{\gamma-1}\left|S_{\pi}\right|\left|S_{\Theta_{\psi}(\sigma)}\right|$. Theorem 7.1.1 then follows from Lemma 5.2.2.

7.4 Some remarks

We end this section by some remarks on Theorem 7.1.1.
Remark 7.4.1. We have proved in the theorem that we can deduce Conjecture 2.3.1(3) from Conjecture 6.3.1 under the assumptions of the theorem. Similarly, we may also deduce Conjecture 6.3.1 from Conjecture 2.3.1(3). We only need to run the above argument backwards.

H. Xue

Remark 7.4.2. Instead of the seesaw diagram that has been used in the proof of Theorem 7.1.1, we may consider the following seesaw diagram.

Then we can go back and forth between Conjecture 2.3.1(3) for $\operatorname{Sp}(2 n) \times \operatorname{Mp}(2 n)$ and the Ichino-Ikeda conjecture for $\mathrm{SO}(2 n+2) \times \mathrm{SO}(2 n+1)$.

In particular, if $n=1$, then the Ichino-Ikeda conjecture, hence Conjecture 6.3.1 is known. In this case, without assuming Hypotheses LLC, GLC and O, [Qiu14, Theorem 4.5] proved Conjecture 2.3.1(3) with $\left|S_{\pi_{2}}\right|\left|S_{\pi_{0}}\right|$ replaced by $\frac{1}{4}$. This result is compatible with our conjecture if we assume Hypotheses LLC, GLC and O.

Remark 7.4.3. Instead of the seesaw diagrams above, we may consider the following.

In this way, the Conjecture 2.3.1(3) for tempered representations on $\mathrm{Sp}(2 n) \times \mathrm{Mp}(2 n)$ will be related to the Ichino-Ikeda conjecture for nontempered representations. Ichino [Ich05] and Ichino and Ikeda [II02] made use of the following seesaw diagrams respectively.

At this moment, there is no precise form of the refined Gan-Gross-Prasad conjecture for nontempered representations. We hope that Conjecture 2.3.1(3) together with the seesaw diagrams as above could shed some light on the formulation of this conjecture.

8. Compactibility with the Ichino-Ikeda conjecture: $\operatorname{Sp}(2 n+2) \times \operatorname{Mp}(2 n)$

8.1 The theorem

The goal of this section is to study Conjecture 2.3.1(3) for $\operatorname{Sp}(2 n+2) \times \operatorname{Mp}(2 n)$.
Let W be a $(2 n+2)$-dimensional symplectic space and $G=\operatorname{Sp}(W)$. We choose a basis $\left\{e_{1}, \ldots, e_{n+1}, e_{1}^{*}, \ldots, e_{n+1}^{*}\right\}$ of W so that symplectic form on W is given by the matrix

$$
\left(\begin{array}{cc}
& 1_{n} \\
-1_{n} &
\end{array}\right)
$$

Let $X=\left\langle e_{n+1}\right\rangle, X^{*}=\left\langle e_{n+1}^{*}\right\rangle$ and $W_{0}=\left\langle e_{1}, \ldots, e_{n}, e_{1}^{*}, \ldots, e_{n}^{*}\right\rangle$. With this choice of basis, we identify W with $F^{2 n+2}$ and W_{0} with $F^{2 n}$. Let $L=\left\langle e_{1}, \ldots, e_{n}\right\rangle \simeq F^{n}$ and $L^{*}=\left\langle e_{1}^{*}, \ldots, e_{n}^{*}\right\rangle \simeq F^{n}$. Then $W_{0}=L+L^{*}$ is a complete polarization of W_{0}. We represent elements in G as matrices.

Refined global Gan-Gross-Prasad conjecture

Let $R=R\left(W_{0}\right)=N G_{0}$ be the Jacobi group associated to W_{0}, where N is the unipotent radical and $G_{0} \simeq \operatorname{Sp}\left(W_{0}\right)$. The group R takes the form

$$
\left(\begin{array}{cccc}
1_{n} & & & { }^{t} y \\
x & 1 & y & \kappa \\
& & 1_{n} & { }^{t} x \\
& & & 1
\end{array}\right)\left(\begin{array}{llll}
a & & b & \\
& 1 & & \\
c & & d & \\
& & & 1
\end{array}\right)
$$

where $x, y \in F^{n}, \kappa \in F$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G_{0}$. We write the first matrix as $n=n(x, y, \kappa)$. Let $\widetilde{G_{0}}=$ $\operatorname{Mp}\left(W_{0}\right)$ and $\widetilde{R}=R \widetilde{G_{0}}$.

Let $\left(V, q_{V}\right)$ be a $(2 n+2)$-dimensional orthogonal space and $H=\mathrm{O}(V)$. Let $\lambda \in F^{\times}$and $v_{\lambda}^{0} \in V$ such that $q_{V}\left(v_{\lambda}^{0}, v_{\lambda}^{0}\right)=\lambda$. Let V_{λ} be the orthogonal complement of $\left\langle v_{\lambda}^{0}\right\rangle$ and $H_{\lambda}=\mathrm{O}\left(V_{\lambda}\right)$.

Let $\omega_{\psi_{\lambda}}$ be the Weil representation of $\widetilde{R}\left(\mathbb{A}_{F}\right)$ which is realized on $\mathcal{S}\left(\mathbb{A}_{F}^{n}\right)$. Let Ω_{ψ} be the Weil representation of $G\left(\mathbb{A}_{F}\right) \times H\left(\mathbb{A}_{F}\right)$ which is realized on $\mathcal{S}\left(V\left(\mathbb{A}_{F}\right)^{n+1}\right)$. Let Ω_{ψ}^{0} be the Weil representation of $G_{0}\left(\mathbb{A}_{F}\right) \times H\left(\mathbb{A}_{F}\right)$ which is realized on $\mathcal{S}\left(V\left(\mathbb{A}_{F}\right)^{n}\right)$. Let $\widetilde{\Omega}_{\psi}$ be the Weil representation of $\widetilde{G_{0}}\left(\mathbb{A}_{F}\right) \times H_{\lambda}\left(\mathbb{A}_{F}\right)$ which is realized on $\mathcal{S}\left(V_{\lambda}\left(\mathbb{A}_{F}\right)^{n}\right)$. Suppose that $\phi \in \mathcal{S}\left(\mathbb{A}_{F}^{n}\right)$ (respectively $\Phi \in \mathcal{S}\left(V^{n+1}\left(\mathbb{A}_{F}\right)\right)$, respectively $\widetilde{\Phi} \in \mathcal{S}\left(V_{\lambda}\left(\mathbb{A}_{F}\right)^{n}\right)$). Then we have the theta series on $\widetilde{R}\left(\mathbb{A}_{F}\right)$ (respectively $G\left(\mathbb{A}_{F}\right) \times H\left(\mathbb{A}_{F}\right)$, respectively $\left.\widetilde{G_{0}}\left(\mathbb{A}_{F}\right) \times H_{\lambda}\left(\mathbb{A}_{F}\right)\right)$

$$
\theta_{\psi_{\lambda}}(r, \phi), \quad \text { respectively } \Theta_{\psi}(g, h, \Phi), \quad \text { respectively } \widetilde{\Theta}_{\psi}\left(\widetilde{g}, h_{\lambda}, \widetilde{\Phi}\right) .
$$

Let π be an irreducible cuspidal tempered automorphic representation of $H\left(\mathbb{A}_{F}\right)$. We denote by $\Theta_{\psi}(\pi)$ the global theta lifting of π to $G\left(\mathbb{A}_{F}\right)$, i.e. the automorphic representation of $G\left(\mathbb{A}_{F}\right)$ generated by the functions of the form

$$
\Theta_{\psi}(f, \Phi)(\cdot)=\int_{H(F) \backslash H\left(\mathbb{A}_{F}\right)} \overline{f(h)} \Theta_{\psi}(\cdot, h, \Phi) d h, \quad f \in \pi, \Phi \in \mathcal{S}\left(V\left(\mathbb{A}_{F}\right)^{n+1}\right)
$$

Let σ be an irreducible cuspidal tempered genuine automorphic representation of $\widetilde{G_{0}}\left(\mathbb{A}_{F}\right)$ and $\widetilde{\Theta}_{\psi}(\sigma)$ be the theta lifting of σ to $H_{\lambda}\left(\mathbb{A}_{F}\right)$, i.e. the automorphic representation of $H_{\lambda}\left(\mathbb{A}_{F}\right)$ generated by the functions of the form

$$
\widetilde{\Theta}_{\psi}(\varphi, \widetilde{\Phi})(\cdot)=\int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \overline{\varphi(g)} \widetilde{\Theta}_{\psi}(g, \cdot, \widetilde{\Phi}) d g
$$

Theorem 8.1.1. Assume that $\Theta_{\psi}(\pi)$ and $\widetilde{\Theta}_{\psi}(\sigma)$ are both cuspidal. If Conjecture 6.3.1 holds for $\left(\pi, \widetilde{\Theta}_{\psi}(\sigma)\right)$, then Conjecture 2.3.1(3) holds for $\left(\Theta_{\psi}(\pi), \sigma\right)$ (with the additive character ψ_{λ}). In particular, if $n=1$, then Conjecture 2.3.1(3) holds for $\left(\Theta_{\psi}(\pi), \sigma\right)$ (with the additive character ψ_{λ}).

The proof of this theorem will occupy the following four subsections. The last assertion follows from the fact that the Ichino-Ikeda conjecture is known for $\mathrm{SO}(4) \times \mathrm{SO}(3)$. Thus, Conjecture 6.3.1 holds for $\mathrm{O}(4) \times \mathrm{O}(3)$.

Remark 8.1.2. We do not assume that $\widetilde{\Theta}_{\psi}(\sigma)$ is not zero. In fact, if $\widetilde{\Theta}_{\psi}(\sigma)$ is zero, then it follows from the computation below that both sides of the identity in Conjecture 2.3.1(3) are zero.

