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Abstract

In this paper, we propose a conjectural identity between the Fourier–Jacobi periods on
symplectic groups and the central value of certain Rankin–Selberg L-functions. This
identity can be viewed as a refinement to the global Gan–Gross–Prasad conjecture for
Sp(2n)×Mp(2m). To support this conjectural identity, we show that when n = m and
n = m± 1, it can be deduced from the Ichino–Ikeda conjecture in some cases via theta
correspondences. As a corollary, the conjectural identity holds when n = m = 1 or when
n = 2, m = 1 and the automorphic representation on the bigger group is endoscopic.

1. Introduction

In this paper, we propose a conjectural identity between the Fourier–Jacobi periods on symplectic
groups and the central value of certain Rankin–Selberg L-functions. This identity can be viewed
as a refinement to the (global) Gan–Gross–Prasad conjecture [GGP12] for Sp(2n)×Mp(2m).

The Gan–Gross–Prasad conjecture predicts that the nonvanishing of certain periods is
equivalent to the nonvanishing of the central value of certain L-functions. There are two types
of periods: Bessel periods and Fourier–Jacobi periods. Bessel periods are periods of automorphic
forms on orthogonal groups or hermitian unitary groups. A lot of work has been devoted to
the study of Bessel periods, starting from the pioneering work of Waldspurger [Wal81]. In their
seminal work [II10], based on an extensive study of the known low-rank examples, Ichino and
Ikeda proposed a precise formula relating the Bessel periods on SO(n + 1) × SO(n) and the
central value of some Rankin–Selberg L-functions. The analogous formula for Bessel periods on
the hermitian unitary groups U(n+1)×U(n) has been worked out by Harris in his thesis [Har11].
Zhang [Zha14a, Zha14b] then proved a large part of the conjectural formula for U(n+ 1)×U(n),
using the relative trace formulae proposed by Jacquet and Rallis [JR11]. This has been further
improved by Beuzart-Plessis [Beu16]. Recently, Liu [Liu16] proposed a conjectural formula for
Bessel periods in general, i.e. the Bessel periods on SO(n+2r+1)×SO(n) or U(n+2r+1)×U(n).
Some low-rank cases have also been considered in [Liu16].

There is a parallel theory for the Fourier–Jacobi periods. They are the periods of automorphic
forms on Mp(2n + 2r) × Sp(2n) or U(n + 2r) × U(n). The case of Fourier–Jacobi periods on
U(n)×U(n) has been considered in [Xue14, Xue16]. We proposed a conjectural formula relating
the Fourier–Jacobi periods on U(n)×U(n) and the central value of some L-functions. We proved
this conjectural formula in some cases, using the relative trace formula proposed by Liu [Liu14].
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Refined global Gan–Gross–Prasad conjecture

In the other extreme case, where one of the groups is trivial, the Fourier–Jacobi periods are
simply the Whittaker–Fourier coefficients. In this situation, Lapid and Mao [LM15a] proposed a
formula computing the norm of the Whittaker–Fourier coefficients. In a series of papers [LM15c,
LM15b, LM14], they proved the formula for Whittaker–Fourier coefficients on Mp(2n), under
some simplifying conditions at the archimedean places.

The goal of this paper is to formulate a conjectural identity between the Fourier–Jacobi
periods and the central value of some Rankin–Selberg L-functions for symplectic groups. We
also verify that this conjecture is compatible with the Ichino–Ikeda conjecture in some cases. As
a corollary, the conjectural identity holds in some low-rank cases. We now describe our results
in more detail.

For simplicity, in the introduction, we consider only the Fourier–Jacobi periods on Sp(2n+
2r)×Mp(2n) (r > 0). The case r < 0 will be explained in the main context of the paper. Let F
be a number field and ψ : F\AF → C× be a nontrivial additive character. Let (W2, q2) be the
symplectic space over F with an orthogonal decomposition W0 + R + R∗ where R and R∗ are
isotropic subspaces and R + R∗ is the direct sum of r − 1 hyperbolic planes. We fix a complete
filtration of R and let Nr−1 be the unipotent radical of the parabolic subgroup of G2 fixing the
complete filtration.

Let G2 = Sp(W2), G0 = Sp(W0) and G̃0 = Mp(W0) (the metaplectic double cover). Let
π2 (respectively π0) be an irreducible cuspidal tempered (respectively genuine) automorphic

representation of G2(AF ) (respectively G̃0(AF )). Let ϕ2 ∈ π2 and ϕ0 ∈ π0. Let H = W0 n F be

the Heisenberg group attached to W0 and ωψ be the Weil representation of H(AF ) o G̃0(AF )
which is realized on the Schwartz space S(AnF ). Let φ ∈ S(AnF ) be a Schwartz function and

θψ(·, φ) be a theta series on H(AF ) o G̃0(AF ). Let ψr−1 be an automorphic generic character of
Nr−1(AF ) which is stable under the conjugation action of H(AF )oG0(AF ). The Fourier–Jacobi
period of (ϕ2, ϕ0, φ) is the following integral

FJ ψ(ϕ2, ϕ0, φ)

=

∫

G0(F )\G0(AF )

∫

H(F )\H(AF )

∫

Nr−1(F )\Nr−1(AF )
ϕ2(uhg0)ϕ0(g0)ψr−1(u)θψ(hg0, φ) du dh dg0.

(1.0.1)

This integral is absolutely convergent since ϕ2 and ϕ0 are both cuspidal. It defines an element
in

HomNr−1(AF )o(H(AF )oG0(AF ))(π2 ⊗ π0 ⊗ ωψ ⊗ ψr−1,C).

This space is at most one dimensional [LS13, Sun12].
The Gan–Gross–Prasad conjecture predicts [GGP12, Conjecture 26.1] that if the above Hom-

space is not zero, then the integral (1.0.1) does not vanish identically if and only if LSψ(1
2 , π2×π0)

is nonvanishing, where S is a sufficiently large finite set of places of F and LSψ(s, π2 × π0) is the
tensor product L-function of π2 and π0 (note that this L-function depends on ψ).

The conjectural identity that we propose is

|FJ ψ(ϕ2, ϕ0, φ)|2 =
∆S
G2

|Sπ2 ||Sπ0 |
LSψ(1

2 , π2 × π0)

LS(1, π2,Ad)LSψ(1, π0,Ad)
×
∏

v∈S
αv(ϕ2,v, ϕ0,v, φv), (1.0.2)

where:

– ϕ2 =
⊗
ϕ2,v, ϕ0,v =

⊗
ϕ0,v, φ =

⊗
φv;

– ∆S
G2

=
∏n+r
i=1 ζ

S
F (2i);
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– LSψ(s, π2×π0) is the tensor product L-function and LS(s, π2,Ad), LSψ(1, π0,Ad) are adjoint

L-functions;

– αv is a local linear form defined by integration of matrix coefficients (see § 2.2 for the

definition); it is expected that αv 6= 0 if and only if HomNr−1(Fv)o(H(Fv)oG0(Fv))(π2,v⊗π0,v⊗
ψr−1,v ⊗ ωψv ,C) 6= 0;

– dg0 in the definition of FJ ψ is the Tamagawa measure on G0(AF ), du and dh are the

self-dual measures on Nr−1(AF ) and H(AF ) respectively;

– Sπ2 and Sπ0 are centralizers of the L-parameters of π2 and π0, respectively; they are abelian

2-groups (see § 2.3 for a discussion).

This conjectural identity can be viewed as a refinement to the Gan–Gross–Prasad conjecture.

It is motivated by the existing conjectural identities of this type [II10, Liu16, Har11, Xue16].

The conjectural identity claims that we should expect the same for both of the Bessel periods

and the Fourier–Jacobi periods. In the first part of this paper, we show that the conjectural

identity (1.0.2) is well-defined, i.e. the local linear form αv is well-defined and the right-hand side

of (1.0.2) is independent of the set S. In the definition of the local linear form αv, we introduce a

new way to regularize a divergent oscillating integral over a unipotent group. This gives the same

results as the existing regularizations [LM15a, Liu16], but has the advantage of being elementary,

purely function theoretic and uniform for both archimedean and non-archimedean places.

One might be asking what happens for the Fourier–Jacobi periods on skew-hermitian unitary

groups. An identity similar to (1.0.2) should also hold. We exclude that in the present paper

for two reasons. First, sticking to the symplectic groups greatly simplifies the notation. More

importantly, in showing that the right-hand side of (1.0.2) is independent of S, we make use of

some results in [GJRS11]. The analogue results for unitary groups have not appeared in print

yet. Jiang has informed the author that Shen and Zhang are working on a more general version

of the results in [GJRS11], which should cover Fourier–Jacobi periods for both symplectic groups

and skew-hermitian unitary groups. Once such results are available, one can then formulate the

refined Gan–Gross–Prasad conjecture in the context of skew-hermitian unitary groups.

To support our conjecture, in the second part of this paper, we show, under some hypothesis

on the local and global Langlands correspondences which we will state in § 5, that our conjecture

is compatible with the Ichino–Ikeda conjecture in some cases. Thus (1.0.2) holds in some low-rank

cases when the Ichino–Ikeda conjecture is known. We have the following cases.

(i) If n = 1 and r = 0, then (1.0.2) has been proved in [Qiu14, Theorem 4.5].

(ii) If r = 0 and π2 is a theta lift of some irreducible cuspidal tempered automorphic

representation of O(2n), then (1.0.2) can be deduced from the Ichino–Ikeda conjecture for

SO(2n + 1) × SO(2n). In this case, if π0 is not a theta lift from any O(2n + 1), then both

sides of (1.0.2) vanish.

(iii) If r = 1 and π2 is a theta lift of some irreducible cuspidal tempered automorphic

representation of O(2n + 2), then (1.0.2) can be deduced from the Ichino–Ikeda conjecture for

SO(2n + 2)× SO(2n + 1). In this case, if π0 is not a theta lift from O(2n + 1), then both sides

of (1.0.2) vanish. In particular, when n = 1, (1.0.2) holds for Sp(4)×Mp(2), if the automorphic

representation on Sp(4) is a theta lift from O(4).

See Theorems 7.1.1 and 8.1.1 for the precise statements. See also Theorem 8.6.1 for an

analogous statement in the case r = −1. In the course of proving these results, we derive a

variant for the Ichino–Ikeda conjecture for the full orthogonal group, cf. Conjecture 6.3.1 and

70

https://doi.org/10.1112/S0010437X16007752 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007752


Refined global Gan–Gross–Prasad conjecture

Proposition 6.3.3. The author hopes that this variant is of some independent interest. See [GI11]
for the case of the triple product formula on GO(4).

Ichino informed the author that there are some minor inaccuracies in the original formulation
of the Ichino–Ikeda conjecture [II10, Conjecture 2.1] when the automorphic representation on
the even orthogonal group appears with multiplicity two in the discrete automorphic spectrum.
In this case, one needs to specify an automorphic realization. Moreover, the size of the centralizer
of the Arthur parameter needs to be modified accordingly. We will take care of this modification
in § 6.

It is expected that our conjecture is compatible with the refined Gan–Gross–Prasad
conjecture for SO(2n + 2r + 1) × SO(2n) proposed by Liu [Liu16]. To keep this paper within a
reasonable length, we postpone to check this more general compatibility in a future paper.

This paper is organized as follows. The first part of the paper consists of §§ 2–4. In § 2, we first
define the Fourier–Jacobi periods and the local linear form αv. Then we state the conjectural
formula for the Fourier–Jacobi periods. In § 3, we show that the local linear form αv is well-
defined, i.e. its defining integral is either absolutely convergent or can be regularized. We also
prove a positivity result for αv. In § 4, we compute αv when all of the data involved are unramified.
The argument is mostly adapted from [Liu16]. The second part of this paper consists of §§ 5–8.
In § 5, we state some working hypotheses on the local and global Langlands correspondences
and make some remarks on the theta correspondences. For orthogonal groups and symplectic
groups, these hypotheses should follow from the work of Arthur [Art13]. For metaplectic groups,
they should eventually follow from the on-going work of Li (e.g. [Li15]). In § 6, we review the
Ichino–Ikeda conjecture and derive a variant of it for the full orthogonal group. In § 7, we study
the conjecture in the case Mp(2n)×Sp(2n) via a seesaw argument. This type of argument has also
been used in [Ato15, GI16, Xue16]. In § 8, we study the conjecture in the case Sp(2n+2)×Mp(2n).
For the convenience of the readers, we remark that §§ 3 and 4 and the second part of the paper
are logically independent. Sections 7 and 8 are also logically independent. They can be read in
any order.

Notation and convention

The following notation will be used throughout this paper. Let F be a number field, oF the ring
of integers and AF the ring of adeles. For any finite place v, let oF,v be the ring of integers of
Fv and $v a uniformizer. Let qv = |oF,v/$v| be the number of elements in the residue field of v.
We fix a nontrivial additive character ψ =

⊗
ψv : F\AF → C×. We assume that ψ is unitary,

thus ψ−1 = ψ. For any a ∈ F×, we define an additive character ψa of F\AF by ψa(x) = ψ(ax).
For any place v of F , let (·, ·)Fv be the Hilbert symbol of Fv and γψv the Weil index, which is an
eighth root of unity. Note that

∏
v γψv = 1.

Suppose that V is a vector space and v1, . . . , vr ∈ V . Then we denote by 〈v1, . . . , vr〉 the
subspace of V generated by v1, . . . , vr. We write S(V ) for the space of Schwartz functions on V .

Let (V, qV ) be a quadratic space of dimension n over F where V is the underlying vector
space and qV is the quadratic form. We can choose a basis of V so that its quadratic form is
represented by a diagonal matrix with entries a1, . . . , an. We define the discriminant discV of V
by

discV = (−1)n(n−1)/2a1 · · · an ∈ F×/F×,2.
Define a quadratic character χV : F×\A×F → {±1} by χV (x) = (x, discV )F .

Let (W, qW ) be a symplectic space of dimension 2n over F where W is the underlying vector
space and qW is the symplectic form. Then we denote by Sp(W ) or Sp(2n) the symplectic group
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attached to W and Mp(W ) or Mp(2n) the metaplectic double cover. By definition, if v is a place
of F , then Mp(W )(Fv) = Sp(W )(Fv) n {±1} and the multiplication is given by

(g1, ε1)(g2, ε2) = (g1g2, ε1ε2c(g1, g2)),

where c(g1, g2) is some 2-cocycle on Sp(W ) valued in {±1} (see [Ran93]). Moreover,

Mp(W )(AF ) =
∏

v

′Mp(W )(Fv)

/{
(1, εv)v

∣∣∣∣
∏

v

εv = 1

}
.

If g ∈ Sp(W )(AF ) (respectively Sp(W )(Fv)), then we define ι(g) = (g, 1) ∈ Mp(W )(AF )
(respectively Mp(Fv)). Note that g 7→ ι(g) is not a group homomorphism.

By a genuine function on Mp(W )(Fv), we mean a function on Mp(W )(Fv) which is not the
pullback of a function on Sp(W )(Fv). We always identify a function on Sp(W )(Fv) with a non-
genuine function on Mp(W )(Fv). Suppose that f1, . . . , fr are genuine functions on Mp(W )(Fv)
and h1, . . . hs are functions on Sp(W )(Fv) such that the product f1 · · · fr is not genuine. Then
we write∫

Sp(W )(Fv)
f1(g) · · · fr(g)h1(g) · · ·hs(g) dg =

∫

Sp(W )(Fv)
f1(ι(g)) · · · fr(ι(g))h1(g) · · ·hs(g) dg.

An irreducible representation of Mp(W )(Fv) is said to be genuine if the element (1, ε) acts by ε.
We always identify an irreducible representation of Sp(W )(Fv) with a non-genuine representation
of Mp(W )(Fv). We make similar definitions for genuine functions and representations of
Mp(W )(AF ).

Suppose v is a non-archimedean place of F whose residue characteristic is not two. Let
B = TU is a Borel subgroup of Sp(2n) and B̃ = T̃U the inverse image of B in Mp(2n)(Fv). Then
T̃ ' (F×v )n n {±1}. We define a genuine character χψ(t) of T̃ by

χψv((t1, . . . , tn), ε) = εγψvγ
−1
ψv,t1···tn

.

Suppose that the conductor of ψv is oF,v. By an unramified principal series representation of

Mp(2n)(Fv), we mean the induced representation I(χ) = Ind
Mp(2n)(Fv)

B̃
χψvχ, where χ be a

character of T ' Fnv defined by χ(t1, . . . , tn) = |t1|α1 · · · |tn|αn , α1, . . . , αn ∈ C. This convention
of parabolic inductions of the metaplectic group is the one in [GS12]. If πv is an unramified
representation of Mp(2n)(Fv), then we can find an unramified character χ of T as above and
πv ⊂ I(χ). The complex numbers (α1, . . . , αn) are called the Satake parameters of πv. Note that
the Satake parameters of πv depend also on ψv.

We write 1r for the r× r identity matrix. We recursively define w1 = {1} and wr =
( wr−1

1

)
.

Suppose a = (a1, . . . , ar) ∈ (F×)r. We let diag[a1, . . . , ar] be the diagonal matrix with diagonal
entries a1, . . . , ar.

Suppose that G is a unimodular locally compact topological group and dg a Haar measure.
Suppose that π is a representation of G, realized on some space V . Let f be a continuous function
on G. Then we put (whenever it makes sense, e.g. f is compactly supported and locally constant)

π(f)v =

∫

G
f(g)π(g).v dg.

Let S be a finite set of places of F . We define a constant ∆S
G as follows. If G = Mp(2n) or

Sp(2n), we define ∆S
G =

∏n
i=1 ζ

S
F (2i). If G = O(V ) or SO(V ) when n = dimV > 3, then we define

∆S
G =




ζSF (2)ζSF (4) · · · ζSF (n− 1) if n is odd,

ζSF (2)ζSF (4) · · · ζSF (n− 2)LS
(
n

2
, χV

)
if n is even.
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Suppose that v is a place F , then we define ∆G,v in an analogous way, replacing the partial
L-functions by the local Euler factors at v. In this case, if T is a split maximal torus in Sp(2n)
and T̃ is the inverse image of T in Mp(2n), then we define ∆

T̃ ,v
= ∆T,v = (1− q−1

v )−n.

Part I. Conjectures

2. Conjectures for the Fourier–Jacobi periods

2.1 Global Fourier–Jacobi periods
Let (W2, q2) be a 2m-dimensional symplectic space over F . We choose a basis {e∗m, . . . , e∗1, e1, . . . ,
em} of W2 so that q2(e∗i , ej) = δij . For 1 6 i 6 m, let Ri = 〈em−i+1, . . . , em〉 and R∗i = 〈e∗m, . . . ,
e∗m−i+1〉 be isotropic subspaces of W2. Put R0 = R∗0 = {0}. Let 0 6 r 6 m be an integer and put
n = m−r and (W0, q0) the orthogonal complement of Rr+R∗r . We define (W1, q1) = W0 + 〈en+1,

e∗n+1〉. Let Gi = Sp(Wi) and G̃i = Mp(Wi).
Let 0 6 i 6 n be an integer. Let Pi be the parabolic subgroup of G2 stabilizing the flag

0 = R0 ⊂ R1 ⊂ · · · ⊂ Ri,

with the Levi decomposition Pi = MiNi. Here and below in this article, the notation P = MN
signifies that M is the Levi subgroup and N is the unipotent radical of P . We denote by W i

the orthogonal complement of Ri +R∗i and Gi = Sp(W i). Then Mi = Gi ×GLi1. Let ψm be the
character of Nm defined by

ψm(n) = ψ

(m−1∑

j=1

q2(ne∗m−j+1, em−j) + q2(ne∗1, e
∗
1)

)
.

Let ψi be the restriction of ψm to Ni.
Let H = H(W0) be the Heisenberg group attached to the symplectic space W0. By definition,

H = W0 n F and the group law is given by

(w1, t1)(w2, t2) = (w1 + w2, t1 + t2 + q0(w1, w2)).

The group H embeds in G2 as a subgroup of G1 and H = G1 ∩Nr, Nr = Nr−1H. Let L = 〈e1,
. . . , en〉 and L∗ = 〈e∗n, . . . , e∗1〉. Then W0 = L+L∗ is a complete polarization. We sometimes write
an element h ∈ H as h(l + l∗, t) where l ∈ L, l∗ ∈ L∗ and t ∈ F . Let v be a place of F and ωψv
be the Weil representation of H(Fv) which is realized on S(L∗(Fv)). It is defined by

ωψv(h(y + x, t))f(l∗) = ψ(t+ q2(2x+ l∗, y))f(l∗ + x),

f ∈ S(L∗(Fv)), l
∗, x ∈ L∗(Fv), y ∈ L(Fv).

This is the unique irreducible infinite-dimensional representation of H(Fv) whose central

character is ψv. It induces an action of G̃0(Fv) on S(L∗(Fv)). We denote the joint action of

H(Fv) o G̃0(Fv) on S(L∗(Fv)) again by ωψv . We take the convention that if W0 = {0}, then
ωψv = ψv.

Taking restricted tensor product of the Weil representations ωψv , we obtain a global Weil

representation ωψ of H(AF )oG̃0(AF ) which is realized on S(L∗(AF )). We define the theta series

θψ(hg0, φ) =
∑

l∗∈L∗(F )

ωψ(hg0)φ(l∗), φ ∈ S(L∗(AF )), h ∈ H(AF ), g0 ∈ G̃0(AF ).
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We now talk about automorphic representations. There are two cases.

Case Mp. Let π2 =
⊗
π2,v be an irreducible cuspidal genuine automorphic representation of

G̃2(AF ) and π0 =
⊗
π0,v be an irreducible cuspidal automorphic representation of G0(AF ).

Case Sp. Let π2 =
⊗
π2,v be an irreducible cuspidal automorphic representation of G2(AF )

and π0 =
⊗
π0,v be an irreducible cuspidal genuine automorphic representation of G̃0(AF ).

Let S be a sufficiently large finite set of places of F containing all archimedean places and
finite places whose residue characteristic is two, such that π2,v and π0,v are both unramified
and the conductor of ψv is oF,v if v 6∈ S. Let (α1,v, . . . , αm,v) and (β1,v, . . . , βn,v) be the Satake
parameters of π2,v and π0,v, respectively. Put

A2 =

{
diag[α1,v, . . . , αm,v, α

−1
m,v, . . . , α

−1
1,v] Case Mp,

diag[α1,v, . . . , αm,v, 1, α
−1
m,v, . . . , α

−1
1,v] Case Sp,

and

A0 =

{
diag[β1,v, . . . , βn,v, 1, β

−1
n,v, . . . , β

−1
1,v ] Case Mp,

diag[β1,v, . . . , βn,v, β
−1
n,v, . . . , β

−1
1,v ] Case Sp .

We then define the tensor product L-function

Lψv(s, π2,v × π0,v) = det(1−A2 ⊗A0 · q−sv )−1, LSψ(s, π2 × π0) =
∏

v 6∈S
Lψv(s, π2,v × π0,v).

The partial L-function is convergent for <s � 0. We denote by Lψv(s, πi,v,Ad) and LSψ(s,
πi,Ad) =

∏
v 6∈S Lψv(s, πi,v,Ad) the (local and partial) adjoint L-functions of πi. If πi is an

automorphic representation of the metaplectic group (respectively symplectic group), then they
depend (respectively do not depend) on ψ. We include the subscript ψ in both cases to unify
notation. We assume that these L-functions can be meromorphically continued to the whole
complex plane.

Let ϕ2 ∈ π2, ϕ0 ∈ π0 and φ ∈ S(L∗(AF )). Define

FJ ψ(ϕ2, ϕ0, φ)

=

∫

G0(F )\G0(AF )

∫

H(F )\H(AF )

∫

Nr−1(F )\Nr−1(AF )
ϕ2(uhg0)ϕ0(g0)ψr−1(u)θψ(hg0, φ) du dh dg0.

The measures du and dh are the self-dual measures on Nr−1(AF ) and H(AF ), respectively. The
measure dg0 is the Tamagawa measures on G0(AF ).

2.2 Local Fourier–Jacobi periods
We fix a Haar measure dg0,v on G0(Fv) for each v such that the volume of G0(ov) equals one for
almost all v. Then there is a constant C0 such that dg0 = C0

∏
v dg0,v. Following [II10], we call

C0 the measure constant.
Let Bπi (i = 0, 2) be the canonical bilinear pairing between πi and π∨i defined by

Bπ2(ϕ,ϕ∨) =

∫

G2(F )\G2(AF )
ϕ(g)ϕ∨(g) dg, ϕ ∈ πi, ϕ∨ ∈ π∨i .

We fix a bilinear pairing Bπi,v between πi,v and π∨i,v for each place v such that Bπi =
∏
v Bπi,v .

Put Φϕi,v ,ϕ∨i,v
(g) = Bπi,v(πi,v(g)ϕi,v, ϕ

∨
i,v) if ϕi,v ∈ πi,v and ϕ∨i,v ∈ π∨i,v.
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The contragredient representation of ωψ is ωψ−1 (again realized on S(L∗(AF ))) and there is
a canonical pairing between ωψ and ωψ−1 given by

Bωψ(φ, φ∨) =

∫

L∗(AF )
φ(l∗)φ∨(l∗) dl∗, φ, φ∨ ∈ S(L∗(AF )),

where the measure dl∗ is the self-dual measure on L∗(AF ). Similarly, for any place v, there is a
canonical pairing between ωψv and ωψ−1

v
given by

Bωψv (φv, φ
∨
v ) =

∫

L∗(Fv)
φv(l

∗)φ∨v (l∗) dl∗, φv, φ
∨
v ∈ S(L∗(Fv)),

where the measure dl∗ is the self-dual measure on L∗(Fv). Then Bωψ =
∏
v Bωψv. Put Φφv ,φ∨v (g) =

Bωψv (ωψv(g)φv, φ
∨
v ).

We now fix a place v of F . Recall that the group Pm of G2 is a minimal parabolic subgroup
which is contained in Pr−1. For any real number γ or γ = −∞, define

Nm,γ = {u ∈ Nm(Fv) | |q2(ue∗1, e
∗
1)| 6 eγ , |q2(ue∗i+1, ei)| 6 eγ , 1 6 i 6 m− 1}.

For any γ > −∞, we define Ni,γ = Ni(Fv) ∩Nm,γ . Define

FψvΦϕ2,v ,ϕ∨2,v
(hg0) = lim

γ→∞

∫

Nr−1,γ(Fv)
Φϕ2,v ,ϕ∨2,v

(hg0u)ψr−1,v(u) du, ϕ2,v ∈ π2,v, ϕ
∨
2,v ∈ π∨2,v,

where h ∈ H(Fv) and g0 ∈ G0(Fv) in the case Sp (respectively g0 ∈ G̃0(Fv) in the case Mp).
Define

αv(ϕ2,v, ϕ
∨
2,v, ϕ0,v, ϕ

∨
0,v, φv, φ

∨
v ) =

∫

G0(Fv)

∫

H(Fv)
FψΦϕ2,v ,ϕ∨2,v

(hg0)Φϕ0,v ,ϕ∨0,v
(g0)Φφv ,φ∨v (hg0) dh dg0,

for ϕi,v ∈ πi,v, ϕ
∨
i,v ∈ π∨i,v, φv, φ

∨
v ∈ S(L∗(Fv)). If r 6 1, then it is to be understood that

FψΦϕ2,v ,ϕ∨2,v
= Φϕ2,v ,ϕ∨2,v

. Moreover, if r = 0, then it is to be understood that the integral over

H(Fv) is void.

Proposition 2.2.1. Assume that π2,v and π0,v are both tempered. Then the limit in the
definition of FψvΦϕ2,v ,ϕ∨2,v

exists. Moreover, the defining integral of αv is absolutely convergent.

If πi,v is unitary, then we may identify π∨i,v with πi,v. We then define

αv(ϕ2,v, ϕ0,v, φv) = αv(ϕ2,v, ϕ2,v, ϕ0,v, ϕ0,v, φv, φv).

Proposition 2.2.2. Assume that π2,v and π0,v are unitary and tempered. Then αv(ϕ2,v, ϕ0,v,
φv) > 0 for all smooth vectors ϕ2,v ∈ π2,v, ϕ0,v ∈ π0,v and φv ∈ S(L∗(Fv)).

These two propositions will be proved in § 3.
We now consider the unramified situation. Note first that the symplectic spaces Wi, the

isotropic subspaces Ri and hence the groups Gi are naturally defined over oF . Let S be a
sufficiently large finite set of places of F containing all archimedean places and finite places
whose residue characteristic is two, such that if v 6∈ S, then the following conditions hold.
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(i) The conductor of ψv is oF,v.

(ii) We have φv = φ∨v = 1L∗(oF,v).

(iii) For i = 0, 2, ϕi,v and ϕ∨i,v are fixed by Gi(oF,v) and satisfy Bπi,v(ϕi,v, ϕ∨i,v) = 1. In particular,
the representations πi,v and π∨i,v are unramified.

(iv) We have
∫
G0(oF,v) dg0,v = 1.

Proposition 2.2.3. If v 6∈ S and the defining integral of αv is convergent, then

αv(ϕ2,v, ϕ
∨
2,v, ϕ0,v, ϕ

∨
0,v, φv, φ

∨
v ) = ∆G2,v

Lψv(
1
2 , π2,v × π0,v)

Lψv(1, π0,v,Ad)Lψv(1, π2,v,Ad)
.

We will prove this proposition in § 4. Note that in this proposition, we do not assume that
the representations π2,v and π0,v are tempered.

2.3 Conjectures
Following [II10] and [Liu16], we say that the representations π2 and π0 are almost locally generic
if for almost all places v of F , the local components π2,v and π0,v are generic. Suppose that we
are in the case of Mp. As explained in [II10], the automorphic representations π2 and π0 should
come from some elliptic Arthur parameters

Ψ2 : LF × SL2(C) →
̂̃
G2 = Sp(2m,C), Ψ0 : LF × SL2(C) → Ĝ0 = SO(2n+ 1,C),

where LF is the (hypothetical) Langlands group of F . If πi is tempered, then Ψi is trivial
on SL2(C). It is believed (Ramanujan conjecture) that almost locally generic representations

are tempered. We define Sπ2 (respectively Sπ0) to be the centralizer of the image of Ψ2 in
̂̃
G2

(respectively Ĝ0). They are finite abelian 2-groups. In the case Sp, we have the same discussion,

except that we replace G̃2 by G2 and replace G0 by G̃0.

Conjecture 2.3.1. Assume that π2 and π0 are irreducible cuspidal automorphic representations
that are almost locally generic. Then the following statements hold.

(i) The defining integral of αv(ϕ2,v, ϕ
∨
2,v, ϕ0,v, ϕ

∨
0,v, φv, φ

∨
v ) is convergent for anyKi-finite vectors

ϕi,v, ϕ
∨
i,v and K0-finite Schwartz functions φv, φ

∨
v , where Ki is a maximal compact subgroup

of Gi(Fv), i = 0, 2.

(ii) We have αv(ϕ2,v, ϕ0,v, φv) > 0 for any Ki-finite vectors ϕi,v and K0-finite Schwartz function
φv. Moreover, αv(ϕ2,v, ϕ0,v, φv) = 0 for all Ki-finite ϕi,v and K0-finite φv precisely when

HomNr−1(Fv)o(H(Fv)oG0(Fv))(π2,v ⊗ π0,v ⊗ ψr−1,v ⊗ ωψv ,C) = 0.

(iii) Assume that ϕi =
⊗

v ϕi,v ∈ πi (i = 0, 2) and φ =
⊗

v φv ∈ S(L∗(AF )) are factorizable,
then

|FJ ψ(ϕ2, ϕ0, φ)|2 =
C0∆S

G2

|Sπ2 ||Sπ0 |
LSψ(s, π2 × π0)

LSψ(s+ 1
2 , π2,Ad)LSψ(s+ 1

2 , π0,Ad)

∣∣∣∣
s=1/2

×
∏

v∈S
αv(ϕ2,v, ϕ0,v, φv). (2.3.1)

Remark 2.3.2. It follows from the Proposition 2.2.3 that the right-hand side of (2.3.1) does not
depend on the finite set S.

76

https://doi.org/10.1112/S0010437X16007752 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007752


Refined global Gan–Gross–Prasad conjecture

Remark 2.3.3. Assume that π2 and π0 are both tempered. It is then believed that LSψ(s, π2×π0)

and LSψ(s, πi,Ad) should be holomorphic for <s > 0. Moreover, LSψ(1, πi,Ad) 6= 0.

Remark 2.3.4. Without the assumption of almost local genericity of π2 and π0, we expect that
local linear forms αv can be ‘analytically continued’ in some way so that it is defined for all
representations π2,v and π0,v. This is indeed the case if v 6∈ S. Thus αv is well-defined for all v
if π2 and π0 satisfy the property that π2,v and π0,v are both tempered if v ∈ S. Moreover, we
expect that the identity (2.3.1) holds with the quantity |Sπ2 ||Sπ0 | replaced by some 2−β where
β is an integer. The nature of β, however, remains mysterious at this moment.

We end this section by writing Conjecture 2.3.1(3) in an equivalent form which does not
involve the finite set S. We may define the completed L-functions

Lψ(s, π2 × π0), Lψ(s, πi,Ad), i = 0, 2.

The actual definition of the local Euler factor of these L-functions is not essential to us since
Conjecture 2.3.1 does not depend on the definition of these Euler factors. Put

L = ∆G2

Lψ(s, π2 × π0)

Lψ(s+ 1
2 , π2,Ad)Lψ(s+ 1

2 , π0,Ad)

∣∣∣∣
s=1/2

and let Lv be its local Euler factor evaluated at s = 1
2 at the place v. Define

α\v = L−1
v αv.

Then the identity (2.3.1) can be rewritten as

FJ ψ · FJ ψ =
C0

|Sπ2 ||Sπ0 |
L ·
∏

v

α\v. (2.3.2)

The product is convergent since there are only finitely many terms which do not equal to one.
This is an equality of elements in

Hom(π2 ⊗ π0 ⊗ ψr−1 ⊗ ωψ,C)⊗Hom(π2 ⊗ π0 ⊗ ψr−1 ⊗ ωψ,C).

Note that by [Sun12, SZ12, LS13], this space is at most one dimensional. So we know a priori
that there is a constant C such that

FJ ψ · FJ ψ = C ·
∏

v

α\v.

The point of Conjecture 2.3.1 is thus to compute the constant C.

3. Convergence and positivity

For the rest of Part I of this paper, we fix a place v of F and suppress it from all notation.
Thus F is a local field of characteristic zero. To shorten notation, for any algebraic group G or
G = Mp(2n) over F , we denote by G instead of G(F ) for its group of F -points. We have fixed
a basis {e∗m, . . . , e∗1, e1, . . . , em} of W2. We thus realize the group G2 and its various subgroups
as groups of matrices. We also identify Wi, L,L

∗ as spaces of row vectors. We put Ki = Gi(oF ).
This is a maximal compact subgroup of Gi. The group Pm consists of upper triangular matrices.
The group Pm ∩Gi is a minimal parabolic subgroup of Gi.

Suppose a = (a1, . . . , an) ∈ (F×)n. Then we let d(a) ∈ G0 so that d(a)e∗i = aie
∗
i for any

1 6 i 6 n. We also put a = diag[an, . . . , a1] ∈ GLn.
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3.1 Preliminaries
We recall some basic estimates in this subsection. We follow [II10, § 4] rather closely.

Let G be a reductive group over F . Let AG be a maximal split subtorus of G, M0 the
centralizer of AG in G. We fix a minimal parabolic subgroup P0 of G with the Levi decomposition
P0 = M0N0. Let ∆ be the set of simple roots of (P0, AG). Let δP0 be the modulus character of
P0. Let

A+
G = {a ∈ A0 | |α(a)| 6 1 for all α ∈ ∆}.

We fix a special maximal compact subgroup K of G. Then we have a Cartan decomposition
G = KA+

GK. We also have the Iwasawa decomposition

G = M0N0K, g = m0(g)n0(g)k0(g).

Let f and f ′ be two nonnegative functions on G. We say that f � f ′ if there is a constant
C such that f(g) 6 Cf ′(g) for all g ∈ G. We say that f ∼ f ′ if f � f ′ and f ′ � f . In this case
we say that f and f ′ are equivalent.

For any function f ∈ L1(G),
∫

G
f(g) dg =

∫

A+
G

ν(m)

∫∫

K×K
f(k1mk2) dk1 dk2 dm, (3.1.1)

where ν(m) is a positive function on A+
G such that

ν(m) ∼ δP0(m)−1. (3.1.2)

Let 1 be the trivial representation of M0 and let e(g) = δP0(m0(g))1/2 be an element in
IndGP0

1. Let dk be the measure on K such that volK = 1. We define the Harish-Chandra
function

Ξ(g) =

∫

K
e(kg) dk =

∫

K
δP0(m0(kg))1/2 dk.

This function is bi-K-invariant. This function depends on the choice of K. However, different
choices of K give equivalent functions on G. So this choice will not affect our estimates.

We define a height function on G. We fix an embedding τ : G → GLn. Write τ(g) = (aij)
and τ(g−1) = (bij). Define

ς(g) = sup{1, log |aij |, log |bij | | 1 6 i, j 6 n}. (3.1.3)

There is a positive real number d such that

δ0(a)1/2 � Ξ(a)� δ0(a)1/2ς(a)d, a ∈ A+
0 . (3.1.4)

Now let π be an irreducible admissible tempered representation of G. Let Φ be a smooth
matrix coefficient of G. Then there is a constant B such that

|Φ(g)| � Ξ(g)ς(g)B. (3.1.5)

This is classical and is called the weak inequality when Φ is K-finite and due to [Sun09] when Φ
is smooth.