Remark 8.1.3. By assumption, there is a $v_{\lambda}^{0} \in V$ such that $q_{V}\left(v_{\lambda}^{0}, v_{\lambda}^{0}\right)=\lambda$. If follows from the computation below that if such a v_{λ}^{0} does not exist, then both sides of the identity in Conjecture 2.3.1(3) are zero.

H. Xue

8.2 Measures

Without saying to the contrary, we always take the Tamagawa measure on the group of adelic points of an algebraic group. Note that $\operatorname{vol} A(F) \backslash A\left(\mathbb{A}_{F}\right)=1$ where $A=G, G_{0}, H, H_{\lambda}$. Note also that $\operatorname{vol} G_{0}(F) \backslash \widetilde{G_{0}}\left(\mathbb{A}_{F}\right)=1$. Suppose that $A=G, G_{0}, H, H_{\lambda}$ or $\widetilde{G_{0}}$. We fix a decomposition $d g=\prod_{v} d g_{v}$ where $d g_{v}$ is a measure on $A\left(F_{v}\right)$ so that for almost all places v, vol $K_{v}=1$ where $K_{v}=A\left(\mathfrak{o}_{F, v}\right)$ is a hyperspecial maximal compact subgroup of $A\left(F_{v}\right)$.

Lemma 8.2.1. Let $f \in \mathcal{S}\left(V\left(\mathbb{A}_{F}\right)\right)$. Then

$$
\begin{equation*}
\int_{\mathbb{A}_{F}}\left(\int_{V\left(\mathbb{A}_{F}\right)} f(v) \psi\left(\kappa q_{V}(v, v)\right) d v\right) \psi(-\lambda \kappa) d \kappa=\int_{H_{\lambda}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)} f\left(h^{-1} v_{\lambda}^{0}\right) d h . \tag{8.2.1}
\end{equation*}
$$

Proof. Suppose that V is not a four-dimensional split quadratic space. Then the lemma follows from the Siegel-Weil formula for $\mathrm{SL}_{2} \times H$. Let $E\left(g, \Phi_{f}^{(s)}\right)$ be the Eisenstein series on $\mathrm{SL}_{2}\left(\mathbb{A}_{F}\right)$ where $\Phi_{f}^{(s)} \in \operatorname{Ind}_{B}^{\mathrm{SL}_{2}\left(\mathbb{A}_{F}\right)} \chi_{V}|\cdot|^{s}$ is the Siegel-Weil section where B is the standard upper triangular Borel subgroup of SL_{2}. Then the left-hand side of (8.2.1) is the ψ_{λ}-Fourier coefficient of $E\left(g, \Phi_{f}^{(s)}\right)$ at $s=s_{0}=n$. The right-hand side of (8.2.1) is the ψ_{λ}-Fourier coefficient of the theta integral

$$
\int_{H(F) \backslash H\left(\mathbb{A}_{F}\right)} \theta_{\psi}(g, h, f) d h,
$$

where $\theta_{\psi}(g, h, f)$ is the theta series on $\mathrm{SL}_{2}\left(\mathbb{A}_{F}\right) \times H\left(\mathbb{A}_{F}\right)$. The lemma then follows from the (convergent) Siegel-Weil formula

$$
\left.E\left(g, \Phi_{f}^{(s)}\right)\right|_{s=s_{0}}=\int_{H(F) \backslash H\left(\mathbb{A}_{F}\right)} \theta_{\psi}(g, h, f) d h .
$$

Suppose that V is split and $\operatorname{dim} V=4$. Without loss of generality, we may assume that $\lambda=1$. Then V is identified with the space of 2×2 matrices over F and the quadratic form is given by the determinant. We may assume $v_{1}^{0}=1_{2} \in V$. Under this identification, $H_{1}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)$ is identified with $\mathrm{SL}_{2}\left(\mathbb{A}_{F}\right)$ and the quotient measure is identified with the Tamagawa measure on $\mathrm{SL}_{2}\left(\mathbb{A}_{F}\right)$. This is because the volume of $H(F) H_{1}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)$ equals one.

We write an element in V as $\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$. The left-hand side of the desired identity equals

$$
\int_{\mathbb{A}_{F}} \int_{\mathbb{A}_{F}^{4}} f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \psi\left(\kappa\left(x_{1} x_{4}-x_{2} x_{3}\right)-\kappa\right) d x_{1} d x_{2} d x_{3} d x_{4} d \kappa .
$$

By the Fourier inversion formula, it equals

$$
\int_{\mathbb{A}_{F}^{2}} \int_{\mathbb{A}_{F}} f\left(x_{1}^{0}+a x_{3}, x_{2}^{0}+a x_{4}, x_{3}, x_{4}\right) d a d x_{3} d x_{4},
$$

where $\left(x_{1}^{0}, x_{2}^{0}\right) \in \mathbb{A}_{F}^{2}$ is a fixed vector of norm one and perpendicular to $\left(x_{3}, x_{4}\right)$ under the usual Euclidean inner product on \mathbb{A}_{F}^{2}. The choice of $\left(x_{1}^{0}, x_{2}^{0}\right)$ is not unique, but the above formula does not depend on the choice. The measure $d a d x_{3} d x_{4}$ gives a measure on $\mathrm{SL}_{2}\left(\mathbb{A}_{F}\right)$ which is invariant under the right multiplication of $\mathrm{SL}_{2}\left(\mathbb{A}_{F}\right)$. It is clear that it gives $\mathrm{SL}_{2}(F) \backslash \mathrm{SL}_{2}\left(\mathbb{A}_{F}\right)$ volume one, hence it is the Tamagawa measure on $\mathrm{SL}_{2}\left(\mathbb{A}_{F}\right)$. The lemma then follows.

8.3 Global Fourier-Jacobi periods of theta liftings

The goal of this subsection is to compute

$$
\begin{equation*}
\int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \int_{N(F) \backslash N\left(\mathbb{A}_{F}\right)} \int_{H(F) \backslash H\left(\mathbb{A}_{F}\right)} \overline{f(h)} \Theta_{\psi}(n g, h, \Phi) \overline{\theta_{\psi_{\lambda}}(n g, \phi)} \varphi(g) d h d n d g . \tag{8.3.1}
\end{equation*}
$$

The idea of the computation is putting in the definition of the theta series and unfolding the integrals. The essential step is the identity (8.3.2). In this identity, the summation over rational points in V of norm λ is replaced by the summation over $H_{\lambda}(F) \backslash H(F)$. This is the key step which enable us to unfold the integrals. We divide the computation in several steps.

Step 1. The goal is to unwind the definition of the theta functions.
Suppose that $n=n(x, y, \kappa), \kappa \in F \backslash \mathbb{A}_{F}, x=\left(x_{1}, \ldots, x_{n}\right) \in\left(F \backslash \mathbb{A}_{F}\right)^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in$ $\left(F \backslash \mathbb{A}_{F}\right)^{n}$. By definition, we have
$\theta_{\psi_{\lambda}}(n g, \phi)=\sum_{l_{1}, \ldots, l_{n} \in F} \omega_{\psi_{\lambda}}(g) \phi\left(l_{1}+x_{1}, \ldots, l_{n}+x_{n}\right) \psi\left(\lambda y_{1}\left(x_{1}+2 l_{1}\right)+\cdots+\lambda y_{n}\left(x_{n}+2 l_{n}\right)+\lambda \kappa\right)$.
Suppose that $\Phi=\Phi^{0} \otimes \Phi_{n+1}$ where $\Phi^{0} \in \mathcal{S}\left(V\left(\mathbb{A}_{F}\right)^{n}\right)$ and $\Phi_{n+1} \in \mathcal{S}\left(V\left(\mathbb{A}_{F}\right)\right)$. We have an $H\left(\mathbb{A}_{F}\right) \times G_{0}\left(\mathbb{A}_{F}\right)$ equivariant isomorphism

$$
\mathcal{S}\left(V\left(\mathbb{A}_{F}\right)^{n+1}\right) \simeq \mathcal{S}\left(V\left(\mathbb{A}_{F}\right)^{n}\right) \otimes \mathcal{S}\left(V\left(\mathbb{A}_{F}\right)\right),
$$

where the left-hand side is the Weil representation Ω_{ψ} restricted to $H\left(\mathbb{A}_{F}\right) \times G_{0}\left(\mathbb{A}_{F}\right)$ and this group acts on the first factor via the Weil representation Ω_{ψ}^{0} and on the second factor via projection to $H\left(\mathbb{A}_{F}\right)$ and multiplication from the left.

Then we have

$$
\begin{aligned}
\Theta(n g, h, \Phi)= & \sum_{v_{1}, \ldots, v_{n}, v_{n+1} \in V} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1}\left(v_{1}+x_{1} v_{n+1}\right), \ldots, h^{-1}\left(v_{n}+x_{n} v_{n+1}\right)\right) \Phi_{n+1}\left(h^{-1} v_{n+1}\right) \\
& \times \psi\left(2 y_{1} q_{V}\left(v_{1}, v_{n+1}\right)+\cdots+2 y_{n} q_{V}\left(v_{n}, v_{n+1}\right)+\left(\kappa+y^{t} x\right) q_{V}\left(v_{n+1}, v_{n+1}\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{F \backslash \mathbb{A}_{F}} & \Theta(n g, h, \Phi) \overline{\psi_{\lambda}(\kappa)} d \kappa \\
= & \sum_{\substack{v_{1}, \ldots, v_{n} \in V \\
q_{V}\left(v_{n+1}, v_{n+1}\right)=\lambda}} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1}\left(v_{1}+x_{1} v_{n+1}\right), \ldots, h^{-1}\left(v_{n}+x_{n} v_{n+1}\right)\right) \\
& \times \Phi_{n+1}\left(h^{-1} v_{n+1}\right) \psi\left(2 y_{1} q_{V}\left(v_{1}, v_{n+1}\right)+\cdots+2 y_{n} q_{V}\left(v_{n}, v_{n+1}\right)+y^{t} x \lambda\right) .
\end{aligned}
$$

From this we get

$$
\begin{aligned}
& \int_{N(F) \backslash N\left(\mathbb{A}_{F}\right)} \Theta(n g, h, \Phi) \overline{\theta_{\psi_{\lambda}}(n \iota(g), \phi)} d n \\
& \quad=\sum_{\substack{v_{1}, \ldots, v_{n} \in V \\
q_{V}\left(v_{n+1}, v_{n+1}\right)=\lambda \\
l_{n}, \ldots, l_{n} \in F}} \int_{\left(F \backslash \mathbb{A}_{F}\right)^{2 n}} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1}\left(v_{1}+x_{1} v_{n+1}\right), \ldots, h^{-1}\left(v_{n}+x_{n} v_{n+1}\right)\right) \\
& \quad \times \Phi_{n+1}\left(h^{-1} v_{n+1}\right) \overline{\omega_{\psi_{\lambda}}(\iota(g)) \phi\left(l_{1}+x_{1}, \ldots, l_{n}+x_{n}\right)} \psi\left(2 y_{1}\left(q_{V}\left(v_{1}, v_{n+1}\right)-l_{1} \lambda\right)\right. \\
& \left.\quad+\cdots+2 y_{n}\left(q_{V}\left(v_{n}, v_{n+1}\right)-l_{n} \lambda\right)\right) d x d y .
\end{aligned}
$$

H. Xue

Recall that if $g \in G_{0}$, then we define $\iota(g)=(g, 1) \in \widetilde{G_{0}}$.
Step 2. This is the key step. We replace the summation over rational points in V of norm λ by the summation over $H_{\lambda}(F) \backslash H(F)$.

Let $\Lambda_{\lambda}=\left\{v \in V \mid q_{V}(v, v)=\lambda\right\}$. Then the group $H(F)$ acts transitively on $\Lambda_{\lambda}(F)$ and identifies $H_{\lambda}(F) \backslash H(F)$ with $\Lambda_{\lambda}(F)$ by $h \mapsto h^{-1} v_{\lambda}^{0}$. It follows that

$$
\begin{align*}
& (8.3 .1)=\sum_{\substack{v_{1}, \ldots, v_{n} \in V \\
l_{1}, \ldots, l_{n} \in F}} \int_{\left(F \backslash \mathbb{A}_{F}\right)^{2 n}} \int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}(F) \backslash H\left(\mathbb{A}_{F}\right)} \overline{f(h)} \\
& \quad \times \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1}\left(v_{1}+x_{1} v_{\lambda}^{0}\right), \ldots, h^{-1}\left(v_{n}+x_{n} v_{\lambda}^{0}\right)\right) \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) \overline{\omega_{\psi_{\lambda}}(g) \phi\left(l_{1}+x_{1}, \ldots, l_{n}+x_{n}\right)} \\
& \quad \times \psi\left(2 y_{1}\left(q_{V}\left(v_{1}, v_{\lambda}^{0}\right)-l_{1} \lambda\right)+\cdots+2 y_{n}\left(q_{V}\left(v_{n}, v_{\lambda}^{0}\right)-l_{n} \lambda\right)\right) \varphi(g) d h d g d x d y . \tag{8.3.2}
\end{align*}
$$

Then

$$
\begin{aligned}
(8.3 .1)= & \sum_{\substack{v_{1}, \ldots, v_{n} \in V \\
l_{1}, \ldots, l_{n} \in F}} \int_{\left(F \backslash \mathbb{A}_{F}\right)^{2 n}} \int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \overline{f\left(h_{\lambda} h\right)} \\
& \times \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1} h_{\lambda}^{-1} v_{1}+x_{1} h^{-1} v_{\lambda}^{0}, \ldots, h^{-1} h_{\lambda}^{-1} v_{n}+x_{n} h^{-1} v_{\lambda}^{0}\right) \\
& \times \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) \frac{\omega_{\psi_{\lambda}}(g) \phi\left(l_{1}+x_{1}, \ldots, l_{n}+x_{n}\right)}{} \\
& \times \psi\left(2 y_{1}\left(q_{V}\left(v_{1}, v_{\lambda}^{0}\right)-l_{1} \lambda\right)+\cdots+2 y_{n}\left(q_{V}\left(v_{n}, v_{\lambda}^{0}\right)-l_{n} \lambda\right)\right) \varphi(g) d h_{\lambda} d h d g d x d y .
\end{aligned}
$$

Step 3. Simplifying the expression. This step is mostly formal.
Integrations over y_{i} yield

$$
\begin{aligned}
(\text { 8.3.1 })= & \sum_{\substack{v_{1}, \ldots, v_{n} \in V \\
l_{1}, \ldots, l_{n} \in F \\
q_{V}\left(v_{i}, v_{\lambda}\right)=l_{i} \lambda, \forall i}} \int_{\left(F \backslash \mathbb{A}_{F}\right)^{n}} \int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \\
& \times \overline{f\left(h_{\lambda} h\right)} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1} h_{\lambda}^{-1} v_{1}+x_{1} h^{-1} v_{\lambda}^{0}, \ldots, h^{-1} h_{\lambda}^{-1} v_{n}+x_{n} h^{-1} v_{\lambda}^{0}\right) \\
& \times \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) \overline{\omega_{\psi_{\lambda}}(g) \phi\left(l_{1}+x_{1}, \ldots, l_{n}+x_{n}\right)} \varphi(g) d h_{\lambda} d h d g d x .
\end{aligned}
$$

The variables v_{i} have to be of the form $l_{i} v_{\lambda}^{0}+w_{i}$ where $w_{i} \in V_{\lambda}$. Therefore,

$$
\begin{aligned}
(8.3 .1)= & \sum_{\substack{w_{1}, \ldots, w_{n} \in V_{\lambda} \\
l_{1}, \ldots, l_{n} \in F}} \int_{\left(F \backslash \mathbb{A}_{F}\right)^{n}} \int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \\
& \times \overline{f\left(h_{\lambda} h\right)} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1} h_{\lambda}^{-1} w_{1}+\left(l_{1}+x_{1}\right) h^{-1} v_{\lambda}^{0}, \ldots, h^{-1} h_{\lambda}^{-1} w_{n}+\left(l_{n}+x_{n}\right) h^{-1} v_{\lambda}^{0}\right) \\
& \times \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) \frac{\omega_{\psi_{\lambda}}(g) \phi\left(l_{1}+x_{1}, \ldots, l_{n}+x_{n}\right)}{} \varphi(g) d h_{\lambda} d h d g d x .
\end{aligned}
$$

Thus

$$
\begin{aligned}
(8.3 .1)= & \sum_{w_{1}, \ldots, w_{n} \in V_{\lambda}} \int_{\mathbb{A}_{F}^{n}} \int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)} \int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \overline{f\left(h_{\lambda} h\right)} \\
& \times \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1} h_{\lambda}^{-1} w_{1}+x_{1} h^{-1} v_{\lambda}^{0}, \ldots, h^{-1} h_{\lambda}^{-1} w_{n}+x_{n} h^{-1} v_{\lambda}^{0}\right) \\
& \times \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) \omega_{\psi_{\lambda}}(g) \phi\left(x_{1}, \ldots, x_{n}\right) \varphi(g) d h_{\lambda} d h d g d x .
\end{aligned}
$$

We define

$$
\begin{equation*}
\Phi^{0} * \bar{\phi}\left(w_{1}, \ldots, w_{n}\right)=\int_{\mathbb{A}_{F}^{n}} \Phi^{0}\left(w_{1}+x_{1} v_{\lambda}^{0}, \ldots, w_{n}+x_{n} v_{\lambda}^{0}\right) \overline{\phi\left(x_{1}, \ldots, x_{n}\right)} d x_{1} \cdots d x_{n} \tag{8.3.3}
\end{equation*}
$$

Then $\Phi^{0} * \bar{\phi} \in \mathcal{S}\left(V_{\lambda}\left(\mathbb{A}_{F}\right)^{n}\right)$.
It is straightforward to check that

$$
\widetilde{\Omega}_{\psi}\left(\widetilde{g}, h_{\lambda}\right)\left(\Phi^{0} * \bar{\phi}\right)=\left(\Omega_{\psi}^{0}\left(g, h_{\lambda}\right) \Phi^{0}\right) * \overline{\left(\omega_{\psi_{\lambda}}(\widetilde{g}) \phi\right)}, \quad \widetilde{g} \in \widetilde{G_{0}}\left(\mathbb{A}_{F}\right), h_{\lambda} \in H_{\lambda}\left(\mathbb{A}_{F}\right)
$$

where g is the image of \widetilde{g} in $G_{0}\left(\mathbb{A}_{F}\right)$. With this definition, we have

$$
\text { (8.3.1) }=\int_{H_{\lambda}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)}\left(\int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \overline{f\left(h_{\lambda} h\right)} \widetilde{\Theta}_{\psi}\left(\bar{\varphi},\left(\Omega_{\psi}^{0}(h) \Phi^{0}\right) * \bar{\phi}\right)\left(h_{\lambda}\right) d h_{\lambda}\right) \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) d h
$$

We summarize the above computation in the following lemma.
Lemma 8.3.1. We have

$$
\begin{aligned}
& \int_{G_{0}(F) \backslash G_{0}\left(\mathbb{A}_{F}\right)} \int_{N(F) \backslash N\left(\mathbb{A}_{F}\right)} \int_{H(F) \backslash H\left(\mathbb{A}_{F}\right)} \overline{f(h)} \Theta_{\psi}\left(n g, h, \Phi^{0} \otimes \Phi_{n+1}\right) \overline{\theta_{\psi_{\lambda}}(n g, \phi)} \varphi(g) d h d n d g \\
& \quad=\int_{H_{\lambda}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)}\left(\int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \overline{f\left(h_{\lambda} h\right)} \widetilde{\Theta}_{\psi}\left(\bar{\varphi},\left(\Omega_{\psi}^{0}(h) \Phi^{0}\right) * \bar{\phi}\right)\left(h_{\lambda}\right) d h_{\lambda}\right) \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) d h .
\end{aligned}
$$

8.4 Local Fourier-Jacobi periods of theta liftings

We now switch to the local situation. We fix a place v of F and suppress it from all notation. So F stands for a local field of characteristic zero. We have the local version of all of the previous objects, e.g. Weil representations, the representations π, σ, and the theta liftings $\Theta_{\psi}(\pi), \widetilde{\Theta}_{\psi}(\sigma)$, the orbit Λ_{λ} of v_{λ}^{0} under the action of $H(F)$, which is identified with $H_{\lambda}(F) \backslash H(F)$, etc. We denote by \mathcal{B} the inner products on various unitary representations.