We finally assume that G = Mp(2n). This is not an algebraic group, but it behaves in
many ways like an algebraic group. In particular, we have a Cartan decomposition for G,
i.e. G = KA+

GK where K is the inverse image of a special maximal compact subgroup of Sp(2n)
(e.g. Sp(2n)(oF ) if F is non-archimedean and U(n) is F is archimedean) and A+

G is the inverse
image of A+

Sp(2n) in G. We define ΞG = ΞSp(2n) ◦ p where p : G → Sp(2n) is the canonical

projection. Then the weak inequality holds for tempered representations of G.
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3.2 Some estimates
Lemma 3.2.1. There is a d > 0, such that

∫

Ni+1∩Gi
ΞGi(um)ς(u)−d du

is absolutely convergent for all m ∈ G0. Moreover, in this case, there is an β > 0 so that
∫

Ni+1∩Gi
ΞGi(um)ς(u)−d du� ΞGi+1(m)ς(m)β, m ∈ G0.

Proof. In the archimedean case, this is [Har75, § 10, Lemma 2]. In the non-archimedean case,
this is [Sil79, Theorem 4.3.20]. 2

Lemma 3.2.2. There is some constant c > 0 so that

ΞGi(gg
′)� ΞGi(g)ecς(g

′).

In particular, if g = 1, then we have

Ξ(g′)� e−cς(g
′).

Proof. This can be proved by mimicking the argument in [Wal12, § 3.3] and [Liu16, Lemma 3.11].
2

Lemma 3.2.3. Fix a real number D. Then there exists some β > 0, such that
∫

Ni+1,γ∩Gi
ΞGi(um)ς(u)D du� γβς(m)βΞGi+1(m), m ∈ Gi+1.

Proof. We fix some real number b to be determined later. We denote the left-hand side of the
inequality by I. Then, I = I<b + I>b with

I<b =

∫

Ni+1,γ∩Gi
1ς<b(u)ΞGi(um)ς(u)D du

I>b =

∫

Ni+1,γ∩Gi
1ς>b(u)ΞGi(um)ς(u)D du,

where 1ς<b is the characteristic function of {u ∈Ni+1∩Gi | ς(u)< b} and 1ς>b is the characteristic
function of {u ∈ Ni+1 ∩Gi | ς(u) > b}.

By Lemma 3.2.1, we have

I<b � bd
∫

Ni+1,γ∩Gi
1ς<b(u)ΞGi(um)ς(u)D−d du

� bdς(m)β1ΞGi+1(m),

where β1 is a positive real number and d is a positive real number so that the integral
∫

Ni+1∩Gi
ΞGi(um)ς(u)D−d du

is convergent.
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Let λ : Ni+1∩Gi → F be a character defined by λ(n) = q2(ne∗m−i, em−i−1). Then by [Beu15,
Corollary B.3.1], there is an ε > 0, such that the integral

∫

Ni+1∩Gi
ΞGi(u)eες(u)ς(u)D(1 + |λ(u)|)−1 du

is convergent. We have ΞGi(um)� eας(m)ΞGi(u) for some α > 0, cf. Lemma 3.2.2. It follows that

I>b � eας(m)

∫

Ni+1,γ∩Gi
1ς>b(u)ΞGi(u)ς(u)Deες(u)(1 + |λ(u)|)−1e−ες(u)(1 + |λ(u)|) du

� eας(m)−εb(1 + eγ)

∫

Ni+1,γ∩Gi
1ς>b(u)ΞGi(u)ς(u)Deες(u)(1 + |λ(u)|)−1 du

� eας(m)−εb(1 + eγ)

∫

Ni+1∩Gi
ΞGi(u)ς(u)Deες(u)(1 + |λ(u)|)−1 du

� eας(m)−εb(1 + eγ).

There is a constant c > 0, such that ΞGi+1(m)� e−cς(m), then we have

I � bdΞGi+1(m)ς(m)β1 + e(α+c)ς(m)−εb(1 + eγ)ΞGi+1(m).

We may thus choose b = ε−1(log(1 + eγ) + (α+ c)ς(m)) and get

I � (ε−dς(m)β1(γ + (α+ c)ς(m))d + 1)ΞGi+1(m).

Note that α, β1, d and c are constants which are independent of γ or m. We therefore conclude
that there is some β > 0, such that

I � γβς(m)βΞGi+1(m).

This proves the lemma. 2

Lemma 3.2.4. Fix a real number D. Then there is some β > 0 such that
∫

Ni+1,−∞∩Gi
ΞGi(um)ς(u)D du� ς(m)βΞGi+1(m), m ∈ Gi+1.

Proof. Choose a subgroup N † of Ni+1∩Gi so that the multiplication map N †×(Ni+1,−∞∩Gi) →

Ni+1∩Gi is an isomorphism. Recall that ΞGi is itself a matrix coefficient of a (unitary) tempered
representation which we temporarily denote by e. Thus ΞGi(g) = 〈e(g)v, v∨〉 where 〈−,−〉 is the
inner product on e and v, v∨ ∈ e. It follows from the Dixmier–Milliavin theorem [DM78] that v∨

is a finite linear combination of the elements of the form
∫

N†

f(n)e(n−1)v′∨ dn,

where f ∈ C∞c (N†). Thus ΞGi is a finite linear combination of the functions of the form

g 7→
∫

N†
f(n)Φ(ng) dn,

where f(n) is a compactly supported function on N † and Φ is a smooth matrix coefficient of a
tempered representation of Gi, namely e. The lemma then follows from Lemma 3.2.3. 2
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Lemma 3.2.5. Let f be a nonnegative function on L∗ such that P (x)f(x) is bounded for any
polynomial function P (x) on L∗ (e.g. f is compactly supported). Let p : H o G0 → L∗ be the
projection given by

hg0 7→
n∑

i=1

q2(hg0e
∗
n+1, ei)e

∗
i .

Then there is a real number B such that∫

H
ΞG1(hg0)f(p(hg0)) dh� ΞG0(g0)ς(g0)B, g0 ∈ G0.

Proof. By the Cartan decomposition of G0, we may assume that g = d(a) where a = (a1, . . . ,
an) ∈ (F×)n, |an| 6 · · · 6 |a1| 6 1. Then p(h(l + l∗, t)d(a)) = l∗a where a = diag[an, . . . , a1].

We fix some γ which will be determined later. Let Hγ = H∩Nm,γ and Hγ be the complement
of Hγ in H. Then

∫

H
ΞG1(hd(a))f(l∗a) dh =

∫

Hγ

ΞG1(hd(a))f(l∗a) dh+

∫

Hγ

ΞG1(hd(a))f(l∗a) dh.

By Lemma 3.2.3, the first integral is bounded by

γβΞG0(d(a))ς(d(a))B.

Write l∗ = (l∗1, . . . , l
∗
n) and l′∗ = (0, l∗2, . . . , l

∗
n) ∈ Fn. Then

∫

Hγ

ΞG1(hg0)f(l∗a) dh =

∫

Hγ

ΞG1(h(l + l′∗, t)d(a)h(l∗1an, 0, . . . , 0))f(l∗a) dh.

There is some positive constant α such that

ΞG1(h(l + l′∗, t)d(a)h(l∗1an, 0))� ΞG1(h(l + l′∗, t)d(a))eα log max{|l∗1an|,1}.

Therefore,
∫

Hγ

ΞG1(hd(a))f(l∗a) dh�
∫

H−∞

ΞG1(hd(a)) dh×
∫

|l∗1an|>eγ
eα log max{|l∗1an|,1}f1(l∗1an) dl∗1,

where f1 is a function on F such that f1(x)P (x) is bounded for any polynomial function P on
F . It follows from Lemma 3.2.4 that there is a positive real number D such that

∫

H−∞

ΞG1(hd(a)) dh� ΞG0(d(a))ς(d(a))D.

Since f1(x)P (x) is bounded for any polynomial function P on F , we have
∫

|l∗1an|>eγ
eα log max{|l∗1an|,1}f1(l∗1an) dl∗1 � |an|−1e−γ ,

where the implicit constant in� does not depend on an or γ. We may choose γ with γ >−log |an|.
Then ∫

|l∗1an|>eγ
eα log max{|l∗1an|,1}f1(l∗1an) dl∗1 � 1.

Therefore, ∫

Hγ

ΞG1(hd(a))f(la) dh� ΞG0(d(a))ς(d(a))D.

The desired estimate then follows. 2
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Lemma 3.2.6. Let Φ be a smooth matrix coefficient of a tempered representation π of G2. Then
the limit

lim
γ→∞

∫

Nr−1,γ

Φ(ng)ψr−1(n) dn, g ∈ G2

exists and defines a continuous function in ψr−1 (for a fixed g). If F is non-archimedean, then
the integral is in fact a constant for sufficiently large γ. Moreover if g ∈ G1, then

∣∣∣∣ lim
γ→∞

∫

Nr−1,γ

Φ(ng)ψr−1(n) dn

∣∣∣∣� ΞG1(g)ς(g)D.

Proof. First recall that Nr−1 is the unipotent subgroup of some parabolic subgroup Pr−1 of G2,
the Levi part being isomorphic to G1 ×GLr−1

1 . Put T = GLr−1
1 and denote an element in T by

a = (a1, . . . , ar−1) where ai ∈ F×.
If F is non-archimedean, the constancy of the integral when γ is large can be proved in the

same way as [Wal12, Lemma 3.5]. In fact, suppose that Φ(g) = 〈π(g)v, v∨〉 where v ∈ π, v∨ ∈ π∨
and 〈−,−〉 stands for the pairing between π and its contragradient π∨. Suppose that K ′ is an
open compact subgroup of G2 such that v and v∨ are fixed by K ′. Let K ′′ = K ′∩gK ′g−1. This is
an open compact subgroup of G2. Let c > 0 and Tc be the subgroup of T consisting of elements
a = (a1, . . . , ar−1) so that |ai − 1| 6 e−c for all i. The intersection T ∩K ′′ is an open subgroup
of T . Moreover, π(g)v and v∨ are both fixed by T ∩K ′′. Thus there is some c(g) > 0 depending
on g, and c(g) ' ς(g), such that π(g)v and v∨ are fixed by Tc(g). We have

∫

Nr−1,γ

Φ(g)ψr−1(n) dn =

∫

Nr−1,γ

∫

Tc(g)

〈π(a−1nag)v, v∨〉ψr−1(n) da dn

=

∫

Nr−1,γ
〈π(ng)v, v∨〉

(∫

Tc(g)

ψr−1(ana−1) da

)
dn.

There is some c′(g), c′(g) ' ς(g), so that if γ > c′(g) and n ∈ Nr−1,γ\Nr−1,c′(g), then the inner
integral vanishes. It follows that if γ > c′(g), then

∫

Nr−1,γ

Φ(g)ψr−1(n) dn =

∫

Nr−1,c′(g)

Φ(g)ψr−1(n) dn.

It also follows, by Lemma 3.2.3, that if γ > c′(g), then there is some D > 0 so that
∣∣∣∣
∫

Nr−1,γ

Φ(g)ψr−1(n) dn

∣∣∣∣� c′(g)DΞG1(g)ς(g)D, g ∈ G1.

As c′(g) ' ς(g), we get the desired estimate (possibly for some larger D). This proves the lemma
in the non-archimedean case.

From now on we assume that F is archimedean.
To simplify notation, we put

I(γ, g,Φ) =

∫

Nr−1,γ

Φ(ng)ψr−1(n) dn, g ∈ G1.

Note that to prove the limit exists, we may even assume that g = 1. By the Dixmier–Malliavin
theorem, it is enough to prove the lemma for limγ→∞ I(γ, g, f ∗ Φ) where f ∈ C∞c (T ) and

f ∗ Φ(g) =

∫

T
f(t)Φ(t−1gt) dt

is a function on G2. When there is no confusion, we write I(γ) = I(γ, g, f ∗ Φ) for short.
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Let (x1, . . . , xr−1) ∈ F r−1 and n(x1, . . . , xr−1) ∈ Nr−1 so that n(x1, . . . , nr−1)e∗n+i = e∗n+i +
xi−1e

∗
n+i−1 for i = 2, . . . , r. Let N† = {n(x1, . . . , xr−1) | (x1, . . . , xr−1) ∈ F r−1}. It is a subgroup

of Nr−1 which is stable under the conjugation by T and the multiplication map N†×Nr−1,−∞ →

Nr−1 is an isomorphism. LetN†,γ =N†∩Nr−1,γ . We denote by N̂† the group of additive characters

of N† and by N̂†
reg

the open subset consisting of generic characters. Then ψr−1 ∈ N̂†
reg

. Let ψt be
the character of N† defined by ψt(n) = ψr−1(tnt−1). The map t 7→ ψt defines a homeomorphism

from T to N̂†
reg

. A compactly supported function on T is then identified with a compactly

supported function on N̂†
reg

. We may thus talk about the Fourier transform of f , which is a
Schwartz function on N†. Let t1, . . . , tr−1 ∈ F× and t ∈ T so that tn(x1, . . . , xr−1)t−1 = n(t1x1,
. . . , tr−1xr−1). The measure |t1 . . . tr−1| dt is, up to a positive constant, the restriction of the
self-dual measure of N̂ to N̂ reg under this homeomorphism. We may assume that the constant
is one.

We have

I(γ) =

∫

Nr−1,γ

∫

T
f(t)Φ(t−1ntg)ψr−1(n) dt dn

=

∫

Nr−1

∫

T
f(t)1Nr−1,γ (n)Φ(t−1ntg)ψr−1(n) dt dn

=

∫

N†

(∫

T
f(t)1N†,γ (tnt−1)ψt(n) dt

)(∫

Nr−1,−∞

Φ(nn′g) dn′
)
dn, (3.2.1)

where in the last identity, we have made the change of variable n 7→ tnt−1 and split the integral
over Nr−1 as a double integral over N† ×Nr−1,−∞.

We claim that there is a constant C which does not depend on γ so that
∣∣∣∣
∫

T
f(t)1N†,γ (tnt−1)ψt(n) dt

∣∣∣∣ 6 C
r−1∏

i=1

max{1, |xi|}−1, (3.2.2)

where n = n(x1, . . . , xr−1) ∈ N†. In fact, we integrate ti ∈ F× with |xi| 6 1 via integration by
parts. The anti-derivative of 1{|·|6eγ}(xt)ψ(xt) is a function of the form |x|−1Xγ(xt) where Xγ

is bounded by a constant independent of γ. It then follows that
∫

T
f(t)1N†,γ (tnt−1)ψt(n) dt =

∫

F r−1

∏

i:|xi|61

|xi|−1Xγ(xiti)∂f1(t1, . . . , tr−1) dt,

where f1(t1, . . . , tr−1) = f(t1, . . . , tr−1)|t1 · · · tr−1|−1 and ∂f1 is the partial derivative of f1 with
respect to all ti such that |xi| 6 1. As f , so f1, are in C∞c (T ), and Xγ is bounded by a constant
independent of γ, the desired estimate (3.2.2) follows.

By [Beu15, Corollary B.3.1], the integral

∫

N†

∫

Nr−1,−∞

r−1∏

i=1

max{1, |xi|}−1Φ(n(x1, . . . , xr−1)n′g) dn′ dn

is convergent. By the Lebesgue dominated convergence theorem, we have

lim
γ→∞

I(γ) =

∫

N†

(∫

T
lim
γ→∞

f(t)1N†,γ (tnt−1)ψt(n) dt

)(∫

Nr−1,−∞

Φ(nn′g) dn′
)
dn

=

∫

N†

∫

Nr−1,−∞

f̂1(n)Φ(nn′g) dn′ dn.

The rest of the assertions of the lemma follow easily from this expression. 2

83

https://doi.org/10.1112/S0010437X16007752 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007752


H. Xue

3.3 Proof of Proposition 2.2.1
The case r = 0 is rather straightforward. Indeed, in this case G0 = G1 = G2. By the weak
inequality, we only need to prove that

∫

G0

ΞG0(g)2|Φφ,φ∨(g)| dg

is absolutely convergent. By the Cartan decomposition and the estimates (3.1.2) and (3.1.4), the
convergence is reduced to the convergence of

∫

|an|6···6|a1|61
|a1 · · · an|1/2

(
−

n∑

i=1

log |ai|
)D

da1 · · · dan.

This is clear. Proposition 2.2.1 is thus proved when r = 0.
The case r > 2 follows from the case r = 1 by Lemma 3.2.6.
We now treat the case r = 1. In this case G2 = G1. The defining integral of α reduces to

α(ϕ2, ϕ
∨
2 , ϕ0, ϕ

∨
0 , φ, φ

∨) =

∫

G0

∫

H
Φϕ,ϕ∨(hg0)Φϕ0,ϕ∨0

(g0)Φφ,φ∨(hg0) dh dg0,

Since π2 and π0 are both tempered, we need to prove that
∫

G0

∫

H
ΞG1(hg0)ΞG0(g0)|Φφ,φ∨(hg0)| dh dg0

is convergent.
Let g0 = k1d(a)k2 be the Cartan decomposition of g0 where a = (a1, . . . , an) ∈ (F×)n with

|as| 6 · · · 6 |a1| 6 1. We first estimate |Φφ,φ∨(hd(a))|. We claim that there is a function f on L∗

so that f(l∗)P (l∗) is bounded for any polynomial function P on L∗, such that

|Φφ,φ∨(h(l + l∗, t)d(a))| � |det a|1/2f(l∗a). (3.3.1)

Indeed

|Φφ,φ∨(h(l + l∗, t)d(a))| 6 |det a|1/2
∫

L∗
|φ(xa+ l∗a)φ∨(x)| dx.

Thus, to prove (3.3.1), it is enough to prove that for any polynomial function P on L∗,

sup
y∈L∗

|P (y)|
∫

L∗
|φ(xa+ y)φ∨(x)| dx <∞.

We have

sup
y∈L∗

|P (y)|
∫

L∗
|φ(xa+ y)φ∨(x)| dx 6

∫

L∗

(
sup
y∈L∗

|P (y)φ(xa+ y)|
)
|φ∨(x)| dx.

Since P is a polynomial function, we may choose a sufficiently large N , such that

sup
y∈L∗

|P (y)φ(xa+ y)| � (1 + |x1an|+ · · · |xna1|)N 6 (1 + |x1|+ · · · |xn|)N ,

where x = (x1, . . . , xn) ∈ L∗. We have the second inequality because |ai| 6 1 for all i. Then
∫

L∗

(
sup
y∈L∗

|P (y)φ(xa+ y)|
)
|φ∨(x)| dx�

∫

L∗
(1 + |x1|+ · · · |xn|)N |φ∨(x)| dx <∞.
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We have thus proved (3.3.1).
By (3.1.1), to prove the convergence of the defining integral of α, it is enough to show the

convergence of
∫

A+
G0

∫

H
ΞG1(h(l + l∗, t)d(a))ΞG0(d(a))δ−1

Pm∩G0
(d(a))|det a|1/2f(l∗a) dh da.

Then Lemma 3.2.5 reduces the convergence of this integral to the case r = 0.

3.4 Proof of Proposition 2.2.2
We are going to use the notation in the proof of Lemma 3.2.6, one paragraph before (3.2.1). To
simplify notation, we write Φϕi = Φϕi,ϕi , i = 0, 2 and Φφ = Φφ,φ.

To facilitate understanding, we divide the proof into several steps.

Step 1. The goal is to reduce the Proposition to the inequality (3.4.1).
In order to prove that α(ϕ2, ϕ0, φ) > 0, it is enough to show that for any function f ∈ C∞c (T ),

we have
∫

T

∫

G0

∫

H

(
lim
γ→∞

∫

Nr−1,γ

Φϕ2(nhg0)ψr−1(tnt−1) dn

)
Φϕ0(g0)Φφ(hg0)f(t)f(t) dh dg0 dt > 0.