The goal is to compute

$$
\begin{equation*}
\int_{G_{0}(F)} \int_{N(F)} \int_{H(F)} \overline{\mathcal{B}(\pi(h) f, f)} \mathcal{B}\left(\Omega_{\psi}(n g, h) \Phi, \Phi\right) \overline{\mathcal{B}\left(\omega_{\psi_{\lambda}}(n g) \phi, \phi\right)} \mathcal{B}(\sigma(g) \varphi, \varphi) d h d n d g \tag{8.4.1}
\end{equation*}
$$

where $\Phi=\Phi^{0} \otimes \Phi_{n+1}$ with $\Phi^{0} \in \mathcal{S}\left(V^{n}\right)$ and $\Phi_{n+1} \in \mathcal{S}(V)$.
The computation is parallel to the global computation as given in the previous subsection. The idea is again to unwind the definition of the Weil representations. The unfolding argument in the global situation is replaced by several integration formulas in the local case. The computation, however, is messy and technical. We list the main steps.
(i) Showing that the integral (8.4.1) is absolutely convergent. Thus, we may change the order of integration.
(ii) Computation of the integral over $N(F)$, namely,

$$
\int_{N(F)} \mathcal{B}\left(\Omega_{\psi}(n g, h) \Phi, \Phi\right) \overline{\mathcal{B}\left(\omega_{\psi_{\lambda}}(n \iota(g)) \phi, \phi\right)} d n
$$

for $g \in G_{0}(F)$ and $h \in H(F)$. The goal is to unwind the definition of the Weil representations and show that this integral equals (8.4.6). The key point in this step is the integral formula Lemma 8.4.3.

H. Xue

(iii) Simplifying the results from the previous step. Here we make use of the integration formula Lemma 8.4.4 which is a variant of the fact that Fourier transform preserves L^{2} norm of Schwartz functions. The final outcome is a clean expression (8.4.7) of the integral over $N(F)$.
(iv) Computing (8.4.1) using (8.4.7). The final result is summarized in Lemma 8.4.5. This steps requires no more than making change of variables.

We organize the following computation in the above described steps.
Step 1. Absolute convergence.
Lemma 8.4.1. The integral (8.4.1) is absolutely convergent.
Proof. In view of Proposition 2.2.1 (the case $r=1$), we only need to prove that for some $A>0$, we have

$$
\begin{equation*}
\int_{H(F)} \Xi(h)\left|\mathcal{B}\left(\Omega_{\psi}(g, h) \Phi, \Phi\right)\right| d h \ll \Xi(g)(1+\varsigma(g))^{A}, \quad g \in G(F) . \tag{8.4.2}
\end{equation*}
$$

Note that

$$
\left|\int_{H(F)} \Xi(h) \mathcal{B}\left(\Omega_{\psi}(g, h) \Phi, \Phi\right) d h\right| \ll \Xi(g)(1+\varsigma(g))^{A}, \quad g \in G(F),
$$

since the left-hand side is a matrix coefficient of a tempered representation.
Even though in general $\left|\mathcal{B}\left(\Omega_{\psi}(g, h) \Phi, \Phi\right)\right|$ is not a matrix coefficient of the Weil representation, we claim that it is dominated by a matrix coefficient of the Weil representation. In fact, by the Cartan decomposition, we only need to prove this when $g=a \in A_{G}^{+}$and $h=b \in A_{H}^{+}$. Then

$$
\left|\mathcal{B}\left(\Omega_{\psi}(g, h) \Phi, \Phi\right)\right| \leqslant \int_{V(F)^{n+1}}\left|\Phi\left(b^{-1} v a\right) \Phi(v)\right| d v
$$

We may find a Schwartz function Φ^{+}so that $|\Phi| \leqslant \Phi^{+}$(pointwise). We have proved the claim and hence the lemma.

Step 2. Computing the integral over $N(F)$.
We recall the following well-known lemma.
Lemma 8.4.2 [Liu16, Lemma 3.18]. There is a unique measure $\underline{d h}$ on $H_{\lambda}(F) \backslash H(F)$, such that for any $f \in \mathcal{S}(V)$, we have

$$
\int_{V} f(v) d v=\int_{F^{\times}} \int_{H_{\lambda}(F) \backslash H(F)} f\left(h^{-1} v_{\lambda}^{0}\right) \underline{d} h d \lambda,
$$

where $d v$ is the self-dual measure on V and $d \lambda$ is the self-dual measure on F.
For the rest of this section, when we use the notation \underline{d} to denote a measure on $H_{\lambda}(F) \backslash H(F)$, we always mean the measure defined in this lemma.

We need the following integration formula.
Lemma 8.4.3. Let $f \in \mathcal{S}(V)$. Then $\int_{V} f(v) \psi\left(\kappa q_{V}(v, v)\right) d v$ is absolutely integrable as a function of κ. Moreover,

$$
\begin{equation*}
\int_{F}\left(\int_{V} f(v) \psi\left(\kappa q_{V}(v, v)\right) d v\right) \psi(-\lambda \kappa) d \kappa=\int_{H_{\lambda}(F) \backslash H(F)} f\left(h^{-1} v_{\lambda}^{0}\right) \underline{d} h . \tag{8.4.3}
\end{equation*}
$$

Refined global Gan-Gross-Prasad conjecture

Proof. The integral $\int_{V} f(v) \psi\left(\kappa q_{V}(v, v)\right) d v$ equals

$$
\Phi_{f}^{n}\left(\left(\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right)\left(\begin{array}{ll}
1 & \kappa \\
& 1
\end{array}\right)\right),
$$

where Φ_{f}^{n} is the Siegel-Weil section of $\operatorname{Ind}^{\operatorname{SL}_{2}(F)} \chi_{V}|\cdot|^{s}$ at $s=s_{0}=n$. Then by the decomposition

$$
\left(\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right)\left(\begin{array}{ll}
1 & \kappa \\
& 1
\end{array}\right)=\left(\begin{array}{cc}
-\kappa^{-1} & 1 \\
& -\kappa
\end{array}\right)\left(\begin{array}{cc}
1 & \\
\kappa^{-1} & 1
\end{array}\right)
$$

the order of magnitude of $\int_{V} f(v) \psi\left(\kappa q_{V}(v, v)\right) d v$ is $|\kappa|^{-n-1}$ when $|\kappa|$ is large. The integrability then follows.

By Lemma 8.4.2,

$$
\int_{V} f(v) \psi\left(\kappa q_{V}(v, v)\right) d v=\int_{F^{\times}}\left(\int_{H_{\lambda^{\prime}}(F) \backslash H(F)} f\left(h^{-1} v_{\lambda^{\prime}}^{0}\right) \underline{d} h\right) \psi\left(-\lambda^{\prime} \kappa\right) d \lambda^{\prime} .
$$

Since f is Schwartz, $\int_{H_{\lambda^{\prime}}(F) \backslash H(F)} f\left(h^{-1} v_{\lambda^{\prime}}^{0}\right) \underline{d} h$ is integrable as a function of λ^{\prime} and is continuous on F^{\times}. The lemma then follows from the Fourier inversion formula.

Thanks to Lemma 8.4.1, we may change the order of integrations in (8.4.1). We integrate over $N(F)$ first. By definition,

$$
\begin{aligned}
\mathcal{B}\left(\Omega_{\psi}(n g, h) \Phi, \Phi\right)= & \int_{V^{n+1}} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1}\left(v_{1}+x_{1} v_{n+1}\right), \ldots, h^{-1}\left(v_{n}+x_{n} v_{n+1}\right)\right) \overline{\Phi^{0}\left(v_{1}, \ldots, v_{n}\right)} \\
& \times \psi\left(2 y_{1} q_{V}\left(v_{1}, v_{n+1}\right)+\cdots 2 y_{n} q_{V}\left(v_{n}, v_{n+1}\right)+\left(\kappa+y^{t} x\right) q_{V}\left(v_{n+1}, v_{n+1}\right)\right) \\
& \times \Phi_{n+1}\left(h^{-1} v_{n+1}\right) \overline{\Phi_{n+1}\left(v_{n+1}\right)} d v_{1} \cdots d v_{n+1} .
\end{aligned}
$$

Here $n=n(x, y, \kappa)$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in F^{n}, y=\left(y_{1}, \ldots, y_{n}\right) \in F^{n}, \kappa \in F$. It follows from Lemma 8.4.3 that

$$
\begin{align*}
& \int_{F} \int_{V^{n+1}} \Omega_{\psi}(n g, h) \Phi\left(v_{1}, \ldots, v_{n}, v_{n+1}\right) \overline{\Phi\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)} \psi(-\lambda \kappa) d v_{1} \cdots d v_{n} d v_{n+1} d \kappa \\
& \quad=\int_{H_{\lambda}(F) \backslash H(F)} \int_{V^{n}} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1}\left(v_{1}+x_{1} h^{\prime-1} v_{\lambda}^{0}\right), \ldots, h^{-1}\left(v_{n}+x_{n} h^{\prime-1} v_{\lambda}^{0}\right)\right) \overline{\Phi^{0}\left(v_{1}, \ldots, v_{n}\right)} \\
& \quad \times \psi\left(2 y_{1} q_{V}\left(v_{1}, h^{\prime-1} v_{\lambda}^{0}\right)+\cdots 2 y_{n} q_{V}\left(v_{n}, h^{\prime-1} v_{\lambda}^{0}\right)+\left(x_{1} y_{1}+\cdots x_{n} y_{n}\right) \lambda\right) \\
& \quad \times \Phi_{n+1}\left(h^{-1} h^{\prime-1} v_{\lambda}^{0}\right) \Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right) \tag{8.4.4}\\
&
\end{align*} v_{1} \cdots d v_{n} \underline{d} h^{\prime} .
$$

The integral on the right-hand side is absolutely convergent. In fact, the integrand is bounded by

$$
C\left|\Phi^{0}\left(v_{1}, \ldots, v_{n}\right) \Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right)\right|,
$$

where C is a constant which is independent of x and y.
By definition,

$$
\begin{aligned}
\mathcal{B}\left(\omega_{\psi_{\lambda}}(n(x, y, 0) \widetilde{g}) \phi, \phi\right)= & \int_{F^{n}} \omega_{\psi_{\lambda}}(\widetilde{g}) \phi\left(l_{1}+x_{1}, \ldots, l_{n}+x_{n}\right) \overline{\phi\left(l_{1}, \ldots, l_{n}\right)} \\
& \times \psi\left(\lambda y_{1}\left(x_{1}+2 l_{1}\right)+\cdots+\lambda y_{n}\left(x_{n}+2 l_{n}\right)\right) d l_{1} \cdots d l_{n},
\end{aligned}
$$

where $\widetilde{g} \in \widetilde{G_{0}}$.

H. Xue

We claim that

$$
\begin{equation*}
\int_{F^{2 n}} \int_{H_{\lambda}(F) \backslash H(F)} \int_{V^{n}}|*|\left|\mathcal{B}\left(\omega_{\psi_{\lambda}}(n(x, y, 0) \widetilde{g}) \phi, \phi\right)\right| d v_{1} \cdots d v_{n} \underline{d} h^{\prime} d x d y \tag{8.4.5}
\end{equation*}
$$

is convergent, where $*$ stands for the integrand of the right-hand side of (8.4.4). Indeed, this integral is bounded by the convergent integral

$$
\begin{aligned}
C & \times \int_{H_{\lambda}(F) \backslash H(F)} \int_{V^{n}}\left|\Phi\left(v_{1}, \ldots, v_{n}, v_{n+1}\right) \Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right)\right| d v_{1} \cdots d v_{n} \underline{d} h^{\prime} \\
& \times \int_{F^{2 n}}\left|\mathcal{B}\left(\omega_{\lambda}(n(x, y, 0) \widetilde{g}) \phi, \phi\right)\right| d x d y
\end{aligned}
$$

where C is some constant.
Thanks to the convergence of (8.4.5), we can change the order of the integration of $x, y \in F^{n}$ and $h^{\prime} \in H_{\lambda}(F) \backslash H(F)$. We end up with

$$
\int_{N(F)} \mathcal{B}\left(\Omega_{\psi}(n g, h) \Phi, \Phi\right) \overline{\mathcal{B}\left(\omega_{\psi_{\lambda}}(n \iota(g)) \phi, \phi\right)} d n
$$

equals the following integral:

$$
\begin{align*}
& \int_{H_{\lambda}(F) \backslash H(F)} \int_{F^{2 n}} \int_{V^{n}} \int_{F^{n}} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1}\left(v_{1}+x_{1} h^{\prime-1} v_{\lambda}^{0}\right), \ldots, h^{-1}\left(v_{n}+x_{n} h^{\prime-1} v_{\lambda}^{0}\right)\right) \\
& \quad \times \overline{\Phi^{0}\left(v_{1}, \ldots, v_{n}\right)} \\
& \quad \times \frac{\psi\left(2 y_{1} q_{V}\left(v_{1}, h^{\prime-1} v_{\lambda}^{0}\right)+\cdots+2 y_{n} q_{V}\left(v_{n}, h^{\prime-1} v_{\lambda}^{0}\right)+\left(x_{1} y_{1}+\cdots x_{n} y_{n}\right) \lambda\right)}{} \quad \times \overline{\omega_{\psi_{\lambda}}(\iota(g)) \phi\left(l_{1}+x_{1}, \ldots, l_{n}+x_{n}\right)} \phi\left(l_{1}, \ldots, l_{n}\right) \psi\left(-\lambda y_{1}\left(x_{1}+2 l_{1}\right)-\cdots-\lambda y_{n}\left(x_{n}+2 l_{n}\right)\right) \\
& \quad \times \Phi_{n+1}\left(h^{-1} h^{\prime-1} v_{\lambda}^{0}\right) \overline{\Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right)} d l_{1} \cdots d l_{n} d v_{1} \cdots d v_{n} d y_{1} \cdots d y_{n} d x_{1} \cdots d x_{n} \underline{d} h^{\prime} .
\end{align*}
$$

Step 3. Simplifying the three inner integrals of (8.4.6).
We need the following integration formula.
Lemma 8.4.4. Let f be a Schwartz function on V^{n} and ϕ a Schwartz function on F^{n}. Let $v^{0} \in V$ with $q_{V}\left(v^{0}, v^{0}\right)=\lambda$ and $\left\{v^{0}\right\}^{\perp}$ be its orthogonal complement. Then

$$
\begin{aligned}
& \int_{F^{n}} \int_{V^{n}} \int_{F^{n}} \psi\left(2 y_{1} q_{V}\left(v_{1}, v^{0}\right)+\cdots 2 y_{n} q_{V}\left(v_{n}, v^{0}\right)-2 y_{1} l_{1} \lambda-\cdots-2 y_{n} l_{n} \lambda\right) \\
& \quad \times f\left(v_{1}, \ldots, v_{n}\right) \overline{\phi\left(l_{1}, \ldots, l_{n}\right)} d l_{1} \cdots d l_{n} d v_{1} \cdots d v_{n} d y_{1} \cdots d y_{n}
\end{aligned}
$$

equals

$$
|2 \lambda|^{-n} \int_{\left(\left\{v^{0}\right\}^{\perp}\right)^{n}} \int_{F^{n}} f\left(l_{1} v^{0}+w_{1}, \ldots l_{n} v^{0}+w_{n}\right) \overline{\phi\left(l_{1}, \ldots, l_{n}\right)} d l_{1} \cdots d l_{n} d w_{1} \cdots d w_{n}
$$

Proof. Let \widehat{f} and $\widehat{\phi}$ be the Fourier transform of f and ϕ respectively (with respect to ψ). Then the first integral in the lemma equals

$$
\int_{F^{n}} \widehat{f}\left(2 y_{1} v^{0}, \ldots, 2 y_{n} v^{0}\right) \overline{\widehat{\phi}\left(2 y_{1} \lambda, \ldots, 2 y_{n} \lambda\right)} d y_{1} \cdots d y_{n}
$$

The lemma then follows from the fact that the Fourier transform preserves the inner product of Schwartz functions.

Refined global Gan-Gross-Prasad conjecture

Applying this lemma, we see that
Inner three integrals of (8.4.6)

$$
\begin{aligned}
= & |2 \lambda|^{-n} \int_{V_{\lambda}^{n}} \int_{F^{n}} \int_{F^{n}} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1} h^{\prime-1}\left(w_{1}+l_{1} v_{\lambda}^{0}+x_{1} v_{\lambda}^{0}\right), \ldots, h^{-1} h^{\prime-1}\left(w_{n}+l_{n} v_{\lambda}^{0}+x_{n} v_{\lambda}^{0}\right)\right) \\
& \times \overline{\Phi^{0}\left(w_{1}+l_{1} h^{\prime-1} v_{\lambda}^{0}, \ldots, w_{n}+l_{n} h^{\prime-1} v_{\lambda}^{0}\right)} \overline{\omega_{\psi_{\lambda}}(\iota(g)) \phi\left(l_{1}+x_{1}, \ldots, l_{n}+x_{n}\right)} \phi\left(l_{1}, \ldots, l_{n}\right) \\
& \times d w_{1} \cdots d w_{n} d l_{1} \cdots d l_{n} d x_{1} \cdots d x_{n} .
\end{aligned}
$$

This integral is absolutely convergent. We then make change of variables $x_{i} \mapsto x_{i}-l_{i}$. Then
Inner three integrals of (8.4.6)

$$
\left.\begin{aligned}
=\mid & 2
\end{aligned}\right|^{-n} \int_{V_{\lambda}^{n}} \int_{F^{n}} \int_{F^{n}} \Omega_{\psi}^{0}(g) \Phi^{0}\left(h^{-1} h^{\prime-1}\left(w_{1}+x_{1} v_{\lambda}^{0}\right), \ldots, h^{-1} h^{\prime-1}\left(w_{n}+x_{n} v_{\lambda}^{0}\right)\right), ~\left(\frac{\Phi^{0}\left(h^{\prime-1}\left(w_{1}+l_{1} v_{\lambda}^{0}\right), \ldots, h^{\prime-1}\left(w_{n}+l_{n} v_{\lambda}^{0}\right)\right)}{\omega_{\psi_{\lambda}}(\iota(g)) \phi\left(x_{1}, \ldots, x_{n}\right) \phi} \phi\left(l_{1}, \ldots, l_{n}\right) d l_{1} \cdots d l_{n} d w_{1} \cdots d w_{n} d x_{1} \cdots d x_{n} .\right.
$$

We define a local analogue of (8.3.3), i.e.

$$
\Phi^{0} * \bar{\phi}\left(v_{1}, \ldots, v_{n}\right)=\int_{F^{n}} \Phi^{0}\left(v_{1}+x_{1} v_{\lambda}^{0}, \ldots, v_{n}+x_{n} v_{\lambda}^{0}\right) \overline{\phi\left(x_{1}, \ldots, x_{n}\right)} d x_{1} \cdots d x_{n}
$$