We denote this expression by I. Since f(t) is compactly supported, by Fubini’s theorem, we have

I =

∫

G0

∫

H

(∫

T
lim
γ→∞

∫

Nr−1,γ

Φϕ2(nhg0)f(t)f(t)ψr−1(tnt−1) dn dt

)
Φϕ0(g0)Φφ(hg0) dh dg0.

We denote the integral in the parentheses by II . It follows from Lemma 3.2.6 that

lim
γ→∞

∫

Nr−1,γ

Φϕ2(nhg0)ψr−1(tnt−1) dn

is bounded by a constant which depends continuously on ψr−1. Since f is compactly supported
on T , we can choose this constant to be independent of t (but depends on hg0). Then by the
Lebesgue dominated convergence theorem, we have

II = lim
γ→∞

∫

T

∫

Nr−1,γ

Φϕ2(nhg0)f(t)f(t)ψr−1(tnt−1) dn dt.

Moreover, the double integral on the right-hand side is absolutely convergent. We can thus
interchange the order of integration. Finally, we conclude that

II = lim
γ→∞

∫

Nr−1,γ

∫

T
Φϕ2(nhg0)f(t)f(t)ψr−1(tnt−1) dt dn.

Let f1(t) = f(t)|t1 · · · tr−1|−1/2 ∈ C∞c (T ). Recall that the map t 7→ ψt identifies T with N̂†
reg

which is an open subset of N̂† consisting of generic characters. The measure |t1 · · · tr−1| dt is

identified with the self-dual measure on N̂† under this map. In this way, f , as well as f1, are

viewed as compactly supported functions on N̂† and we may talk about their Fourier transform

f̂ and f̂1 which are functions on N†. The Fourier transform of a product of two functions is the
convolution of the Fourier transforms of these two functions. We conclude that

∫

T
f(t)f(t)ψr−1(tnt−1) dt =

∫

N†

f̂1(n1n2)f̂1(n2) dn2.
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Therefore,

II = lim
γ→∞

∫

N†,γ

∫

Nr−1,−∞

∫

N†

Φϕ2(n1n
′hg0)f̂1(n1n2)f̂1(n2) dn2 dn

′ dn1

=

∫

N†

∫

N†

∫

Nr−1,−∞

Φϕ2(n1n
−1
2 n′hg0)f̂1(n1)f̂1(n2) dn2 dn

′ dn1

=

∫

Nr−1,−∞

Φ
π2(f̂1)ϕ2

(n′hg0) dn′,

where π2(f̂1)ϕ2 =
∫
N†
f̂1(n)π2(n)ϕ2 dn. This expression makes sense since f̂1 is a Schwartz

function on N†. Thus to show that I > 0, it remains to show that

∫

G0

∫

H

∫

Nr−1,−∞

Φ
π2(f̂1)ϕ2

(n′hg0)Φϕ0(g0)Φφ(hg0) dn′ dh dg0 > 0.

Actually, we will show that
∫

G0

∫

H

∫

Nr−1,−∞

Φϕ2(n′hg0)Φϕ0(g0)Φφ(hg0) dn′ dh dg0 > 0, (3.4.1)

for all smooth vectors ϕ2 ∈ π2 and ϕ0 ∈ π0. Unlike the proof of [II10, Proposition 1.1] and [Liu16,
Theorem 2.1(2)], we cannot apply [He03, Theorem 2.1] directly, as G2 ×HG0 is not reductive.
However, we are going to mimic the proof of [He03, Theorem 2.1] to prove (3.4.1).

Step 2. The goal is to reduce (3.4.1) to the case of K-finite vectors.
We claim that it is enough to prove (3.4.1) for a K2-finite (respectively K0-finite) vector

ϕ2 ∈ π2 (respectively ϕ0 ∈ π0). This is only an issue when F is archimedean. So we assume
temporarily that F is archimedean. Since K2-finite vectors are dense in the space of smooth

vectors in π2, we may choose a sequence of K2-finite vectors ϕ
(i)
2 which is convergent to ϕ2. It

follows that Φϕ2 is approximated pointwisely by Φ
ϕ
(i)
2

. Moreover, by [Sun09], there exists an

element X in the Lie algebra of G2, which depends on K2 only, such that

Φ
ϕ
(i)
2

(g2) 6 Bπ2(π2(X)ϕ
(i)
2 , π2(X)ϕ

(i)
2 )ΞG2(g2) = |π2(X)ϕ

(i)
2 |2ΞG2(g2).

Since ϕ
(i)
2 is convergent to ϕ2, we see that |π2(X)ϕ

(i)
2 |2 is convergent to |π2(X)ϕ2|2. In particular,

it is bounded by some constant which is independent of ϕ
(i)
2 . Similarly we choose a sequence ϕ

(i)
0

of K0-finite vectors in π0 which approximate ϕ0. Since
∫

G0

∫

H

∫

Nr−1,−∞

ΞG2(n′hg0)ΞG0(g0)Φφ(hg0) dn′ dh dg0

is absolutely convergent, by the Lebesgue dominated convergence theorem
∫

G0

∫

H

∫

Nr−1,−∞

Φϕ2(n′hg0)Φϕ0(g0)Φφ(hg0) dn′ dh dg0

= lim
i→∞

∫

G0

∫

H

∫

Nr−1,−∞

Φ
ϕ
(i)
2

(n′hg0)Φ
ϕ
(i)
0

(g0)Φφ(hg0) dn′ dh dg0.

So the positivity in (3.4.1) for smooth vectors follows from the positivity for K-finite vectors.
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From now on, we assume that ϕ2 and ϕ0 in (3.4.1) are K2-finite and K0-finite, respectively.

We come back to the situation F being an arbitrary local field of characteristic zero.

Step 3. The goal is to reduce (3.4.1) to the inequality (3.4.2).

Since π2 is tempered, by (the proof of) [He03, Theorem 2.1] (which is also valid when F is

non-archimedean), one can find a sequence of compactly supported continuous functions f
(i)
2,j on

G2 and a sequence of positive real numbers a
(i)
j , j = 1, . . . , si, such that

∑si
j=1 a

(i)
j = 1 and the

functions

g′2 7→ A(i)(g′2) =

si∑

j=1

a
(i)
j

∫

G2

f
(i)
2,j(g2g

′
2)f

(i)
2,j(g2) dg2

approximate Φϕ2(g′2) pointwisely. Moreover, there is a constant C2, such that

|A(i)(g′2)| 6 C2ΞG2(g′2).

Similarly, we can find a sequence of compactly supported continuous functions f
(i)
0,j on G0 and a

sequence of positive real numbers b
(i)
j , j = 1, . . . , ki, such that

∑ki
j=1 b

(i)
j = 1 and the functions

g′0 7→ B(i)(g′0) =

ki∑

j=1

b
(i)
j

∫

G0

f
(i)
0,j(g0g

′
0)f

(i)
0,j(g0) dg0

approximate Φϕ0(g′0) pointwisely. Moreover, there is a constant C0, such that

|B(i)(g′0)| 6 C0ΞG0(g′0).

Since the integral

∫

G0

∫

H

∫

Nr−1,−∞

ΞG2(n′hg0)ΞG0(g0)Φφ(hg0) dn′ dh dg0

is absolutely convergent, by the Lebesgue dominated convergence theorem, to prove (3.4.1), it
is enough to prove that for any i, j,

∫

G0

∫

H

∫

Nr−1,−∞

(∫

G2

f
(i)
2,j(g2n

′hg′0)f
(i)
2,j(g2) dg2

)

×
(∫

G0

f
(i)
0,j(g0g

′
0)f

(i)
0,j(g0) dg0

)
Φφ(hg′0) dn′ dh dg′0 > 0. (3.4.2)

We denote the left-hand side by Q. Note that this integral is absolutely convergent. To simplify

notation, we write f2 = f
(i)
2,j and f0 = f

(i)
0,j .

Step 4. Proof of (3.4.2).

We can write the inner product on S(L∗) as

Bωψ(φ, φ′) =

∫

L+F\H
ωψ(h′)φ(0)ωψ(h′)φ′(0) dh′.
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Using this expression of the inner product, we have

Q =

∫

G0

∫

H

∫

Nr−1,−∞

(∫

G2

f2(g2n
′hg′0)f2(g2) dg2

)(∫

G0

f0(g0g
′
0)f0(g0) dg0

)

×
(∫

L+F\H
ωψ(h′hg′0)φ(0)ωψ(h′)φ(0) dh′

)
dn′ dh dg′0

=

∫

G0

∫

H

∫

Nr−1,−∞

(∫

G2

f2(g2n
′hg′0)f2(g2) dg2

)(∫

G0

f0(g0g
′
0)f0(g0) dg0

)

×
(∫

L+F\H
ωψ(h′g0hg′0)φ(0)ωψ(h′g0)φ(0) dh′

)
dn′ dh dg′0.

Note that we have used the fact the pairing Bωψ is G0-invariant.
We make the following change of variables

g′0 7→ g−1
0 g′0, h 7→ g−1

0 h′−1hg0, n′ 7→ g−1
0 h′−1n′h′g0, g2 7→ g2h

′g0.

Then

Q =

∫

G2

∫

Nr−1,−∞

∫∫

(L+F )\H×H

∫∫

G0×G0

f2(g2n
′hg′0)f2(g2h′g0)

× f0(g′0)f0(g0)ωψ(hg′0)φ(0)ωψ(h′g0)φ(0) dg0 dg
′
0 dh dh

′ dn′ dg2,

where L+ F embeds in H ×H diagonally.
Finally we decompose the integral over G2 as

∫

G2/(Nr−1,−∞o(L+F ))

∫

Nr−1,−∞

∫

L+F
.

We conclude that

Q =

∫

G2/(Nr−1,−∞o(L+F ))

∣∣∣∣
∫

Nr−1,−∞

∫

H

∫

G0

f2(g2nhg0)f0(g0)ωψ,µ(hg0)φ(0) dg0 dh dn

∣∣∣∣
2

dg2 > 0.

We have thus proved (3.4.2) and, hence, Proposition 2.2.2.

3.5 Regularization via stable unipotent integral
In this subsection, we give an alternative but equivalent way to define the linear functional α
when F is non-archimedean following [LM15a, Liu16]. This definition is better for the unramified
computation and is valid for nontempered representations. In this subsection, F is always
assumed to be non-archimedean.

Let N be a unipotent group over F and f a smooth function on N . We say that f is compactly
supported on average if there are compact subsets U and U ′ of N , such that L(δU ′)R(δU )f is
compactly supported. Here δU stands for the Dirac measure on U , i.e. δU = (volU)−11U , and

L(δU ′)R(δU )f(n) =

∫

N

∫

N
δU ′(u

′)δU (u)f(u′nu) du′ du.

If f is compactly supported on average, we then define

∫ st

N
f(n) dn :=

∫

N
L(δU ′)R(δU )f(n) dn.
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This is called the stable integral of f on N . The definition is independent of the choice of U
and U ′.

We denote temporarily by G a reductive group over F . Let Pmin = MminNmin be a fixed
minimal parabolic subgroup of G. Let P = MN ⊃ Pmin be a parabolic subgroup of G. Let Ψ
be a generic character of N , i.e. the stabilizer of Ψ in Mmin is the center of Mmin. Let π be an
irreducible admissible representation of G and Φ a matrix coefficient of π. Then we have the
following result.

Proposition 3.5.1 [Liu16, Proposition 3.3]. The function Φ|NP · Ψ is compactly supported on
average.

Now let G = Mp(2n). Then Proposition 3.5.1 still holds. The same proof as in [Liu16,
Proposition 3.3] goes through as it uses only the Bruhat decomposition and Jacquet’s
subrepresentation theorem, which are valid for G.

Now we retain the notation G0, G1, G2, etc. Let Φ be a matrix coefficient on G2 (respectively

G̃2). Define

F st
ψ Φ(g) =

∫ st

Nr−1

Φ(gn)ψr−1(n) dn,

which is a function on G2 (respectively G̃2). This definition makes sense because of
Proposition 3.5.1.

Lemma 3.5.2. Assume that Φ is a matrix coefficient of a tempered representation of G2

(respectively G̃2). Then

F st
ψ Φ(hg0) = FψΦ(hg0), h ∈ H, g0 ∈ G0, (respectively g0 ∈ G̃0).

Proof. By definition,

F st
ψ Φ2(hg0) =

∫

Nr−1

(
(volU)−1

∫

U
Φ(unhg0)ψr−1(un) du

)
dn,

where U is an open compact set of Nr−1. The inner integral, as a function of n, is compactly
supported. Therefore, we may take a sufficiently large γ, such that Nr−1,γ contains U and the
support of the inner integral (as a function of n) and that

FψΦ2(hg0) =

∫

Nr−1,γ

Φ2(nhg0)ψr−1(n) dn.

It follows that

F st
ψ Φ2(hg0) =

∫

Nr−1,γ

(volU)−1

∫

U
Φ(unhg0)ψr−1(un) du dn,

=

∫

Nr−1,γ

Φ(nhg0)ψr−1(n) dn× (volU)−1

∫

U
du

= FψΦ2(hg0),

where in the second equality, we have made a change of variable n 7→ u−1n. 2

Thanks to Lemma 3.5.2, if F is non-archimedean, then we may use F st
ψ instead of Fψ in the

definition of the local linear form α. We will not distinguish F st
ψ and Fψ from now on and write

just Fψ.
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4. Unramified computations

In this section, we assume the conditions prior to Proposition 2.2.3. In particular, F is a non-
archimedean local field of residue characteristic different from two. The argument is mostly
adapted from [Liu16], except that at the end we use a different trick, which avoids the use of
the explicit formulae of the Whittkaer–Shintani functions as in [Liu16, Appendix]. Some of the
arguments which are identical to [Liu16] are only sketched.

4.1 Setup
For i = 0, 1, 2, let Bi = Pm ∩ Gi = TiUi be the upper triangular Borel subgroup of Gi where
Ti is the diagonal maximal torus of Gi. We have a hyperspecial subgroup Ki = Sp(Wi)(oF ) of

Sp(Wi). Recall that the twofold cover G̃i → Gi splits uniquely over Ki. We can thus view Ki as

a subgroup of G̃i. Let Ξ (respectively ξ) be an unramified character of T2 (respectively T0). In

the case Sp, we consider the unramified principal series π2 = I(Ξ) of G2 and π0 = I(ξ) of G̃0. In

the case Mp, we consider the unramified principal series π2 = I(Ξ) of G̃2 and π0 = I(ξ) of G0.
Note that the unramified principal series representation of the metaplectic group depends on the
additive character ψ, even though this is not reflected in the notation. We frequently identify
Ξ with an element in Cm which we also denote by Ξ = (Ξ1, . . . ,Ξm), the correspondence being
given by

Ξ(diag[am, . . . , a1, a
−1
1 , . . . , a−1

m ]) = |a1|Ξ1 · · · |am|Ξm .
Similarly we identify ξ with an element in Cn. The contragredient of π2 (respectively π0) is I(Ξ−1)
(respectively I(ξ−1)). Let fΞ ∈ I(Ξ), fΞ−1 ∈ I(Ξ−1) (respectively fξ ∈ I(ξ), fξ−1 ∈ I(ξ−1)) be
the K2-fixed (respectively K0-fixed) elements with fΞ(1) = fΞ−1(1) = 1 (respectively fξ(1) =
fξ−1(1) = 1). Let

ΦΞ(g2) =

∫

K2

fΞ(k2g2) dk2, Φξ(g0) =

∫

K0

fξ(k0g0) dk0,

Φφ(hg0) =

∫

L(oF )
ωψ(hg0)1L∗(oF )(x) dx,

and

I(g2,Ξ, ξ, ψ) =

∫

G0

∫

H
FψΦΞ(g−1

2 hg0)Φξ(g0)Φφ(hg0) dh dg0.

Then α(fΞ, fΞ−1 , fξ, fξ−1 , φ, φ) = I(1,Ξ, ξ, ψ).

Let J = H oG0 and J̃ = H o G̃0. We define the Borel subgroup BJ (respectively B
J̃
) of J

(respectively J̃) as a subgroup of J (respectively J̃) consisting of elements of the form hb0 where

b0 ∈ B0 (respectively B̃0, the inverse image of B0 in G̃0) and h ∈ H is of the form h(l, t), l ∈ L.
We define the unramified principal series representation of J (respectively J̃) as

IJ(ξ, ψ) = {f ∈ C∞(J) | f(h(l, t)b0hg0) = δ
1/2
BJ

(b0)ξ(b0)ψ(t)f(hg0)},

respectively

I J̃(ξ, ψ) = {f ∈ C∞(J̃) | f(h(l, t)b0hg0) = δ
1/2
BJ

(b0)ξχψ(b0)ψ(t)f(hg0)},

where ξχψ(b0) = ξ(diag[tn, . . . , t1, t
−1
1 , . . . , t−1

n ])χψ(t1 · · · tn) and tn, . . . , t1, t
−1
1 , . . . , t−1

n are
diagonal entries of b0.
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The group J (respectively J̃) acts on IJ(ξ, ψ) (respectively I J̃(ξ, ψ)) via the right translation.

Let KJ = J ∩K1. There is a canonical J (respectively J̃)-invariant pairing given by

BJ(f, f∨) =

∫

L∗

∫

K0

f(h(l∗, 0)k0)f∨(h(l∗, 0)k0) dk0 dl
∗,

where f ∈ IJ(ξ, ψ), f∨ ∈ IJ(ξ−1, ψ) (respectively f ∈ I J̃(ξ, ψ), f∨ ∈ I J̃(ξ−1, ψ)).

In the case Mp, there is a canonical inner product preserving isomorphism

ωψ ⊗ I(ξ) → I J̃(ξ, ψ), φ⊗ fξ → fξ,ψ,

where fξ,ψ(hg0) = ωψ(hg0)φ(0)fξ(g0), h ∈ H and g0 ∈ G̃0. In the case Sp, there is a canonical

inner product preserving isomorphism

ωψ ⊗ I(ξ) → IJ(ξ, ψ), φ⊗ fξ → fξ,ψ,

where fξ,ψ(hg0) = ωψ(hι(g0))φ(0)fξ(ι(g0)). Analogous isomorphism also holds in the case Mp.

For the ease of the exposition, we slightly modify our notation in the case Mp for the rest

of this section. For i = 0, 1, 2, we put Gi = Mp(Wi) and Bi the standard Borel subgroup of

Gi. Denote by J = H o Mp(W0), which is a subgroup of G1, and BJ its Borel subgroup. We

denote by Ki = Sp(Wi)(oF ) a hyperspecial maximal subgroup of Sp(Wi). The metaplectic cover

Mp(Wi) → Sp(Wi) splits canonically over Ki, so we view Ki as a compact (but not maximal)

subgroup of Gi and an element in Ki is naturally viewed as an element in Gi. Let KJ = K1 ∩ J .