Then $\Phi^{0} * \bar{\phi} \in \mathcal{S}\left(V_{\lambda}^{n}\right)$ and

$$
\widetilde{\Omega}_{\psi}\left(\widetilde{g}, h_{\lambda}\right)\left(\Phi^{0} * \bar{\phi}\right)=\left(\Omega_{\psi}^{0}\left(g, h_{\lambda}\right) \Phi^{0}\right) * \overline{\left(\omega_{\psi_{\lambda}}(\widetilde{g}) \phi\right)}, \quad \widetilde{g} \in \widetilde{G_{0}}(F), h_{\lambda} \in H_{\lambda}(F),
$$

where g is the image of \widetilde{g} in $G_{0}(F)$.
We conclude that

$$
\begin{align*}
(8.4 .6)= & |2 \lambda|^{-n} \int_{H_{\lambda}(F) \backslash H(F)} \mathcal{B}\left(\Omega_{\psi}^{0}\left(g, h^{\prime} h\right) \Phi * \overline{\omega_{\psi_{\lambda}}(g) \phi}, \Omega_{\psi}^{0}\left(h^{\prime}\right) \Phi * \bar{\phi}\right) \\
& \times \Phi_{n+1}\left(h^{-1} h^{\prime-1} v_{\lambda}^{0}\right) \overline{\Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right)} \underline{d} h^{\prime} . \tag{8.4.7}
\end{align*}
$$

Step 4. Computing (8.4.1) using (8.4.7).
Recall that we have fixed a measure on $H(F)$ and $H_{\lambda}(F)$, respectively. Let $d h^{\prime}$ be the quotient measure on $H_{\lambda}(F) \backslash H(F)$ and c a constant so that $c \cdot d h^{\prime}=\underline{d} h^{\prime}$ where $\underline{d} h^{\prime}$ is the measure on $H_{\lambda}(F) \backslash H(F)$ defined in Lemma 8.4.2. Then we get

$$
\begin{aligned}
\text { (8.4.1) }= & c \cdot|2 \lambda|^{-n} \int_{H_{\lambda} \backslash H} \int_{H} \int_{G_{0}} \overline{\mathcal{B}(\pi(h) f, f)} \mathcal{B}(\sigma(g) \varphi, \varphi) \mathcal{B}\left(\Omega_{\psi}^{0}\left(g, h^{\prime} h\right) \Phi * \overline{\omega_{\psi_{\lambda}}(g) \phi}, \Omega_{\psi}^{0}\left(h^{\prime}\right) \Phi * \bar{\phi}\right) \\
& \times \Phi_{n+1}\left(h^{-1} h^{\prime-1} v_{\lambda}^{0}\right) \overline{\Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right)} d g d h d h^{\prime} .
\end{aligned}
$$

We make a change of variable $h \mapsto h^{\prime-1} h$ and get

$$
\begin{aligned}
(8.4 .1)= & c \cdot|2 \lambda|^{-n} \iint_{H_{\lambda} \backslash H \times H} \int_{G_{0}} \overline{\mathcal{B}\left(\pi(h) f, \pi\left(h^{\prime}\right) f\right)} \mathcal{B}(\sigma(g) \varphi, \varphi) \mathcal{B}\left(\Omega_{\psi}^{0}(g, h)\right. \\
& \left.\times \Phi * \overline{\omega_{\psi_{\lambda}}(g) \phi}, \Omega_{\psi}^{0}\left(h^{\prime}\right) \Phi * \bar{\phi}\right) \\
& \times \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) \overline{\Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right)} d g d h d h^{\prime} .
\end{aligned}
$$

H. Xue

The group H_{λ} embeds in $H \times H$ diagonally. This integral is absolutely convergent.
We further split the integration over h as $h_{\lambda} h$ where $h_{\lambda} \in H_{\lambda}$ and $h \in H_{\lambda} \backslash H$. Then

$$
\begin{aligned}
\text { (8.4.1) }= & c \cdot|2 \lambda|^{-n} \int_{\left(H_{\lambda} \backslash H\right)^{2}} \int_{H_{\lambda}} \int_{G_{0}} \overline{\mathcal{B}\left(\pi\left(h_{\lambda} h\right) f, \pi\left(h^{\prime}\right) f\right)} \mathcal{B}(\sigma(g) \varphi, \varphi) \\
& \times \mathcal{B}\left(\widetilde{\Omega}_{\psi}\left(g, h_{\lambda}\right)\left(\Omega_{\psi}^{0}(h) \Phi * \bar{\phi}\right),\left(\Omega_{\psi}^{0}\left(h^{\prime}\right) \Phi * \bar{\phi}\right)\right) \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) \overline{\Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right)} d g d h_{\lambda} d h^{\prime} d h .
\end{aligned}
$$

We summarize the above computation into the following lemma.
Lemma 8.4.5. Suppose $\Phi=\Phi^{0} \otimes \Phi_{n+1}$ where $\Phi^{0} \in \mathcal{S}\left(V^{n}\right)$ and $\Phi_{n+1} \in \mathcal{S}(V)$. Then

$$
\begin{aligned}
\int_{G_{0}(F)} & \int_{N(F)} \int_{H(F)} \overline{\mathcal{B}(\pi(h) f, f)} \mathcal{B}\left(\Omega_{\psi}(n g, h) \Phi, \Phi\right) \overline{\mathcal{B}\left(\omega_{\psi_{\lambda}}(n g) \phi, \phi\right)} \mathcal{B}(\sigma(g) \varphi, \varphi) d h d n d g \\
= & c \cdot|2 \lambda|^{-n} \int_{\left(H_{\lambda} \backslash H\right)^{2}} \int_{H_{\lambda}}\left(\int_{G_{0}} \mathcal{B}(\sigma(g) \varphi, \varphi) \mathcal{B}\left(\widetilde{\Omega}_{\psi}\left(g, h_{\lambda}\right)\left(\Omega_{\psi}^{0}(h) \Phi * \bar{\phi}\right),\left(\Omega_{\psi}^{0}\left(h^{\prime}\right) \Phi * \bar{\phi}\right)\right) d g\right) \\
& \times \overline{\mathcal{B}\left(\pi\left(h_{\lambda} h\right) f, \pi\left(h^{\prime}\right) f\right) \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) \overline{\Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right)} d h_{\lambda} d h d h^{\prime} .}
\end{aligned}
$$

8.5 Proof of Theorem 8.1.1

By Lemma 8.3.1, we have

$$
\begin{aligned}
\left|\mathcal{F} \mathcal{J}_{\psi_{\lambda}}\left(\Theta_{\psi}(f, \Phi), \varphi, \phi\right)\right|^{2}= & \iint_{\left(H_{\lambda}\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)\right)^{2}} \Phi_{n+1}\left(h^{-1} v_{\lambda}^{0}\right) \overline{\Phi_{n+1}\left(h^{\prime-1} v_{\lambda}^{0}\right)} \\
& \times\left(\int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \overline{f\left(h_{\lambda} h\right)} \widetilde{\Theta}_{\psi}\left(\bar{\varphi},\left(\Omega_{\psi}^{0}(h) \Phi^{0}\right) * \bar{\phi}\right)\left(h_{\lambda}\right) d h_{\lambda}\right) \\
& \times \overline{\left(\int_{H_{\lambda}(F) \backslash H_{\lambda}\left(\mathbb{A}_{F}\right)} \overline{f\left(h_{\lambda}^{\prime} h^{\prime}\right)} \widetilde{\Theta}_{\psi}\left(\bar{\varphi},\left(\Omega_{\psi}^{0}\left(h^{\prime}\right) \Phi^{0}\right) * \bar{\phi}\right)\left(h_{\lambda}^{\prime}\right) d h_{\lambda}^{\prime}\right)} d h d h^{\prime} .
\end{aligned}
$$

We fix a sufficiently large finite set of places S of F so that if $v \notin S$, then the following conditions hold:
(i) v is non-archimedean, 2 and λ are in $\mathfrak{o}_{F, v}^{\times}$, the conductor of ψ is $\mathfrak{o}_{F, v}$;
(ii) the group A is unramified with a hyperspecial maximal compact subgroup $K_{A_{v}}=A\left(\mathfrak{o}_{F, v}\right)$ where $A=G, G_{0}, H, H_{\lambda}$;
(iii) f_{v} and φ_{v} are $K_{H_{v}}$ and $K_{G_{0, v}}$ fixed respectively; moreover, they are normalized so that $\mathcal{B}\left(f_{v}, f_{v}\right)=\mathcal{B}\left(\varphi_{v}, \varphi_{v}\right)=1$; in particular, π_{v} and σ_{v} are both unramified;
(iv) Φ_{v} is the characteristic function of $V\left(\mathfrak{o}_{F, v}\right)^{n+1}, \phi_{v}$ is the characteristic function of $\mathfrak{o}_{F, v}^{n}$;
(v) the volume of the hyperspecial maximal compact subgroup $K_{A_{v}}$ is 1 under the chosen measure on $A\left(F_{v}\right)$, where $A=G, G_{0}, H, H_{\lambda}$.

Lemma 8.5.1. If $v \notin S$, then $c_{v}=L_{v}\left(n+1, \chi_{V_{v}}\right)^{-1}$. Recall that $\underline{d} h_{v}=c_{v} \cdot d h_{\lambda, v} \backslash d h_{v}$ where $\underline{d} h_{v}$ is the measure defined in Lemma 8.4.2.

Proof. We denote temporarily by f_{v} the characteristic function of $V\left(\mathfrak{o}_{F, v}\right)$. Recall from the proof of Lemma 8.4.3 that

$$
\int_{H_{\lambda}\left(F_{v}\right) \backslash H\left(F_{v}\right)} f_{v}\left(h^{-1} v_{\lambda}^{0}\right) \underline{d} h=\int_{F_{v}} \Phi_{f_{v}}^{n}\left(\left(\begin{array}{ll}
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \kappa \\
& 1
\end{array}\right)\right) \psi_{v}(-\lambda \kappa) d \kappa
$$

where $\Phi_{f_{v}}^{n}$ is the Siegel-Weil section of $\operatorname{Ind}^{\mathrm{SL}_{2}\left(F_{v}\right)} \chi_{V_{v}}|\cdot|{ }^{s}$ at $s=s_{0}=n$. It is well-known that the right-hand side equals $L_{v}\left(n+1, \chi_{V_{v}}\right)^{-1}$.

Refined global Gan-Gross-Prasad conjecture

We note that since $\lambda \in \mathfrak{o}_{F, v}^{\times}$, the orbit Λ_{λ} of v_{λ}^{0} is defined over $\mathfrak{o}_{F, v}$. The group $H\left(\mathfrak{o}_{F, v}\right)$ acts transitively on $V_{\lambda}\left(\mathfrak{o}_{F, v}\right)$. Therefore, $H_{\lambda}\left(\mathfrak{o}_{F, v}\right) \backslash H\left(\mathfrak{o}_{F, v}\right) \rightarrow \Lambda_{\lambda}\left(\mathfrak{o}_{F, v}\right)$ is a bijection. Thus, $f_{v}\left(h^{-1} v_{\lambda}^{0}\right)=\mathbf{1}_{H_{\lambda}\left(\mathfrak{o}_{F, v}\right) \backslash H\left(\mathfrak{o}_{F, v}\right)}(h)$. Therefore, under the quotient measure $d h_{\lambda, v} \backslash d h_{v}$, the left-hand side equals one. The lemma then follows.

Lemma 8.5.2. We have

$$
\prod_{v \in S} c_{v}=L^{S}\left(n+1, \chi_{V}\right) .
$$

Proof. It follows from Lemma 8.2.1 that $\prod_{v} c_{v}=1$. Then

$$
\prod_{v \in S} c_{v}=\prod_{v \notin S} c_{v}^{-1}=L^{S}\left(n+1, \chi_{V}\right) .
$$

Conjecture 6.3.1, the Rallis' inner product formula (for theta lifting from $\widetilde{G_{0}}$ to H_{λ}) and Lemma 8.4.5 lead to

$$
\begin{aligned}
\left|\mathcal{F} \mathcal{J}_{\psi_{\lambda}}\left(\Theta_{\psi}(f, \Phi), \varphi, \phi\right)\right|^{2}= & \frac{2^{\gamma-1}}{\left|S_{\pi}\right|\left|S_{\widetilde{\Theta}_{\psi}(\sigma)}\right|} \frac{L^{S}\left(\frac{1}{2}, \pi \times \widetilde{\Theta}_{\psi}(\sigma)\right)}{L^{S}(1, \pi, \operatorname{Ad}) L^{S}\left(1, \widetilde{\Theta}_{\psi}(\sigma), \mathrm{Ad}\right)} \\
& \times \Delta_{H(V)}^{S} \cdot \frac{L_{\psi_{\lambda}}^{S}\left(\frac{1}{2}, \sigma \times \chi_{V_{\lambda}}\right)}{\prod_{j=1}^{n} \zeta_{F}^{S}(2 j)} \prod_{v \in S} c_{v}^{-1} \int_{G_{0}\left(F_{v}\right)} \int_{N\left(F_{v}\right)} \int_{H\left(F_{v}\right)} \\
& \times \mathcal{B}_{v}\left(\overline{\left.\left(h_{v}\right) f_{v}, f_{v}\right) \mathcal{B}_{v}\left(\Omega_{\psi_{v}}\left(h_{v}, n_{v} g_{v}\right) \Phi_{v}, \Phi_{v}\right)}\right. \\
& \times \overline{\mathcal{B}}_{v}\left(\omega_{\psi_{\lambda, v}}\left(n_{v} g_{v}\right) \phi_{v}, \phi_{v}\right) \mathcal{B}_{v}\left(\sigma_{v}\left(g_{v}\right) \varphi_{v}, \varphi_{v}\right) d h_{v} d n_{v} d g_{v},
\end{aligned}
$$

where γ is described as in Conjecture 6.3.1.
We then apply the Rallis inner product formula for the theta lifting from H to G. We conclude that

$$
\begin{aligned}
& \left|\mathcal{F} \mathcal{J}_{\psi_{\lambda}}(\xi, \varphi, \phi)\right|^{2} \\
& =\frac{2^{\gamma-1}}{\left|S_{\pi}\right|\left|S_{\Theta_{\psi}(\sigma)}\right|} \frac{L^{S}\left(\frac{1}{2}, \pi \times \widetilde{\Theta}_{\psi}(\sigma)\right)}{L^{S}(1, \pi, \operatorname{Ad}) L^{S}\left(1, \widetilde{\Theta}_{\psi}(\sigma), \mathrm{Ad}\right)} \\
& \quad \times \Delta_{H}^{S} \cdot \frac{L_{\psi}^{S}\left(\frac{1}{2}, \sigma \times \chi V_{\lambda}\right)}{\prod_{j=1}^{n} \zeta_{F}^{S}(2 j)}\left(\frac{L^{S}(1, \pi)}{\prod_{i=1}^{n} \zeta_{F}^{S}(2 i) L^{S}\left(n+1, \chi_{V}\right)}\right)^{-1} L^{S}\left(n+1, \chi_{V}\right)^{-1} \\
& \quad \times \prod_{v \in S} \int_{G_{0}\left(F_{v}\right)} \int_{N\left(F_{v}\right)} \mathcal{B}_{v}\left(\Theta_{\psi_{v}}\left(\pi_{v}\right)\left(n_{v} g_{v}\right) \xi_{v}, \xi_{v}\right) \overline{\mathcal{B}_{v}\left(\omega_{\psi_{\lambda, v}}\left(n_{v} g_{v}\right) \phi_{v}, \phi_{v}\right)} \mathcal{B}_{v}\left(\sigma_{v}\left(g_{v}\right) \varphi_{v}, \varphi_{v}\right) d n_{v} d g_{v},
\end{aligned}
$$

where $\xi=\otimes \xi_{v} \in \Theta_{\psi}(\pi)$. Note that $\left|S_{\pi}\right|\left|S_{\tilde{\Theta}_{\psi}(\sigma)}\right|=2^{\gamma-1}\left|S_{\Theta_{\psi}(\pi)}\right|\left|S_{\sigma}\right|$ by Lemma 5.2.3. Conjecture 2.3.1(3) then follows from Lemma 5.2.2.

8.6 A variant

So far we considered the case $\operatorname{Sp}(2 n+2) \times \operatorname{Mp}(2 n)$. The case $\operatorname{Mp}(2 n+2) \times \operatorname{Sp}(2 n)$ is similar. We only mention the following theorem.

Let $\left(V, q_{V}\right)$ be a $(2 n+3)$-dimensional orthogonal space and $H=\mathrm{O}(V)$. Suppose that $\lambda \in F^{\times}$ and there is an element $v_{\lambda}^{0} \in V$ such that $q_{V}\left(v_{\lambda}^{0}, v_{\lambda}^{0}\right)=\lambda$. Let V_{λ} be the orthogonal complement of v_{λ}^{0} and $H_{\lambda}=\mathrm{O}\left(V_{\lambda}\right)$. Let π be an irreducible cuspidal tempered automorphic representation of $H\left(\mathbb{A}_{F}\right)$ and $\Theta_{\psi}(\pi)$ its theta lift to $\operatorname{Mp}(2 n+2)\left(\mathbb{A}_{F}\right)$ (with additive character ψ). Let σ be

H. Xue

an irreducible cuspidal tempered automorphic representation of $\operatorname{Sp}(2 n)\left(\mathbb{A}_{F}\right)$ and $\Theta_{\psi}(\sigma)$ its theta lift to $H_{\lambda}\left(\mathbb{A}_{F}\right)$.

Theorem 8.6.1. Suppose that $\Theta_{\psi}(\pi)$ and $\Theta_{\psi}(\sigma)$ are both cuspidal. If Conjecture 6.3.1 holds for $\left(\pi, \Theta_{\psi}(\sigma)\right)$, then Conjecture 2.3.1(3) holds for $\left(\Theta_{\psi}(\pi), \sigma\right)$ (with the additive character ψ_{λ}).

The proof of Theorem 8.6.1 is analogues to Theorem 8.1.1 and we leave the details to the interested reader.

Acknowledgements

I thank Atsushi Ichino for pointing out to me the inaccuracy in [II10] and some inaccuracies in an early draft of this paper. I thank Raphael Beuzart-Plessis, Wee Teck Gan, Yifeng Liu, Bin Xu, Wei Zhang and Shou-Wu Zhang for many helpful discussions. I am also grateful for the anonymous referee for the careful reading of the manuscript and the numerous suggestions which greatly improve the exposition of this paper.

References

Art89 J. Arthur, Intertwining operators and residues. I. Weighted characters, J. Funct. Anal. 84 (1989), 19-84, doi:10.1016/0022-1236(89)90110-9; MR 999488 (90j:22018).

Art13 J. Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61 (American Mathematical Society, Providence, RI, 2013), Orthogonal and symplectic groups; MR 3135650.
Ato15 H. Atobe, The local theta correspondence and the local Gan-Gross-Prasad conjecture for the symplectic-metaplectic case, Preprint (2015), arXiv:1502.03528v2.
AG16 H. Atobe and W. T. Gan, On the local Langlands correspondence for quasi-split even orthogonal groups, Preprint (2016), arXiv:1602.01297.
Beu15 R. Beuzart-Plessis, A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case, Preprint (2015), arXiv:1506.01452.
Beu16 R. Beuzart-Plessis, Comparison of local spherical characters and the Ichino-Ikeda conjecture for unitary groups, Preprint (2015), arXiv:1602.06538.
DM78 J. Dixmier and P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2) 102 (1978), 307-330 (French, with English summary); MR 517765 (80f:22005).
GGP12 W. T. Gan, B. H. Gross and D. Prasad, Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1-109 (English, with English and French summaries), Sur les conjectures de Gross et Prasad. I; MR 3202556.
GI11 W. T. Gan and A. Ichino, On endoscopy and the refined Gross-Prasad conjecture for $\left(\mathrm{SO}_{5}, \mathrm{SO}_{4}\right)$, J. Inst. Math. Jussieu 10 (2011), 235-324, doi:10.1017/S1474748010000198; MR 2787690.