The subgroup Pi = MiNi (i = 1, . . . , r − 1) is a parabolic subgroup of Sp(W2) as before. The

metaplectic double cover splits canonically over Ni, so we consider Ni as subgroups of G2. By

the Weyl group of Mp(Wi), we mean the Weyl group of Sp(Wi). We let

w2,long =

(
wm

−wm

)
, w1,long =

(
wn+1

−wn+1

)
, w0,long =

(
wn

−wn

)

be representatives of the longest elements in the Weyl groups WG2 , WG1 and WG0 , respectively.

They are viewed as elements in G2, G1 and G0, respectively.
For (Ξ1, . . . ,Ξm) ∈ Cm and (ξ1, . . . , ξn) ∈ Cn, we denote by Ξ and ξ the genuine character of

B2 and B0, respectively, defined by

Ξ((diag[tm, . . . , t1, t
−1
1 , . . . , t−1

m ], ε)) = ε · (χψΞ1)(t1) · · · (χψΞm)(tm),

ξ((diag[tn, . . . , t1, t
−1
1 , . . . , t−1

n ], ε)) = ε · (χψξ1)(t1) · · · (χψξn)(tn).

We have the unramified principal series representation I(Ξ) of G2 and I(ξ, ψ) of J . We let

fξ,ψ be the KJ fixed element in I(ξ, ψ) such that fξ,ψ(1) = 1. We will need to integrate over

Mp(W0). For this, we pick a measure dx on Mp(W0), such that for any f ∈ C∞c (Sp(W0)), we

have
∫

Sp(W0) f(g) dg =
∫

Mp(W0) f(x) dx. When integrating over Ki’s or KJ , we always use the

measure so that the volume of the domain of the integration is one.

With this modification of notation, the integral I(g2,Ξ, ξ, ψ) in both cases Mp and Sp can

be written as

I(g2,Ξ, ξ, ψ) =

∫

J

∫

KJ

FψΦΞ(g−1
2 gJ)fξ,ψ(kJgJ) dkJ dgJ .
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4.2 Reduction steps: r > 1
We distinguish two cases: r = 0 and r > 1. We treat the case r > 1 first.

Let ẇ = w−1
1,longw2,long be a representative of the longest element in WG1\WG2 .

Lemma 4.2.1. If g2 ∈ G2 and gJ ∈ J , then

FψΦΞ(g−1
2 gJ) = w−1

∫

K1

∫ st

Nr−1

Fψ(π2(gJ)fΞ)(k1ẇn)(π∨2 (g2)fΞ−1)(k1ẇn) dn dk1,

where

w =

∫

Nr−1

fΞ(ẇn)fΞ−1(ẇn) dn =
∆T2

∆G2

(
∆T1

∆G1

)−1

.

Proof. By definition,

FψΦΞ(g−1
2 gJ) =

∫ st

Nr−1

Bπ2(π2(g−1
2 gJu)fΞ, fΞ−1)ψ(u)−1 du

=

∫ st

Nr−1

Bπ2(π2(gJu)fΞ, π
∨
2 (g2)fΞ−1)ψ(u)−1 du.

By [Liu16, Lemma 3.2] (it is valid also for metaplectic groups since the Bruhat decomposition
is valid for metaplectic groups), there is an open compact subgroup U of Nr−1, such that
(π∨2 (g2)fΞ−1)◦ = R(δUψ)(π∨2 (g2)fΞ−1) and (π2(g2)fΞ)◦ = R(δUψ)(π2(g2)fΞ) are supported in
B2ẇPr−1. Then

FψΦΞ(g−1
2 gJ) =

∫

Nr−1

Bπ2(π2(u)(π2(gJ)fΞ)◦, (π∨2 (g2)fΞ−1)◦)ψ(u)−1 du.

We use the following realization of Bπ2 :

Bπ2(ϕ,ϕ∨) = w−1

∫

K1

∫ st

Nr−1

ϕ(k1ẇn)ϕ∨(k1ẇn) dn dk1,

where

w =

∫

Nr−1

fΞ(ẇn)fΞ−1(ẇn) dn =
∆T2

∆G2

(
∆T1

∆G1

)−1

.

In fact, the pairing is G2 invariant since B2K1ẇNr−1 is an open subset of G2. The evaluation
of w is as follows. Denote temporarily by fi (i = 1, 2) the function on Sp(Wi) which satisfies
fi|Ki = 1, fi(bg) = δi(b)fi(g) for all b ∈ Bi where Bi is the Borel subgroup of Sp(Wi) and δi is
the modulus character of Bi. Define a function f ′1 on Sp(W1) by

f ′1(g) =

∫

Nr−1

f2(ẇng) dn.

Then w = f ′1(1). Since f ′1(bg) = δ1(b)f ′1(g) and f ′1|K1 is a constant, it follows that f ′1 = wf1.
Therefore, ∫

Nm∩Sp(W1)
f ′1(w1,longn) dn = w

∫

Nm∩Sp(W1)
f1(w1,longn) dn.

The left-hand side equals ∫

Nm

f2(w2,longn) dn

92

https://doi.org/10.1112/S0010437X16007752 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007752


Refined global Gan–Gross–Prasad conjecture

by the definition of f ′1. It follows from [Gro97, Proposition 4.7] that
∫

Nm∩Sp(Wi)
fi(wi,longn) dn =

∆Ti

∆Gi

.

We then conclude that

w =
∆T2

∆G2

(
∆T1

∆G1

)−1

.

We continue the computation of FψΦΞ(g−1
2 gJ). We have

FψΦΞ(g−1
2 gJ) = w−1

∫

Nr−1

∫

K1

∫

Nr−1

(π2(gJ)fΞ)◦(k1ẇnu)(π∨2 (g2)fΞ−1)◦(k1ẇn)ψ(u)−1 dn dk1 du,

where the integrand is compactly supported. It equals

w−1

∫

K1

∫

Nr−1

Fψ(π2(gJ)fΞ)(k1ẇn)(π∨2 (g2)fΞ−1)◦(k1ẇn) dn dk1

= w−1

∫

K1

∫ st

Nr−1

Fψ(π2(gJ)fΞ)(k1ẇn)(π∨2 (g2)fΞ−1)(k1ẇn) dn dk1. 2

By Lemma 4.2.1, we have

I(g2,Ξ, ξ, ψ) = w−1

∫

J

∫

K1

∫ st

Nr−1

∫

KJ

FψfΞ(k1ẇngJ)π∨2 (g2)fΞ−1(k1ẇn)fξ,ψ(kJgJ) dkJ dn dk1 dgJ .

Let
l∗0 = (1, . . . , 1) ∈ L∗, η1 = w1,longh(l∗0, 0) ∈ G1, η = ẇη1 ∈ G2.

Lemma 4.2.2. The double coset B2η(Nr−1 oBJ) is open dense in G2.

Proof. This is straightforward to check. 2

Thanks to this lemma, we can define a function YΞ,ξ,ψ on G2 with the following properties:

(i) YΞ,ξ,ψ(b2g2h(l, t)b0u) = (Ξ−1δ
1/2
B2

)(b2)(ξδ
−1/2
BJ

)(b0)ψ(t)ψr−1(u)YΞ,ξ,ψ(g2) for any b2 ∈ B2, b0 ∈
B0, l ∈ L and u ∈ Nr−1;

(ii) the support of YΞ,ξ,ψ is B2η(Nr−1 oBJ);

(iii) YΞ,ξ,ψ(η) = 1.

The space of functions that satisfy the first two conditions is one dimensional by Lemma 4.2.2.
We have

YΞ,ξ,ψ(b2ηh(l, t)b0u) = (Ξ−1δ
1/2
2 )(b2)(ξδ

−1/2
BJ

)(b0)ψ(t)ψr−1(u),

for b2 ∈ B2, b0 ∈ B0, l ∈ L and u ∈ Nr−1. We define a function TΞ,ξ,ψ on G2 as

TΞ,ξ,ψ(g2) =





∫

J
FψfΞ(g2gJ)fξ,ψ(gJ) dgJ g2 ∈ B2η(Nr−1 oBJ),

0 otherwise.

If the defining integral of TΞ,ξ,ψ is convergent, then we have

TΞ,ξ,ψ(g2) = TΞ,ξ,ψ(η)YΞ−1,ξ−1,ψ−1(g2), g2 ∈ G2.
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We assume that the defining integral of TΞ,ξ,ψ is convergent for the moment. This will be
proved later. It follows that

I(g2,Ξ, ξ, ψ)

= w−1

∫

K1

∫ st

Nr−1

∫

KJ

TΞ,ξ,ψ(k1ẇnkJ)π∨2 (g2)fΞ−1(k1ẇn) dkJ dn dk1

= w−1TΞ,ξ,ψ(η)

∫

K1

∫ st

Nr−1

∫

KJ

YΞ−1,ξ−1,ψ−1(k1ẇnkJ)π∨2 (g2)fΞ−1(k1ẇn) dkJ dn dk1.

Define

S′Ξ−1,ξ−1,ψ−1(g2) = w−1

∫

K1

∫ st

Nr−1

∫

KJ

YΞ−1,ξ−1,ψ−1(k1ẇnkJ)π∨2 (g2)fΞ−1(k1ẇn) dkJ dn dk1.

(4.2.1)
Then we have

I(g2,Ξ, ξ, ψ) = TΞ,ξ,ψ(η)S′Ξ−1,ξ−1,ψ−1(g2).

4.3 Reduction steps: r = 0
We now treat the case r = 0.

The integral we need to compute is

I(gJ ,Ξ, ξ, ψ) =

∫

G0

∫

KJ

∫

K0

fΞ(k0g)fξ,ψ(kJg
−1
J g) dk0 dkJ dg.

We define

l0 = (1, . . . , 1) ∈ L, η = w0,longh(l0, 0) ∈ J.

Similar to Lemma 4.2.2, it is straightforward to prove the following lemma.

Lemma 4.3.1. The double coset BJηB0 is open dense in J .

We define a function YΞ,ξ,ψ on J which is supported on BJηB0 by

YΞ,ξ,ψ(h(l, t)b′0ηb0) = (ξ−1δ
1/2
J )(b′0)(Ξδ

1/2
0 )(b0)ψ(t), b0, b

′
0 ∈ B0, l ∈ L.

We define the function TΞ,ξ,ψ on J by

TΞ,ξ,ψ(gJ) =





∫

G0

fΞ(g)fξ,ψ(gJg) dg gJ ∈ BJηB0,

0 otherwise

and the function SΞ,ξ,ψ by

SΞ,ξ,ψ(gJ) =

∫

KJ

∫

K0

YΞ,ξ,ψ(kJg
−1
J k0) dk0 dkJ .

It follows that

I(gJ ,Ξ, ξ, ψ) = TΞ,ξ,ψ(η)SΞ−1,ξ−1,ψ−1(gJ).
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We now prove the convergence of the defining integral of TΞ,ξ,ψ and SΞ−1,ξ−1,ψ−1 . Assume
that r > 0.

Lemma 4.3.2. The defining integrals for TΞ,ξ,ψ and SΞ−1,ξ−1,ψ−1 are absolutely convergent if Ξ′

and ξ are sufficiently close to the unitary axis, where Ξ′ is the restriction of Ξ to T1.

Proof. If r = 0, then it follows from Proposition 2.2.1 (or its proof, applied to |Ξ| and |ξ|) that
I(gJ ,Ξ, ξ, ψ) is convergent if Ξ and ξ are sufficiently close to the unitary axis. It then follows that
for a fixed gJ ∈ J , the defining integral of TΞ,ξ,ψ(kJgJk0) is convergent for almost all kJ ∈ KJ

and k0 ∈ K0 such that kJg
−1
J k0 ∈ BJηB0. By the definition of TΞ,ξ,ψ, its defining integral is

convergent for some gJ ∈ BJηB0 is and only if it is convergent for all gJ ∈ BJηB0. Therefore,
the defining integral of TΞ,ξ,ψ(η) is convergent. This then implies that the defining integral of
SΞ−1,ξ−1,ψ−1 is convergent.

The convergence in the case of r = 1 can be proved similarly. We only need to change the
notation at several places.

Now assume that r > 2. By [Liu16, Lemma 3.3], there is an open compact subgroup U of
Nr−1, such that for all gJ ∈ J ,

FψfΞ(ηgJ) =

∫

U
fΞ(ηgJu)ψr−1(u) du.

Therefore there is a constant C, such that

|FψfΞ(ηgJ)| 6 C × f|Ξ′|(η1gJ).

The lemma in the case r > 2 then follows from the case r = 1. 2

4.4 Proof of Proposition 2.2.3
Assume that r > 1. Let Ξ0 = (Ξ1, . . . ,Ξn) ∈ Cn. Let σ be the unramified principal series
representation of G0 defined by Ξ0. We let τ be the unramified principal series representation of
GLr defined by the unramified characters (Ξn+1, . . . ,Ξm).

Following the notation of [II10] and [Liu16], we shall denote TΞ,ξ,ψ(η) by ζ(Ξ, ξ, ψ).

Lemma 4.4.1. We have

ζ(Ξ, ξ, ψ) =





Lψ(1
2 , π0 × τ)

L(1, σ × τ)L(1, τ,∧2)

∏

16i<j6r

1

L(1,Ξn+iΞ
−1
n+j)

ζ(Ξ0, ξ, ψ) Case Sp,

L(1
2 , π0 × τ)

Lψ(1, σ × τ)L(1, τ, Sym2)

∏

16i<j6r

1

L(1,Ξn+iΞ
−1
n+j)

ζ(Ξ0, ξ, ψ) Case Mp .

Proof. Recall that l∗0 = (1, . . . , 1) ∈ L∗. By definition,

ζ(Ξ, ξ, ψ) =

∫

G0

∫

H

∫

Nr−1

fΞ(w2,longh(l∗0, 0)uhg0)fξ(g0)ψr−1(u)ωψ(hg0)φ(0) du dh dg0. (4.4.1)

We combine the integral over H and Nr−1 to get an integral over Nr and get

ζ(Ξ, ξ, ψ) =

∫

G0

∫

Nr

fΞ(w2,longh(l∗0, 0)vg0)fξ(g0)ψr−1(v)ωψ(`(v)g0)φ(0) dv dg0,
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where ` : Nr → H is the natural projection whose kernel is Nr−1. We make a change of variable
v 7→ h(l∗0, 0)−1v and get

ζ(Ξ, ξ, ψ) =

∫

G0

∫

Nr

fΞ(w2,longvg0)fξ(g0)ψr−1(v)ωψ(h(l∗0, 0)−1`(v)g0)φ(0) dv dg0

=

∫

G0

∫

Nr

fΞ(w2,longg0v)fξ(g0)ψr−1(v)ωψ(h(l∗0, 0)−1g0`(v))φ(0) dv dg0,

where in the second equality we made a chance of variable v 7→ g0vg
−1
0 and used the fact that

ψr−1(g0vg
−1
0 ) = ψr−1(v).

Let NR be the unipotent radical of the upper triangular Borel subgroup of GLr and

fWτ ,Ξ0(g) =

∫

NR

fΞ(wrng)ψr(n) dn, g ∈ G2.

Then by the Casselman–Shalika formula, we have

fWτ ,Ξ0(1) =
∏

16i<j6r

1

L(1,Ξn+iΞ
−1
n+j)

.

We can then write the integral (4.4.1) as

∏

16i<j6r

1

L(1,Ξn+iΞ
−1
n+j)

×
∫

NR\Nr

∫

G0

fWτ ,Ξ0(w0,longg0ẅv)fξ(g0)ω(h(l∗0, 0)−1g0`(v))φ(0) dv dg0,

where ẅ =
( 1r

12n
−1r

)
. We make a change of variable g 7→ w−1

0,longgw0,long and v 7→
w−1

0,longvw0,long. Then since w0,long ∈ K0 and fWτ ,Ξ0 , fξ, φ are all K0-fixed, we conclude that

ζ(Ξ, ξ, ψ) =
∏

16i<j6r

1

L(1,Ξn+iΞ
−1
n+j)

×
∫

NR\Nr

∫

G0

fWτ ,Ξ0(gẅv)fξ(w0,longg)ω(w0,longh(l∗0, 0)g`(v))φ(0) dv dg.

By definition,

ζ(Ξ0, ξ, ψ) =

∫

G0

fΞ0(g)fξ(w0,longg)ωψ(w0,longh(l∗0, 0)g)φ(0) dg.

We then apply [GJRS11, Theorem 4.3] and [GJRS11, End of § 4, (4.7)] to get the lemma.
(In the notation of [GJRS11], we apply this to the case r = 0 and bν(fΞ0 , fξ, φ) = ζ(Ξ0, ξ, ψ).) 2

We now compute S′Ξ−1,ξ−1,ψ−1(1). Define the projection pr2 : C∞c (G2) → I(Ξ) by

pr2(F2)(g2) =

∫

B2

F2(b2g2)(Ξ−1δ
1/2
2 )(b2) db2,

where the measure db2 is the left invariant measure on B2 so that pr2(1K2) = fΞ. Then we define

lΞ,ξ,ψ ∈ HomNr−1oJ(I(Ξ), IJ(ξ−1, ψ)⊗ ψr−1)
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by

lΞ,ξ,ψ(f2)(gJ) =

∫

G2

f ′2(g2gJ)YΞ,ξ,ψ(g2) dg2,

where f ′2 is any element in C∞c (G2) with pr2(f ′2) = f2. It is not hard to check that lΞ,ξ,ψ is
independent of the choice of f ′2. We define

SΞ,ξ,ψ(g2) = BIJ (ξ,ψ)(fξ,ψ, lΞ,ξ,ψ(π2(g2)fΞ)).

The defining integral of lΞ,ξ,ψ is convergent if YΞ,ξ,ψ is continuous. By [She14, § 3], whose method
is valid for both cases Mp and Sp, YΞ,ξ,ψ is continuous if (Ξ, ξ) lie in some (nonempty) open
subset of Cr+s × Cs. We refer the readers to [She14, § 3] for a precise description of this open
subset.

Lemma 4.4.2. We have S′Ξ,ξ,ψ = SΞ,ξ,ψ.

Proof. We check that SΞ,ξ,ψ and S′Ξ,ξ,ψ agree when YΞ,ξ,ψ is continuous. We divide the proof into
two steps.

Step 1. The goal is to reduce the lemma to the identity (4.4.2).
Let Ξ1 = (Ξ1, . . . ,Ξn+1) and I(Ξ1) be the unramified principal series representation of G1

defined by the character Ξ1. Let F ′ψ(f2)(g2) := Fψ(f2)(g2ẇ). Then F ′ψ(f2)|G1 ∈ I(Ξ1). Define

the projection pr1 : C∞c (G1) → I(Ξ1) by

pr1(F )(g1) =

∫

B1

F (b1g1)((Ξ1)−1δ
1/2
1 )(b1) db1,

where the left invariant measure db1 is the one so that pr1(1K1) = fΞ1 . Note that pr1 is surjective
and for any element f ∈ I(Ξ1), one can choose F whose support lies in K1 such that pr1(F ) = f .