GI14 W. T. Gan and A. Ichino, Formal degrees and local theta correspondence, Invent. Math. 195 (2014), 509-672, doi:10.1007/s00222-013-0460-5; MR 3166215.

GI16 W. T. Gan and A. Ichino, Gross-Prasad conjectures and local theta correspondences, Invent. Math. 206 (2016), 705-799, doi:10.1007/s00222-016-0662-8; MR 3573972.
GQT14 W. T. Gan, Y. Qiu and S. Takeda, The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math. 198 (2014), 739-831, doi:10.1007/s00222-014-0509-0; MR 3279536.
GS12 W. T. Gan and G. Savin, Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence, Compos. Math. 148 (2012), 1655-1694, doi:10.1112/S0010437X12000486; MR 2999299.

Refined global Gan-Gross-Prasad conjecture

GJRS11 D. Ginzburg, D. Jiang, S. Rallis and D. Soudry, L-functions for symplectic groups using Fourier-Jacobi models, in Arithmetic geometry and automorphic forms, Advanced Lectures in Mathematics (ALM), vol. 19 (International Press, Somerville, MA, 2011), 183-207; MR 2906909.

GRS11 D. Ginzburg, S. Rallis and D. Soudry, The descent map from automorphic representations of GL (n) to classical groups (World Scientific, Hackensack, NJ, 2011), doi:10.1142/9789814304993; MR 2848523 (2012g:22020).
Gro97 B. H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), 287-313, doi:10.1007/s0022200501; MR 1474159 (98m:20060).

Har75 Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Funct. Anal. 19 (1975), 104-204; MR 0399356.

Har11 R. N. Harris, A refined gross-prasad conjecture for unitary groups, PhD thesis, University of California, San Diego ProQuest LLC, Ann Arbor, MI, 2011; MR 2890098.
HT01 M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich; MR 1876802 (2002m:11050).
He03 H. He, Unitary representations and theta correspondence for type I classical groups, J. Funct. Anal. 199 (2003), 92-121, doi:10.1016/S0022-1236(02)00170-2; MR 1966824 (2004b:22016).
Hen00 G. Henniart, Une preuve simple des conjectures de Langlands pour $\mathrm{GL}(n)$ sur un corps p-adique, Invent. Math. 139 (2000), 439-455 (French, with English summary), doi:10.1007/s002220050012; MR 1738446 (2001e:11052).
Ich05 A. Ichino, Pullbacks of Saito-Kurokawa lifts, Invent. Math. 162 (2005), 551-647, doi:10.1007/s00222-005-0454-z; MR 2198222 (2007d:11048).
II02 A. Ichino and T. Ikeda, On Maass lifts and the central critical values of triple product L functions, Amer. J. Math. 130 (2008), 75-114, doi:10.1353/ajm.2008.0006; MR 2382143 (2009d:11079).
II10 A. Ichino and T. Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), 1378-1425, doi:10.1007/s00039-009-0040-4; MR 2585578 (2011a:11100).
JR11 H. Jacquet and S. Rallis, On the Gross-Prasad conjecture for unitary groups, on certain Lfunctions, Clay Mathematics Monographs, vol. 13 (American Mathematical Society, Providence, RI, 2011), 205-264; MR 2767518 (2012d:22026).
JS76/77 H. Jacquet and J. A. Shalika, A non-vanishing theorem for zeta functions of GL ${ }_{n}$, Invent. Math. 38 (1976/77), 1-16; MR 0432596 (55 \#5583).
JS81 H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), 777-815, doi:10.2307/2374050; MR 623137 (82m:10050b).
Lan89 R. P. Langlands, On the classification of irreducible representations of real algebraic groups, in Representation theory and harmonic analysis on semisimple Lie groups, Mathematical Surveys and Monographs, vol. 31 (American Mathematical Society, Providence, RI, 1989), 101-170, doi:10.1090/surv/031/03; MR 1011897 (91e:22017).
LM14 E. Lapid and Z. Mao, On an analogue of the Ichino-Ikeda conjecture for Whittaker coefficients on the metaplectic group, Preprint (2014), arXiv:1404.2905v2.
LM15a E. Lapid and Z. Mao, A conjecture on Whittaker-Fourier coefficients of cusp forms, J. Number Theory 146 (2015), 448-505; doi:10.1016/j.jnt.2013.10.003; MR 3267120.
LM15b E. Lapid and Z. Mao, Model transition for representations of metaplectic type, Int. Math. Res. Not. IMRN 2015 (2015), 9486-9568; with an appendix by Marko Tadić, doi:10.1093/imrn/rnu225; MR 3431601.

H. Xue

LM15c E. Lapid and Z. Mao, Whittaker-Fourier coefficients of cusp forms on $\widetilde{\mathrm{Sp}}(n)$: reduction to a local statement, J. Number Theory 146 (2015), 448-505, doi:10.1016/j.jnt.2013.10.003; MR 3267120.
LR05 E. M. Lapid and S. Rallis, On the local factors of representations of classical groups, in Automorphic representations, L-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11 (de Gruyter, Berlin, 2005), 309-359 (to appear in print), doi:10.1515/9783110892703.309; MR 2192828 (2006j:11071).

Li15 W.-W. Li, La formule des traces stable pour le groupe métaplectique: les termes elliptiques, Invent. Math. 202 (2015), 743-838 (French, with French summary), doi:10.1007/s00222-015-0577-9; MR 3418244.
Liu14 Y. Liu, Relative trace formulae toward Bessel and Fourier-Jacobi periods on unitary groups, Manuscripta Math. 145 (2014), 1-69, doi:10.1007/s00229-014-0666-x; MR 3244725.
Liu16 Y. Liu, Refined global Gan-Gross-Prasad conjecture for Bessel periods, J. Reine Angew. Math. 717 (2016), 133-194, doi:10.1515/crelle-2014-0016; MR 3530537.
LS13 Y. Liu and B. Sun, Uniqueness of Fourier-Jacobi models: the Archimedean case, J. Funct. Anal. 265 (2013), 3325-3344, doi:10.1016/j.jfa.2013.08.034; MR 3110504.
Pau05 A. Paul, On the Howe correspondence for symplectic-orthogonal dual pairs, J. Funct. Anal. 228 (2005), 270-310, doi:10.1016/j.jfa.2005.03.015; MR 2175409 (2006g:20076).

Qiu14 Y. Qiu, Periods of Saito-Kurokawa representations, Int. Math. Res. Not. IMRN 2014 (2014), 6698-6755; MR 3291638.
Ral84 S. Rallis, On the Howe duality conjecture, Compos. Math. 51 (1984), 333-399; MR 743016 ($85 \mathrm{~g}: 22034$).
Ran93 R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), 335-371; MR 1197062 (94a:22037).
She14 X. Shen, The Whittaker-Shintani functions for symplectic groups, Int. Math. Res. Not. IMRN 2014 (2014), 5769-5831; MR 3273064.
Sil79 A. J. Silberger, Introduction to harmonic analysis on reductive p-adic groups, Mathematical Notes, vol. 23 (Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1979), Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971-1973; MR 544991.
Sun09 B. Sun, Bounding matrix coefficients for smooth vectors of tempered representations, Proc. Amer. Math. Soc. 137 (2009), 353-357, doi:10.1090/S0002-9939-08-09598-1; MR 2439460 (2010g:22023).
Sun12 B. Sun, Multiplicity one theorems for Fourier-Jacobi models, Amer. J. Math. 134 (2012), 1655-1678, doi:10.1353/ajm.2012.0044; MR 2999291.
SZ12 B. Sun and C.-B. Zhu, Multiplicity one theorems: the Archimedean case, Ann. of Math. (2) $\mathbf{1 7 5}$ (2012), 23-44, doi:10.4007/annals.2012.175.1.2; MR 2874638.

Wal81 J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), 375-484 (French); MR 646366 (83h:10061).

Wal12 J.-L. Waldspurger, Une formule intégrale reliée à la conjecture locale de Gross-Prasad, 2e partie: extension aux représentations tempérées, Astérisque 346 (2012), 171-312 (French, with English and French summaries), Sur les conjectures de Gross et Prasad. I; MR 3202558.
Xue14 H. Xue, The Gan-Gross-Prasad conjecture for $\mathrm{U}(n) \times \mathrm{U}(n)$, Adv. Math. 262 (2014), 1130-1191, doi:10.1016/j.aim.2014.06.010; MR 3228451.
Xue16 H. Xue, Fourier-Jacobi periods and the central value of Rankin-Selberg L-functions, Israel J. Math. 212 (2016), 547-633, doi:10.1007/s11856-016-1300-2; MR 3505397.
Yam11 S. Yamana, On the Siegel-Weil formula: the case of singular forms, Compos. Math. 147 (2011), 1003-1021, doi:10.1112/S0010437X11005379; MR 2822859.

Yam14 S. Yamana, L-functions and theta correspondence for classical groups, Invent. Math. 196 (2014), 651-732, doi:10.1007/s00222-013-0476-x; MR 3211043.
Zha14a W. Zhang, Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. of Math. (2) 180 (2014), 971-1049; MR 3245011.
Zha14b W. Zhang, Automorphic period and the central value of Rankin-Selberg L-function, J. Amer. Math. Soc. 27 (2014), 541-612, doi:10.1090/S0894-0347-2014-00784-0; MR 3164988.

Hang Xue xuehang@ias.edu
School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

[^0]: Received 15 June 2015, accepted in final form 13 June 2016, published online 19 January 2017. 2010 Mathematics Subject Classification 11F70 (primary).
 Keywords: Gan-Gross-Prasad conjectures, Fourier-Jacobi periods.
 This material is based upon work supported by the National Science Foundation under agreement No. DMS1128115.

 This journal is © Foundation Compositio Mathematica 2017.