Define the intertwining operator l′Ξ,ξ,ψ ∈ HomNr−1oJ(I(Ξ), IJ(ξ−1, ψ)⊗ ψr−1) by

l′Ξ,ξ,ψ(f2)(gJ) =

∫

G1

f ′′2 (g1gJ)YΞ,ξ,ψ(g1ẇ) dg1,

where f ′′2 is any element in C∞c (G1) with pr1(f ′′2 ) = F ′ψ(f2)|G1.
Fix g2 ∈ G2 and let f ′′2 ∈ C∞c (G1) be a smooth function whose support is contained in K1

and pr1(f ′′2 ) = F ′ψ(π2(g2)fΞ)|G1. Then

S′Ξ,ξ,ψ(g2) = w−1

∫

K1

∫

KJ

YΞ,ξ,ψ(k1ẇkJ)F ′ψ(π2(g2)fΞ)(k1) dkJ dk1

= w−1

∫

K1

∫

KJ

YΞ,ξ,ψ(k1ẇkJ)f ′′2 (k1) dkJ dk1

= w−1

∫

K1

∫

KJ

YΞ,ξ,ψ(k1ẇ)f ′′2 (k1kJ) dkJ dk1

= w−1BIJ (ξ,ψ)(fξ,ψ, l
′
Ξ,ξ,ψ(π2(g2)fΞ)).

Therefore, in order to prove the lemma, we only need to show w · lΞ,ξ,ψ = l′Ξ,ξ,ψ. We have

dim HomNr−1oJ(I(Ξ), IJ(ξ−1, ψ)⊗ ψr−1) = 1.
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This is proved in [She14] in the case Sp, but the proof works equally well in the case Mp as it
uses only the decomposition Gi = BiKi. Therefore, we only have to find a function ϕ ∈ I(Ξ)
such that lΞ,ξ,ψ(ϕ)(1) 6= 0 and show that

l′Ξ,ξ,ψ(ϕ)(1)/lΞ,ξ,ψ(ϕ)(1) = w. (4.4.2)

Step 2. Proof of (4.4.2).

Let K
(1)
i be the Iwahori subgroup of Ki. Let T

(0)
i = Ti(oF ) and T

(1)
i be the kernel of the

reduction map T
(0)
i → Ti(oF /$). Note here that by Ti, we mean the diagonal torus of Sp(Wi)

in both cases Sp and Mp. Let Bi be the opposite Borel subgroup of Gi and N i be its unipotent

radical. Let N
(0)
i = Ni ∩Ki, N

(1)
i = N i ∩K(1)

i and N
(1)
i = w−1

i,longN
(1)
i wi,long. Let N

(1)
r−1 = Nr−1 ∩

N
(1)
2 . Note that in the case Mp, these subgroups of Ki are considered as subgroups of Gi via the

splitting Ki → Gi.
Let ϕ = pr2(1

K
(1)
2 η

) ∈ C∞c (G2). Then

lΞ,ξ,ψ(1
K

(1)
2 η

)(1) =

∫

K
(1)
2

YΞ,ξ,ψ(k2η) dk2.

Recall that l∗0 = (1, . . . , 1) ∈ L∗ and η = w2,longh(l∗0, 0). By the Iwahori decomposition of K
(1)
2 , it

is not hard to check that

K
(1)
2 η = T

(0)
2 N

(0)
2 w2,longh(l∗0, 0)T

(1)
0 N

(1)
J N

(1)
r−1. (4.4.3)

Therefore, YΞ,ξ,ψ(k2η) = YΞ,ξ,ψ(η) = 1 for any k2 ∈ K(1)
2 . Thus,

lΞ,ξ,ψ(1
K

(1)
2 η

)(1) = volK
(1)
2 .

We now compute l′Ξ,ξ,ψ(pr2(1
K

(1)
2 η

))(1). First

F ′ψ(pr2(1
K

(1)
2 η

))(g1) =

∫

Nr−1

∫

B2

1
K

(1)
2 η

(b2g1ẇu)(Ξ−1δ
1/2
2 )(b2)ψr−1(u) db2 du, g1 ∈ G1.

By the decomposition (4.4.3) again, for any u ∈ Nr−1, if b2g1ẇu ∈ K(1)
2 η, then u ∈ N (1)

r−1 and

b2g1ẇ ∈ K(1)
2 η. Therefore,

F ′ψ(pr2(1
K

(1)
2 η

))(g1) = volN
(1)
r−1 ·

∫

B2

1
K

(1)
2 η

(b2g1ẇ)(Ξ−1δ
1/2
2 )(b2) db2

= volN
(1)
r−1 ·

∫

B1

1
K

(1)
2 η

(b1g1ẇ)((Ξ1)−1δ
1/2
2 )(b1) db1.

Thus,

l′Ξ,ξ,ψ(pr2(1
K

(1)
2 η

))(1) = volN
(1)
r−1 ·

∫

G1

1
K

(1)
2 η

(g1ẇ)YΞ1,ξ,ψ(g1ẇ) dg1

= volN
(1)
r−1 · volK

(1)
1 .

The lemma then follows since volN
(1)
r−1 · volK

(1)
1 = w volK

(1)
2 . 2
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Lemma 4.4.3. We have

SΞ,ξ,ψ(1) =
∆G2

∆T2∆T0

ζ(Ξ, ξ, ψ), SΞ0,ξ,ψ(1) =
∆G0

∆2
T0

ζ(Ξ0, ξ, ψ).

Proof. We claim that the restriction of the measure dg to the open subset B2ηBJNr−1

decomposes as

dg|B2ηBJNr−1 =
∆G2

∆T2∆T0

db2 dnr−1 dbJ ,

where dbJ = db0 dl dt if bJ = b0h(l, t). In fact, on the one hand,
∫

G2

1
K

(1)
2 η

(g) dg = [K2 : K
(1)
2 ]−1 = q−dimG2+dimN2+dimT2 ∆G2

∆T2

.

On the other hand, it follows from (4.4.3) that
∫

B2

∫

Nr−1

∫

BJ

1
K

(1)
2 η

(b2ηbJnr−1) db2 dnr−1 dbJ = q−dimT0−dimNJ−dimNr−1∆T0 .

The claim then follows. Therefore,

lΞ,ξ,ψ(fΞ)(gJ) =
∆G2

∆T2∆T0

∫

BJ

∫

Nr−1

fΞ(ηbJnr−1gJ)(ξδ
−1/2
J )(bJ)ψr−1(nr−1) dbJ dnr−1.

We have

SΞ,ξ,ψ(1) =
∆G2

∆T2∆T0

∫

L∗

∫

K0

∫

BJ

∫

Nr−1

fΞ(w2,longh(l∗0, 0)bJnr−1h(l∗, 0)k)

× (ξ−1δ
1/2
J )(bJ)ψr−1(nr−1)fξ,ψ(h(l∗, 0)k) dnr−1 dbJ dk dl

∗.

We combine the integration over L, K0 and BJ as an integral over J and then conclude that

SΞ,ξ,ψ(1) =
∆G2

∆T2∆T0

∫

J

∫

Nr−1

fΞ(w2,longh(l∗0, 0)nr−1gJ)ψr−1(nr−1)fξ,ψ(gJ) dnr−1 dgJ

=
∆G2

∆T2∆T0

ζ(Ξ, ξ, ψ).

The equality

SΞ0,ξ,ψ(1) =
∆G0

∆2
T0

ζ(Ξ0, ξ, ψ)

can be proved similarly. In fact,

dgJ |BJηB0 =
∆G0

∆2
T0

dbJ db0.

Therefore,

SΞ0,ξ,ψ(1) =

∫

J

∫

G0

1KJ (gJ)1K0(g0)YΞ0,ξ,ψ(gJg
−1
0 ) dgJ dg0

=
∆G0

∆2
T0

∫

G0

∫

BJ

∫

B0

1KJ (bJηb0g0)1K0(g0)YΞ0,ξ,ψ(bJηb0) dbJ db0 dg0

=
∆G0

∆2
T0

ζ(Ξ0, ξ, ψ). 2
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Proof of Proposition 2.2.3. If r = 0, then Proposition 2.2.3 can be proved in exactly the same
way as [Xue16, Appendix D.3]. We omit the details. See also Lemma 7.2.2.

Assume that r > 1. Suppose that we are in the case Sp. It follows from Lemmas 4.4.1 and 4.4.3
that

I(1,Ξ, ξ, ψ) =

(
∆T2

∆G2

)−1(∆T0

∆G0

)(
Lψ(1

2 , π0 × τ)

L(1, σ × τ)L(1, τ,∧2)

∏

16i<j6r

1

L(1,Ξn+iΞ
−1
n+j)

)

×
(

Lψ(1
2 , π
∨
0 × τ∨)

L(1, σ∨ × τ∨)L(1, τ∨,∧2)

∏

16i<j6r

1

L(1,Ξ−1
n+iΞn+j)

)
I(1, ξ,Ξ0, ψ).

Proposition 2.2.3 in the case r > 1 is then reduced to the case r = 0. The case Mp can be proved
in the same way. We only need to change notation at all necessary places. 2

Part II. Compatibility with the Ichino–Ikeda conjecture

The notation in this part of the paper is independent from Part I. We keep the notation and
convention from the Introduction. Additional notation will be fixed in each section.

5. Some assumptions and remarks

5.1 Parameters
We will prove that Conjecture 2.3.1(3) is compatible with the Ichino–Ikeda conjecture [II10,
Conjecture 2.1]. The most subtle part is the appearance of the size of the centralizer of the
global L-parameters in the formula. To address this issue, of course, one has to assume that the
Langlands correspondence exists and satisfies some expected properties. We begin by setting
down the precise hypotheses that we require. We remark that for orthogonal groups and
symplectic groups, they follow from the work of Arthur [Art13] and the recent work of Atobe
and Gan [AG16]. For metaplectic groups, they should eventually follow from the on-going work
of Wen-Wei Li (e.g. [Li15]).

We first state the hypothesis on the local Langlands correspondences.

Hypothesis (LLC). We assume the Hypotheses (LLC), (Local factors), (Plancherel measures)
from [GI14, Appendix C] at all non-archimedean places v of F . Thus [GI14, Theorem C.5] holds
if v is non-archimedean. It also holds if v is archimedean by [Pau05].

We note that if v is an archimedean place, then the Hypothesis (LLC) is established by
Langlands [Lan89]. Hypothesis (Local factors) is proved in [LR05]. Hypothesis (Plancherel
measures) is proved by [Art89]. If v is non-archimedean, then they should follow from [Art13,
Theorems 1.5.1, 9.4.1, Conjecture 9.4.2].

Thus, if v is a place of F and πv is an irreducible admissible representation of G(Fv), where
G = SO(2n + 1) (respectively SO(2n), respectively Sp(2n)) gives rise to a 2n (respectively 2n,
respectively (2n+1))-dimensional selfdual representation Ψπv of the Weil–Deligne group WD(Fv)
of sign −1 (respectively +1, respectively +1). We call it the local L-parameter of πv.

Let πv be an irreducible admissible genuine representation of Mp(2n)(Fv) and Θψv(πv) be
the restriction to SO(V )(Fv) of its theta lift to O(V )(Fv) where V is a (2n + 1)-dimensional
orthogonal space over Fv of discriminant 1. By [GI14, Theorem 1.1], the map πv 7→ Θψv(πv)
gives a bijection between the set of irreducible admissible genuine representations of Mp(2n)(Fv)
and the union of the sets of irreducible admissible representations of SO(V )(Fv) where V ranges
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over all (2n+ 1)-dimensional orthogonal spaces over Fv of discriminant 1. This bijection satisfies
several expected properties (cf. [GI14, Theorem 1.3] for a list). The local L-parameter of πv is
defined to be ΨΘψv (πv). Note that the local L-parameter of πv depends on ψv.

We now turn to the global Langlands correspondences. We shall be concerned only with
tempered cuspidal automorphic representations. To avoid mentioning the hypothetical Langlands
group LF , we use the following substitute of the global L-parameters following [Art13, § 1.4]
and [GGP12, § 25, pp. 103–105].

Let π be an irreducible cuspidal tempered automorphic representation of G(AF ), where
G = SO(2n + 1) (respectively SO(2n), Sp(2n), Mp(2n)). By the global L-parameter of π, we
mean the following data:

– a partition N = N1 + · · ·+Nr, where N = 2n (respectively 2n, 2n+ 1, 2n);

– a collection of pairwisely inequivalent selfdual irreducible cuspidal automorphic
representations Πi of GLNi(AF ) of sign −1 (respectively +1, +1, −1), i = 1, . . . , r;

which satisfy the condition that for all places v of F , Ψπv '
⊕r

i=1 ΨΠi,v as representations of
WD(Fv), where ΨΠi,v is an Ni-dimensional representation of WD(Fv) associated to Πi,v by the
local Langlands correspondences for GLNi (which is known due to [HT01] and [Hen00]). By [JS81,
Theorem 4.4], the global L-parameter of π is unique if it exists. We write formally Ψπ =�r

i=1Πi.
We now state the hypothesis on the global Langlands correspondences.

Hypothesis GLC. The global L-parameter of π exists.

For orthogonal and symplectic groups, a weaker version of this (namely, replacing the
requirement ‘for all places v’ by ‘for almost all places v’) follows from [Art13, Theorems 1.5.2,
9.5.3]. For metaplectic groups, this should follow from the work of Wen-Wei Li.

With this reformulation of the L-parameter of π, we (re-)define the centralizer

Sπ = SΨπ = {(ai) ∈ (Z/2Z)r | aN1
1 · · · aNrr = 1}.

From now on, when we speak of the global L-parameters and their centralizers, we always
mean the one defined here.

We end this subsection by some discussions on the automorphic representations on the
even orthogonal groups. Suppose that π is an irreducible cuspidal tempered automorphic
representation of O(2n)(AF ). We are interested in the restriction π|SO(2n)(AF ). Here by
π|SO(2n)(AF ), we mean the following. Suppose that π is realized on V , which is a subspace
of the cuspidal automorphic spectrum of O(2n)(AF ). Let V 0 = {f |SO(2n)(AF ) | f ∈ V }. Then
π|SO(2n)(AF ) stands for the natural action of SO(2n)(AF ) on V 0. We summarize some recent
results of Atobe and Gan [AG16] as the following Hypothesis O.

Hypothesis O. Each tempered automorphic representation π appears with multiplicity one
in the discrete spectrum of O(2n)(AF ). The following three cases exhaust all possibilities of
π|SO(2n)(AF ).

(i) We have that π|SO(2n)(AF ) is irreducible and appears with multiplicity one in the discrete
spectrum of SO(2n)(AF ).

(ii) We have that π|SO(2n)(AF ) is irreducible and appears with multiplicity two in the discrete
spectrum of SO(2n)(AF ). In this case, there is an automorphic representation π′ of O(2n)(AF )
such that π 6= π′ and π|SO(2n)(AF ) ⊕ π′|SO(2n)(AF ) is the π|SO(2n)(AF )-isotypic component of the
discrete spectrum of SO(2n)(AF ). Note that π′ is not uniquely determined.

101

https://doi.org/10.1112/S0010437X16007752 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007752


H. Xue

(iii) We have π|SO(2n)(AF ) = π+ ⊕ π− where π+ and π− are inequivalent automorphic
representations of SO(2n)(AF ). Both π+ and π− appear with multiplicity one in the discrete
spectrum of SO(2n)(AF ). Moreover, Ψπ+ = Ψπ− .

In each case, let π0 be an irreducible component of π|SO(2n)(AF ). Then we define the L-
parameter Ψπ of π by Ψπ = Ψπ0 . Suppose that Ψπ = Π1 � · · · � Πr where Πi is an irreducible
cuspidal automorphic representation of GLNi(AF ). Then in the first (respectively second and
third) case (respectively cases), at least one of Ni is odd (respectively all Ni are even).

Let ε ∈ O(2n)(F )\ SO(2n)(F ). Conjugation by ε induces an outer automorphism of order
two of SO(2n) which does not depend on the choice of the element ε. We denote this outer
automorphism also by ε. If n 6= 2, then this is the unique nontrivial outer automorphism of
SO(2n). For any automorphic representation σ of SO(2n)(AF ), we let σε be its twist by ε. In the
first two cases, (π|SO(2n)(AF ))

ε = π|SO(2n)(AF ). In the third case, (π±)ε = π∓. Here we use ‘=’ to
indicate that not only the automorphic representations are isomorphic, but the spaces on which
they realize are the same.

The automorphic representation π appears with multiplicity one in the discrete spectrum of
O(2n)(AF ), so the space on which it realizes is canonical. Suppose that π|SO(2n)(AF ) is irreducible
and appears with multiplicity two in the discrete spectrum of SO(2n)(AF ). The restrictions of
π and π′ to SO(2n)(AF ) are canonical subspaces of the discrete spectrum of SO(2n)(AF ) and
give a canonical decomposition of the π|SO(2n)(AF )-isotypic component of the discrete spectrum
of SO(2n)(AF ) (we are not able to distinguish the restrictions of π and π′). Moreover, these
subspaces are characterized by the fact that they are invariant under the outer twist ε. In other
words, if π0 (as an abstract representation) is an automorphic representation of SO(2n)(AF ) and
appears with multiplicity two in the discrete spectrum of SO(2n)(AF ), then there are precisely
two automorphic realizations V1 and V2 of π0 that are invariant under the outer twist by ε. Both
V1 and V2 can be extended to automorphic representations of O(2n)(AF ). Moreover, V1 and V2

are orthogonal in the discrete spectrum of SO(2n)(AF ) and V1⊕V2 is the π0-isotypic component
of the discrete spectrum of SO(2n)(AF ).

Finally, assume that SO(2n) is quasi-split and π0 is an irreducible cuspidal tempered
generic automorphic representation of SO(2n)(AF ) which appears with multiplicity two in the
discrete spectrum. Suppose that Ψπ0 = Π1 � · · ·�Πr. Then (at least conjecturally) the descent
construction [GRS11] provides us with an automorphic realization of π0 which is invariant under
the outer twist ε. We refer the reader to [LM15c, § 5] for some further discussions on the descent
construction.

Convention. We assume the Hypotheses LLC, GLC and O from now on, unless otherwise
specified.

5.2 Theta correspondences
We are going to use the Rallis inner product formula in the later sections of this paper. We
will not recall the precise form of this formula in various cases, but refer the readers to [Yam11,
Yam14] for the formula in the first term range and to [GQT14] for the formula in the second
term range.

We now consider the behavior of the L-parameters under theta correspondences.

Lemma 5.2.1. Let V be a 2n-dimensional orthogonal space over F and π an irreducible cuspidal
tempered automorphic representation of O(V )(AF ). Let Θψ(π) be its theta lift to Sp(2n)(AF )
with additive character ψ. Suppose that Θψ(π) is nonzero and cuspidal. Let Ψπ = �r

i=1Πi be
the L-parameter of π. Then Πi 6= 1 (the trivial character of A×F ) for all i.
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Proof. Suppose that Πi = 1 for some i. We may assume that i = 1. Then by Hypothesis O,
π|SO(V )(AF ) is irreducible. We prove that π has a nonzero theta lift to Sp(2n − 2)(AF ). The
lemma then follows from the tower property of the theta lift [Ral84].

If π has a nonzero theta lift to Sp(2n− 2r)(AF ) for some r > 1, then by the tower property
of the theta lift, π has a nonzero theta lift to Sp(2n− 2)(AF ). Thus, we may assume that π does
not have a nonzero theta lift to any Sp(2n− 2r)(AF ) for any r > 1.

We fix a sufficiently large finite set S of places of F which contains all the archimedean
places, so that if v 6∈ S, then π (hence, Πi) is unramified. By the Hypotheses LLC and GLC,

LS(s, π) =
r∏

i=1

LS(s,Πi),

where the left-hand side is the standard L-function of π defined by the doubling method and
the right-hand side is the standard L-function of Πi. If i 6= 1, then LS(s,Πi) is holomorphic and
does not vanish at s = 1 (see [JS76/77]) and LS(s,1) have a simple pole at s = 1. Therefore,

LS(s, π) has a simple pole at s = 1.
Let v be a place of F . By assumption, πv|SO(V )(Fv) is irreducible. By [GI14, Theorem C.5],

there is an irreducible admissible representation σ of Sp(2n−2)(Fv) such that πv = Θψv(σ). This
means that πv has a nonzero theta lift to Sp(2n− 2)(Fv).

It then follows from [Yam14, Theorem 10.1] that π has a nonzero theta lift to Sp(2n−2)(AF ).
This proves the lemma. 2

Lemma 5.2.2. Let V be a 2n + 1 (respectively 2n)-dimensional orthogonal space over F and
π be an irreducible cuspidal tempered automorphic representation of O(V )(AF ). Let Θψ(π) be
its theta lift to Mp(2n)(AF ) (respectively Sp(2n)(AF )) with additive character ψ. Assume that
Θψ(π) is cuspidal and nonzero. Then

ΨΘψ(π) = Ψπ ⊗ χV , respectively ΨΘψ(π) = (Ψπ � 1)⊗ χV ,

where 1 stands for the trivial character of A×F .

Proof. Let v be a place of F . By [GI14, Theorem C.5] and [GS12], we see that

ΨΘψv (πv) = Ψπv ⊗ χV,v, respectively ΨΘψv (πv) = (Ψπv ⊕ 1v)⊗ χV,v,
By the previous lemma, in the case dimV = 2n, Ψπ does not contain 1. The lemma then follows
from [JS81, Theorem 4.4]. 2

Lemma 5.2.3. Let π be an irreducible cuspidal tempered automorphic representation of
O(V )(AF ) where V is a 2n-dimensional orthogonal space over F . There is a canonical injective
map Sπ → SΘψ(π). It is not bijective if and only if Ψπ = Π1� · · ·�Πr where Πi is an irreducible
cuspidal automorphic representation of GLNi(AF ) with Ni being even. In this case, Sπ is an
index two subgroup of SΘψ(π).

Proof. Suppose that Ψπ = �r
i=1Πi, where Πi is an irreducible cuspidal automorphic

representation of GLNi(AF ) and
∑r

i=1 = 2n. By Lemma 5.2.2,

Sπ = {(ai) ∈ (Z/2Z)r | aN1
1 · · · aNrr = 1}, SΘψ(π) = {(ai) ∈ (Z/2Z)r+1 | aN1

1 · · · aNrr ar+1 = 1}.
The map (a1, . . . , ar) 7→ (a1, . . . , ar, 1) is clearly injective. It is not bijective if and only if there
are elements (a1, . . . , ar) ∈ (Z/2Z)r so that aN1

1 · · · aNrr = −1. This is equivalent to that at least
one of the Ni is odd. 2
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6. The Ichino–Ikeda conjecture for the full orthogonal group

We review in this section the conjecture of Ichino and Ikeda [II10] and extend it to the full
orthogonal group. There are minor inaccuracies in the formulation of the conjecture in [II10]
when the automorphic representation on the even orthogonal group appears with multiplicity two
in the discrete automorphic spectrum. We will take care of this issue in § 6.2. The Ichino–Ikeda
conjecture for the full orthogonal groups is stated in § 6.3. We will show that it follows from the
Ichino–Ikeda conjecture for the special orthogonal groups. The argument is close to [GI11, §§ 2, 3]
at various points. We give details on the new difficulties that arise in our situation (mainly due
to the failure of multiplicity one in the discrete automorphic spectrum) and only state the result
when its proof is identical to that in [GI11].

6.1 Inner products
Let F be a number field and (U, qU ) be an n-dimensional orthogonal group over F . Let H = O(U)
and H0 = SO(U). Recall that there is an exact sequence

1 → H0
→ H → µ2 → 1.

We view µ2 as an algebraic group over F . We write t for the nonidentity element in µ2(F ) and
tv its image in µ2(Fv) for each place v of F . Note that if n is odd, then we may take t = −1.
The sequence splits canonically and gives an isomorphism H ' H0 × µ2.

Let dεv be the measure on µ2(Fv) so that volµ2(Fv) = 1. Then dε =
∏
v dεv is the Tamagawa

measure of µ2(AF ). Let Z be the center of H0. Note that the group Z is trivial unless n = 2.
Let dh and dh0 be the Tamagawa measure of Z(AF )\H(AF ) and Z(AF )\H0(AF ), respectively.
Then we have

∫

Z(AF )H(F )\H(AF )
f(h) dh =

∫

µ2(F )\µ2(AF )

∫

Z(AF )H0(F )\H0(AF )
f(h0ε) dh0 dε,

for all f ∈ L1(Z(AF )H(F )\H(AF )).
We fix a decomposition dh=

∏
v dhv where dhv is a measure onH(Fv). Let dh0

v = 2 dhv|H0(Fv)

be a measure on H0(Fv). Then dh0 =
∏
v dh

0
v.

Let π be an irreducible cuspidal automorphic representation of H(AF ). We denote by V the
space of automorphic functions on which π is realized. Let π0 = π|H0(AF ) and V 0 = {f |H0(AF ) |
f ∈ V }. Let S be the set of places v of F such that πv|H0(Fv) is reducible. This is also the set of
places v of F so that πv ⊗ detv ' πv. Let Bπ be the Petersson inner product on V given by

Bπ(f, f ′) =

∫

Z(AF )H(F )\H(AF )
f(h)f ′(h) dh, f, f ′ ∈ V,

We fix a decomposition Bπ =
∏
v Bπv where Bπv is an inner product on πv.

We distinguish two cases.

Case I: S = ∅. In this case, π0 is irreducible and the restriction to H0(AF ) as functions induces
an isomorphism V ' V 0 as representations of H0(AF ). Let Bπ0 be the Petersson inner product
on V 0 (defined using the Tamagawa measure on H0(AF )).

Lemma 6.1.1. For any f, f ′ ∈ V , we have

Bπ0(f |H0(AF ), f
′|H0(AF )) = 2Bπ(f, f ′).
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Proof. This can be proved in the same way as [GI11, Lemma 2.1]. 2

Case II: S 6= ∅. We fix an isomorphism

V ' lim−→
S

(⊗

v∈S
Vv

)
⊗
(⊗

v 6∈S
φv

)
,

where Vv is the space on which πv is realized and φv is an H(oF,v)-invariant vector in Vv for
v 6∈ S.

If v ∈ S, then πv ⊗ detv 6' πv and π0
v ' π+

v ⊕ π−v where π±v are irreducible admissible
representations of H0(Fv). We have V 0

v ' V +
v ⊕ V −v where V ∗v is the space on which π∗v are

realized and ∗ = ± or 0. Note that V −v ' πv(t)V
+
v . For almost all places v ∈ S, we have

φv = φ+
v + φ−v where φ±v is an H0(oF,v)-invariant element in V ±v and φ−v = πv(tv)φ

+
v . If v 6∈ S,

then π0
v is an irreducible admissible representation on the space Vv.

In this case, by the Hypothesis O, there are two irreducible cuspidal automorphic
representations π+ and π− so that π0 ' π+ ⊕ π−, π− ' π+ ◦ Ad t, V 0 = V + ⊕ V − where
V ± are the spaces on which π± are realized. We may label the two irreducible components of π0

v
for v ∈ S so that

π± '
(⊗

v∈S
π±v

)
⊗
(⊗

v 6∈S
π0
v

)
,

V ± = lim−→
S

(⊗

v∈S
v∈S

V ±v

)
⊗
(⊗

v∈S
v 6∈S

Vv

)
⊗
(⊗

v 6∈S
v∈S

φ±v

)
⊗
(⊗

v 6∈S
v 6∈S

φv

)
.

Let Bπ+ be the Petersson inner product on V + with a fixed decomposition

Bπ+ =
∏

v∈S
Bπ+

v

∏

v 6∈S
Bπv ,

where:

– Bπ+
v

is an H0(Fv) invariant pairing on V +
v if v ∈ S and Bπv is an H(Fv) invariant pairing

on Vv if v 6∈ S;

– Bπ+
v

(φ+
v , φ

+
v ) = Bv(φ, φ) = 1 for almost all v.

If v ∈ S, we define an H0(Fv) invariant pairing on V −v by B−v (φv, φv) = B+
v (πv(tv)φv,

πv(tv)φv). Then for almost all v, we have B−v (φ−v , φ
−
v ) = 1. We then define an H(Fv) invariant

pairing on Vv by

B\v(φv, φv) =

{
1
2(B+

v (φ+
v , φ

+
v ) + B−v (φ−v , φ

−
v )) if v ∈ S,

Bv(φv, φv) if v 6∈ S.

Then for almost all v, B\v(φv, φv) = 1.

Lemma 6.1.2. We have
Bπ =

∏

v

B\v.

Proof. This can be proved in the same way as [GI11, Lemma 2.3]. 2
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6.2 The Ichino–Ikeda conjecture for special orthogonal groups
We review the Ichino–Ikeda conjecture [II10, Conjecture 2.1] in this subsection. There is a
slight inaccuracy in its original formulation in [II10] when the multiplicity of the automorphic
representation on the even orthogonal group in the discrete automorphic spectrum is two. We
will make some modifications to the conjecture in this case.

Let n > 2 and Un+1 and Un be orthogonal spaces of dimension n+1 and n with an embedding
Un ⊂ Un+1. Let H0

i = SO(Ui) (i = n, n+1). Let dh be the Tamagawa measure on H0
n(AF ) and we

fix a decomposition dh =
∏
v dhv where dhv is a Haar measure on H0

n(Fv) and volH0
n(oF,v) = 1

for almost all v.
Let πn+1 =

⊗
v πn+1,v and πn =

⊗
v πn,v be irreducible cuspidal tempered automorphic

representations of H0
n+1(AF ) and H0

n(AF ), respectively. Let Vn+1 =
⊗

v Vn+1,v and Vn =
⊗

v Vn,v
be the space on which πn+1 and πn are realized, respectively. Let Bπn+1 and Bπn be the Petersson
inner products on Vn+1 and Vn, respectively. We fix a decomposition

Bπn+1 =
∏

v

Bπn+1,v , Bπn =
∏

v

Bπn,v

where Bπn+1,v and Bπn,v are inner products on Vn+1,v and Vn,v respectively.
Let fn+1 =

⊗
fn+1,v, f

′
n+1 =

⊗
f ′n+1,v ∈ Vn+1 and fn =

⊗
fn,v, f

′
n =

⊗
f ′n,v ∈ Vn. Define

J (fn+1, f
′
n+1, fn, f

′
n) =

∫

H0
n(F )\H0

n(AF )
fn+1(h)fn(h) dh ·

∫

H0
n(F )\H0

n(AF )
f ′n+1(h)f ′n(h) dh.

For each place v, we define

Jv(fn+1,v, f
′
n+1,v, fn,v, f

′
n,v) =

∫

H0
n(Fv)

Bn+1,v(πn+1,v(hv)fn+1,v, f
′
n+1,v)Bn,v(πn,v(hv)fn,v, f ′n,v) dhv.

Let S be a sufficiently large finite set of places of F containing all archimedean places so
that if v 6∈ S, then fn+1,v, f

′
n+1,v (respectively fn,v, f

′
n,v) are H0

n+1(oF,v) (respectively H0
n(oF,v))

fixed and Bπn+1,v(fn+1,v, f
′
n+1,v) = Bπn,v(fn,v, f ′n,v) = 1. In particular, πn+1,v and πn,v are both

unramified if v 6∈ S. Let {α1,v, . . . , α[(n+1)/2],v} and {β1,v, . . . , β[n/2],v} be the Satake parameters
of πn+1,v and πn,v, respectively. Let

An+1,v = diag[α1,v, . . . , α[(n+1)/2],v, α
−1
[(n+1)/2],v, . . . , α

−1
1,v]

An,v = diag[β1,v, . . . , β[n/2],v, β
−1
[n/2],v, . . . , β

−1
1,v ].

Let
LS(s, πn+1 × πn) =

∏

v 6∈S
det(1−An+1,v ⊗An,v · q−sv )−1

be the tensor product L-function and LS(s, πn+1,Ad) and LS(s, πn,Ad) be the adjoint L-
functions.

Conjecture 6.2.1 (Ichino–Ikeda [II10, Conjecture 2.1]). (i) Suppose that πn+1 and πn appear
with multiplicity one in the discrete spectrum. Then the automorphic realization Vn+1

(respectively Vn) of πn+1 (respectively πn) is canonical. We have

J (fn+1, f
′
n+1, fn, f

′
n) =

1

|Sπn+1 ||Sπn |
∆S
H0
n+1

LS(1
2 , πn+1 × πn)

LS(1, πn+1,Ad)LS(1, πn,Ad)

×
∏

v∈S
Jv(fn+1,v, f

′
n+1,v, fn,v, f

′
n,v).
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(ii) Suppose that n is odd and πn+1 appears with multiplicity two in the discrete spectrum
of H0

n+1(AF ). Then the automorphic realization Vn of πn is canonical. Let L2
πn+1

be the isotypic

component of πn+1 in the discrete automorphic spectrum of H0
n+1(AF ). Then there are two

possibilities.

(a) The linear form J is identically zero on L2
πn+1
×  L2

πn+1
×Vn×Vn. This is equivalent to that

either HomH0
n(AF )(πn+1 ⊗ πn,C) = 0 or LS(1

2 , πn+1 × πn) = 0.

(b) There is a unique irreducible subrepresentation Vn+1 of L2
πn+1

such that it is invariant under

the outer automorphism of H0
n+1 and J is not identically zero on Vn+1 × Vn+1 × Vn × Vn.

We have

J (fn+1, f
′
n+1, fn, f

′
n) =

2

|Sπn+1 ||Sπn |
∆S
H0
n+1

LS(1
2 , πn+1 × πn)

LS(1, πn+1,Ad)LS(1, πn,Ad)

×
∏

v∈S
Iv(fn+1,v, f

′
n+1,v, fn,v, f

′
n,v),

if fn+1, f
′
n+1 ∈ Vn+1, fn, f

′
n ∈ Vn. Let V ′n+1 (6= Vn+1) be the other irreducible

subrepresentation of L2
πn+1

that is invariant under the outer automorphism of H0
n+1. Then

J is identically zero on V ′n+1 × V ′n+1 × Vn × Vn.

If n is even, then we have a similar statement, with the role of πn+1 and πn being switched.

Remark 6.2.2. The same inaccuracy also occurs in [Liu16]. One also needs to modify [Liu16,
Conjecture 2.5] in a similar way when the automorphic representation on the even orthogonal
group has multiplicity two. In this case, the automorphic realization is required to be invariant
under the outer twist and (in the notation of [Liu16]) 1/|SΨ(π2)||SΨ(π0)| needs to be replaced by
2/|SΨ(π2)||SΨ(π0)|.

6.3 The Ichino–Ikeda conjecture for full orthogonal groups
Let Un+1 and Un be orthogonal spaces of dimension n+ 1 and n with an embedding Un ⊂ Un+1.
Let Hi = O(Ui) and H0

i = SO(Ui) (i= n, n+1). Let dh be the Tamagawa measure on Hn(AF ) and
we fix a decomposition dh=

∏
v dhv where dhv is a Haar measure on Hn(Fv) and volHn(oF,v) = 1

for almost all v.
Let πn+1 =

⊗
v πn+1,v and πn =

⊗
v πn,v be irreducible cuspidal tempered automorphic

representations of Hn+1(AF ) and Hn(AF ), respectively. Let Vn+1 =
⊗

v Vn+1,v and Vn =
⊗

v Vn,v
be the space on which πn+1 and πn are realized, respectively. Let Bπn+1 and Bπn be the Petersson
inner products on Vn+1 and Vn, respectively. We fix a decomposition

Bπn+1 =
∏

v

Bπn+1,v , Bπn =
∏

v

Bπn,v

where Bπn+1,v and Bπn,v are inner products on Vn+1,v and Vn,v, respectively.
Let fn+1 =

⊗
fn+1,v ∈ Vn+1 and fn =

⊗
fn,v ∈ Vn. Define

I(fn+1, fn) =

∫

Hn(F )\Hn(AF )
fn+1(h)fn(h) dh ·

∫

Hn(F )\Hn(AF )
fn+1(h)fn(h) dh. (6.3.1)

For each place v, we define

Iv(fn+1,v, fn,v) =

∫

Hn(Fv)
Bn+1,v(πn+1,v(hv)fn+1,v, fn+1,v)Bn,v(πn,v(hv)fn,v, fn,v) dhv. (6.3.2)
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Let S be a sufficiently large finite set of places of F containing all archimedean places so
that if v 6∈ S, then fn+1,v (respectively fn,v) is Hn+1(oF,v) (respectively Hn(oF,v)) fixed and
Bπn+1,v(fn+1,v, fn+1,v) = Bπn,v(fn,v, fn,v) = 1. In particular, πn+1,v and πn,v are both unramified
if v 6∈ S. We define the partial L-functions

LS(s, πn+1 × πn) = LS(s, π̇n+1 × π̇n), LS(s, πi,Ad) = LS(s, π̇i,Ad), i = n, n+ 1,

where π̇i is an irreducible constituent of π0
i which is invariant by the nontrivial outer

automorphism ε. The L-functions on the right-hand side of each equality is independent of
the choice of this irreducible constituent.

The Ichino–Ikeda conjecture for the full orthogonal group is the following.

Conjecture 6.3.1. We have

I(fn+1, fn) =
2γ

|Sπn+1 ||Sπn |
∆S
Hn+1

LS(1
2 , πn+1 × πn)

LS(1, πn+1,Ad)LS(1, πn,Ad)

∏

v∈S
Iv(fn+1,v, fn,v). (6.3.3)

where γ is given as follows. Suppose that n is even (respectively odd). Let Ψπn = �Πi

(respectively Ψπn+1 = �Πi) where Πi is an irreducible cuspidal automorphic representation
of GLNi(AF ). Then γ = 0 (respectively 1) if at least one of Ni is odd (respectively all Ni are
even).

Remark 6.3.2. We may have a neater formulation of the conjecture if we replace our definition
of the centralizers Sπi by the one given in [AG16] for parameters of full orthogonal groups. We
stick to our current formulation as it is more convenient for the applications in this paper.

Similar to Conjecture 2.3.1, we may rewrite the identity (6.3.3) in an equivalent form, which
does not involve the finite set S. We may define the completed L-function

L(s, πn+1 × πn) =
∏

v

L(s, πn+1,v × πn,v), L(s, πi,Ad) =
∏

v

L(s, πi,v,Ad), i = n, n+ 1.

The actually definition of the local Euler factors outside the set S is irrelevant to our discussion
since the conjecture does not reply on how these Euler factors are defined. Let

L = ∆Hn+1

L(1
2 , πn+1 × πn)

L(1, πn+1,Ad)L(1, πn,Ad)
,

and by Lv the Euler factor of L at the place v. We define

I\v = L−1
v · Iv.

Then Conjecture 6.3.1 can be written as a decomposition of linear forms

I =
2γ

|Sπn+1 ||Sπn |
L ·
∏

v

I\v. (6.3.4)

The product on the right-hand side ranges over all places v of F . It is convergent since for almost
all v, i.e. v 6∈ S, I\v = 1. We may write Conjecture 6.2.1 in a similar forms.
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Proposition 6.3.3. Conjecture 6.3.1 follows from Conjecture 6.2.1.

Proof. We assume that n is odd. The case n being even can be handled similarly, with
modifications of notation at various places. Then Hn ' H0

n × µ2. So π0
n,v is irreducible for

all places v of F . Let S be the set of places of F such that π0
n+1,v is reducible.

If v 6∈ S, then fn+1,v = φn+1,v is fixed by Hn+1(oF,v) and fn,v is fixed by Hn(oF,v). We may
further assume that fn+1,v = f+

n+1,v ∈ V +
n+1,v if v ∈ S ∩S. Thus,

fn+1,v =
∏

v∈S∩S
f+
n+1,v

∏

v∈S,v 6∈S
fn+1,v

∏

v 6∈S
φn+1,v.

Put
S′ = S\(S ∩S), s = |S ∩S|, s′ = |S′|.

For any finite set of places T of F , we define FT =
∏
v∈T Fv.

If S 6= ∅, then
∫

Hn(F )\Hn(AF )
fn+1(h)fn(h) dh

=
1

2s+s′+1

∑

ε∈µ2(FS)

∫

H0
n(F )\H0

n(AF )
fn+1(hε)fn(hε) dh

=
1

2s+s′+1

∑

ε∈µ2(FS′ )

∫

H0
n(F )\H0

n(AF )
(fn+1(hε)fn(hε) + fn+1(hεt)fn(hεt)) dh

=
1

2s+s′
∑

ε∈µ2(FS′ )

∫

H0
n(F )\H0

n(AF )
fn+1(hε)fn(hε) dh.

If S = ∅, then
∫

Hn(F )\Hn(AF )
fn+1(h)fn(h) dh =

1

2s′+1

∑

ε∈µ2(FS)

∫

H0
n(F )\H0

n(AF )
fn+1(hε)fn(hε) dh.

We fix a decomposition

Bπ+
n+1

=
∏

v∈S
Bπ+

n+1,v

∏

v 6∈S
Bπ0

n+1,v
, respectively Bπ0

n+1
= 2

∏

v

Bπ0
n+1,v

if S 6= ∅ (respectively S = ∅), so that Bπn+1,v = B\πn+1,v if v ∈ S (respectively Bπn+1,v = Bπ0
n+1,v

if v 6∈ S). We fix a decomposition

Bπ0
n

= 2
∏

v

Bπ0
n,v
,

so that Bπn,v = Bπ0
n,v

.
We say that we are in the exceptional case if the following conditions are satisfied.

– We have that π0
n+1 is irreducible and appears with multiplicity two in the discrete spectrum

of H0
n+1(AF ).

– The period integral ∫

H0
n(F )\H0

n(AF )
fn+1(h)fn(h) dh

is identically zero on V 0
n+1 × V 0

n , where we denote as before V 0
i = {f |H0

i (AF ) | f ∈ Vi},
i = n, n+ 1.

109

https://doi.org/10.1112/S0010437X16007752 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007752


H. Xue

– The period integral is not identically zero on the isotypic component of π0
n+1.

Suppose that we are not in the exceptional case. Then Conjecture 6.2.1 implies that

I(fn+1, fn) =
2m+γ′

22s+2s′ |Sπn+1 ||Sπn |
∆S
Hn+1

LS(1
2 , πn+1 × πn)

LS(1, πn+1,Ad)LS(1, πn,Ad)

×
∑

ε,ε′∈µ2(FS′ )

∏

v∈S
Jv(πn+1(ε)fn+1,v, πn+1(ε′)fn+1,v, πn(ε)fn,v, πn(ε′)fn,v),

where:

– γ′ = 1 (respectively 0) if π0
n+1 is reducible (respectively irreducible);

– m = 1 (respectively 0) if π0
n+1 is irreducible and appears with multiplicity two (respectively

any irreducible constituent appears with multiplicity one) in the discrete spectrum of
H0
n+1(AF ).

We note that γ = m + γ′. In fact, in the first (respectively second, respectively third) case
in Hypothesis O, we have γ = γ′ = m = 0 (respectively γ = 1,m = 1, γ′ = 0, respectively
γ = 1,m = 0, γ′ = 1). Therefore, to deduce Conjecture 6.3.1 from Conjecture 6.2.1, we only need
to prove the following two identities. If v ∈ S, then

1
4Jv(fn+1,v, fn+1,v, fn,v, fn,v) = Iv(fn+1,v, fn,v).

If v 6∈ S, then

1

4

∑

ε,ε′∈µ2(Fv)

Jv(πn+1(ε)fn+1,v, πn+1(ε′)fn+1,v, πn(ε)fn,v, πn(ε′)fn,v) = Iv(fn+1,v, fn,v).

These two identities can be proved in the same way as [II10, Lemma 3.4]. Therefore
Conjecture 6.3.1 follows from Conjecture 6.2.1 if we are not in the exceptional case.

Now assume that we are in the exceptional case. Let π′0n+1 be an irreducible cuspidal
automorphic representation of H0

n+1(AF ) which realizes on V ′0n+1 such that V ′0n+1 is invariant
under the outer automorphism of H0

n+1, V ′0n+1 6= V 0
n+1 and π′0n+1 is isomorphic to π0

n+1 (as abstract
representations). Then the period integral

∫

H0
n(F )\H0

n(AF )
fn+1(h)fn(h) dh

is not identically zero on V ′0n+1 × V 0
n . Therefore,

HomH0
n(AF )(π

′0
n+1 ⊗ π0

n,C) 6= 0.

Since V ′0n+1 is invariant under the outer automorphism of H0
n+1, there is an automorphic

representation π′n+1 of Hn+1(AF ) which is realized on V ′n+1 whose restriction to H0
n+1(AF ) is

V ′0n+1.
Let T be a finite subset of places of F and we let detT be the character of Hn+1(AF ) defined

by

(gv) 7→
∏

v∈T
det gv ∈ {±1}, (gv) ∈ Hn+1(AF ).

Then detT is automorphic if and only if |T | is even.
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Note that n > 3 in this case. Let Zn ' µ2 be the center of Hn and it is identified with a
subgroup of Hn+1 via the embedding Hn → Hn+1. Let l =

⊗
lv ∈ HomH0

n(AF )(π
′
n+1⊗πn,C) and

θ = (θv) ∈ Zn(AF ). Let lθ =
⊗
lθvv ∈ HomH0

n(AF )(π
′
n+1 ⊗ πn,C) be defined by

lθvv (ξn+1,v ⊗ ξn,v) = lv(πn+1,v(θv)ξn+1,v ⊗ πn,v(θv)ξn,v),
Since θ2

v = 1 and dim HomH0
n(Fv)(π

′
n+1,v ⊗ πn,v,C) = 1, we have lθvv = ±lv. It follows that there

is finite set T of places of F so that lθ = detT (θ) · l. Since π′n+1 and πn are automorphic, detT is
also automorphic. It follows that |T | is even.

Let π′′n+1 = π′n+1 ⊗ detT . Then π′′n+1 is an automorphic representation of Hn+1(AF ) and is
realized on V ′′n+1. Its restriction to H0

n+1(AF ) is V ′0n+1. Moreover, for any place v of F ,

HomHn(Fv)(π
′′
n+1,v ⊗ πn,v,C) 6= 0.

Since πn+1 and π′′n+1 are not isomorphic but their restrictions to H0
n+1(AF ) are isomorphic, there

is at least one place v, such that πn+1,v ' π′′n+1,v ⊗ detv. We claim that

HomHn(Fv)(πn+1,v ⊗ πn,v,C) = 0.

In fact, HomHn(Fv)(π
′′
n+1,v ⊗ πn,v,C) 6= 0 is the +1 eigenspace of θv = −1 ∈ Zn(Fv) on

HomH0
n(Fv)(π

0
n+1,v ⊗ π0

n,v,C) while HomHn(Fv)(πn+1,v ⊗ πn,v,C) is the −1 eigenspace. Since

dim HomH0
n(Fv)(π

0
n+1,v ⊗ π0

n,v,C) = dim HomHn(Fv)(π
′′
n+1,v ⊗ πn,v,C) = 1, we conclude that

HomHn(Fv)(πn+1,v ⊗ πn,v,C) = 0.
It follows that the linear form Iv is identically zero in the exceptional case. Therefore, both

sides of (6.3.3) are zero. 2

7. Compactibility with the Ichino–Ikeda conjecture: Sp(2n) × Mp(2n)

7.1 The theorem
The goal of this section is to study Conjecture 2.3.1 for Sp(2n)×Mp(2n). We are going to show
that Conjecture 2.3.1 is compatible with the Ichino–Ikeda conjecture for SO(2n + 1) × SO(2n)
in some cases. A result of this sort for unitary groups appeared in [Xue16, Proposition 1.4.1].
The local counterpart of this argument has been used to establish the local Gan–Gross–Prasad
conjecture for the Fourier–Jacobi models [Ato15, GI16].

Let λ ∈ F×. Let (V, qV ) be a (2n+1)-dimensional orthogonal space and Vλ is a 2n-dimensional
subspace such that V ⊥λ is a one-dimensional orthogonal space of discriminant λ. Let H = O(V )
and Hλ = O(Vλ) and ιλ : Hλ → H be the natural embedding.

Let W be a 2n-dimensional symplectic space and G = Sp(W ), G̃ = Mp(W ). Let Ω̃ψ

(respectively Ωψ) be the Weil representation of G̃(AF )×H(AF ) (respectively G(AF )×Hλ(AF ))
which is realized on S(V (AF )n) (respectively S(Vλ(AF )n)). Let ωψλ be the Weil representation

of G̃(AF ) realized on S(AnF ). Then we have the theta series

Θ̃ψ(g̃, h,Φ), Θψ(g, hλ,Φλ), θψλ(g̃, φ)

on G̃(AF ) × H(AF ), G(AF ) × Hλ(AF ) and G̃(AF ) respectively, where Φ ∈ S(V (AF )n), Φλ ∈
S(Vλ(AF )n) and φ ∈ S(AnF ).

Let π be an irreducible cuspidal tempered genuine automorphic representation of G̃(AF ).
Let Θ̃ψ(π) be the theta lift of π to H(AF ), i.e. the automorphic representation generated by the
functions of the form

Θ̃ψ(ϕ,Φ)(·) =

∫

G(F )\G(AF )
ϕ(g)Θ̃ψ(g, ·,Φ) dg, ϕ ∈ π, Φ ∈ S(V (AF )n).
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Let σ be an irreducible cuspidal tempered automorphic representation of Hλ(AF ). Let Θψ(σ) be
the theta lift of σ to G(AF ), i.e. the automorphic representation generated by the functions of
the form

Θψ(f,Φλ)(·) =

∫

Hλ(F )\Hλ(AF )
f(hλ)Θψ(·, hλ,Φλ) dhλ, f ∈ σ, Φλ ∈ S(Vλ(AF )n).

Theorem 7.1.1. Suppose that Θ̃ψ−1(π) and Θψ(σ) are both cuspidal (possibly zero). If

Conjecture 6.3.1 holds for (Θ̃ψ−1(π), σ), then Conjecture 2.3.1(3) holds for (π,Θψ(σ)) with the
additive character ψ−λ.

Remark 7.1.2. We have shown in Proposition 6.3.3 that Conjecture 6.3.1 can be deduced
from the original conjecture of Ichino–Ikeda (Conjecture 6.2.1). The theorem thus says that
Conjecture 2.3.1(3) and Ichino–Ikeda’s conjecture are compatible in this situation. The same
remark also applies to Theorem 8.1.1 in the next section.

7.2 A seesaw diagram
The proof of Theorem 7.1.1 is very similar to [Xue16, Proposition 1.4.1]. It makes use of the
following seesaw diagram.

G× G̃ H

G̃ Hλ ×O(V ⊥λ )

Suppose that f =
⊗
fv ∈ σ, ϕ =

⊗
ϕv ∈ π, Φλ =

⊗
Φλ,v ∈ S(Vλ(AF )n) and φ =

⊗
φv ∈

S(AnF ) are all factorizable.

Lemma 7.2.1. We have

FJ ψ−λ(ϕ,Θψ(f,Φλ), φ) =

∫

Hλ(F )\Hλ(AF )
f(h)Θ̃ψ−1(ϕ,Φλ ⊗ φ)(ιλ(h)) dh.

Proof. We have

FJ ψ−λ(ϕ,Θψ(f,Φλ), φ)

=

∫

G(F )\G(AF )

∫

Hλ(F )\Hλ(AF )
ϕ(g)f(h)Θψ(g, h,Φλ)θψ−λ(g, φ) dh dg

=

∫

Hλ(F )\Hλ(AF )

∫

G(F )\G(AF )
ϕ(g)Θ̃ψ(g, ιλ(h),Φλ ⊗ φ)f(h) dg dh

=

∫

Hλ(F )\Hλ(AF )
f(h)Θ̃ψ−1(ϕ,Φλ ⊗ φ)(ιλ(h)) dh. 2

Let v be a place of F . We use B to denote the inner products on various unitary
representations.

Lemma 7.2.2. The integral
∫

Hλ(Fv)

∫

G(Fv)
B(σv(h)fv, fv)B(Ωψv(g, h)Φλ,v,Φλ,v)B(πv(g)ϕv, ϕv)B(ωψ−λ,v(g)φv, φv) dg dh

is absolutely convergent.
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Proof. To simplify notation, we suppress the subscript v from the notation in the proof. Put

Υ(x) =

{
1 |x| 6 1;

|x|−1 |x| > 1.

By the weak inequality (3.1.5) and the estimates (3.1.2), (3.1.4), it is enough to prove that
the double integral

∫

A+
Hλ

∫

A+
G

δ
−1/2
Hλ

(b)δ
−1/2
G (a)|a1 · · · an|(2n+1)/2

n∏

i=1

r∏

j=1

Υ(aib
−1
j )ς(a)M ς(b)M da db (7.2.1)

is convergent, where M is some positive real number, r is the Witt index of Vλ and

a = diag[a1, . . . , an, a
−1
n , . . . , a−1

1 ] ∈ A+
G, b = diag[b1, . . . , br, 1, . . . , 1, b

−1
r , . . . , b−1

1 ] ∈ A+
Hλ
.

We assume that r < n. The case r = n is very similar and needs only a slight modification.
We left it to the interested readers.

We have |b1| 6 · · · 6 |br| 6 1. Let j = (j1, . . . , jr) be r nonnegative integers such that

j1 + · · ·+ jr 6 n and let Ij be the subset of A+
G ×A+

Hλ
consisting of elements

a1 6 · · · 6 aj1 6 b1 6 aj1+1 6 · · · 6 aj1+j2 6 b2 6 · · · 6 br 6 aj1+···+jr+1 6 · · · 6 an 6 1.

Then A+
G×A+

Hλ
=
⋃
j Ij . Thus, it is enough to prove the convergence of (7.2.1) when the domain

is replaced by Ij .
Over the region Ij , the integrand of (7.2.1) equals

|a1|1/2 · · · |aj1 |(2j1+1)/2|b1|−j1+1|aj1+1|(2j1+1)/2 · · · |aj1+j2 |(2j1+2j2−3)/2|b2|−j1−j2+2

· · · |br|−j1−···−jr+r|aj1+···+jr+1|(2(j1+···+jr)+1−2r)/2 · · · |an|(2n−1−2r)/2.

Then lemma then follows from the following elementary fact.

Fact. Fix D a positive real number. The integral

∫

|x1|6···6|xs|61
|x1|n1−1 · · · |xs|ns−1

(
−

s∑

i=1

log |xi|
)D

dx1 · · · dxs

is convergent if n1 + · · ·+ nt > 0 for all 1 6 t 6 s. 2

7.3 Proof of Theorem 7.1.1
Let S be a sufficiently large finite set of places of F , such that if v 6∈ S, then the following
conditions hold:

(i) v is non-archimedean, 2 and λ are in o×F,v, the conductor of ψv is oF,v;

(ii) the group A is unramified with a hyperspecial subgroup A(oF,v), where A = H,Hλ, G;

(iii) fv is Hλ(oF,v) fixed and ϕv is G(oF,v) fixed; moreover B(fv, fv) = B(ϕv, ϕv) = 1;

(iv) Φλ is the characteristic function of Vλ(oF,v)
n and φv is the characteristic function of onF,v;

(v) the volume of the hyperspecial subgroup KAv is 1 under the chosen measure on A(Fv),
where A = H,Hλ, G.

113

https://doi.org/10.1112/S0010437X16007752 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007752


H. Xue

We may assume that Θ̃ψ−1(π) 6= 0. If this is not the case, it follows from the computation
below that both sides of Conjecture 2.3.1(3) vanish. Applying Lemma 7.2.1, Conjecture 6.3.1
and the Rallis inner product formula (for theta lifting from G̃ to H), we get

|FJ ψλ(ϕ,Θψ(f,Φλ), φ)|2 =
2γ−1∆S

H

|S
Θ̃ψ−1

(π)
||Sσ|

× LS(1
2 , Θ̃ψ−1(π)× σ)

LS(1, Θ̃ψ−1(π),Ad)LS(1, σ,Ad)

LSψ−1
(1

2 , π × χV )
∏n
i=1 ζ

S
F (2i)

×
∏

v∈S

∫

Hλ(Fv)

∫

G(Fv)
B(σv(h)fv, fv)B(Ωψv(g, h)Φλ,v,Φλ,v)

×B(πv(g)ϕv, ϕv)B(ωψ−λ,v(g)φv, φv) dg dh, (7.3.1)

where γ is described as in Conjecture 6.3.1. We explain the use the Rallis inner product formula
here in detail. In the remaining part of this paper, we are going to apply the same sort of
argument several times. We will simply say that we apply the Rallis inner product for the rest
of the paper.

First by Lemma 7.2.1, we have

|FJ ψλ(ϕ,Θψ(f,Φλ), φ)|2 = I(f, Θ̃ψ−1(ϕ,Φλ ⊗ φ)),

where I is defined in § 6.3. Apply Conjecture 6.3.1 (in the form (6.3.4)), we have

I =
2γ∆H

|S
Θ̃ψ−1

(π)
||Sσ|

L(1
2 , Θ̃ψ−1(π)× σ)

L(1, Θ̃ψ−1(π),Ad)L(1, σ,Ad)

∏

v

I\v.

Note that here the local linear form I\v is defined using an inner product Bv on Θ̃ψ−1(π)v so that∏
v Bv equals the Petersson inner product on Θ̃ψ−1(π) (defined using the Tamagawa measure

on H(AF )). We view the Rallis inner product as another decomposition of the Petersson inner
product on Θ̃ψ−1(π). The integral

∫

G(Fv)
B(Ω̃ψv(g, 1)Φv,Φ

′
v)B(πv(g)ϕv, ϕ

′
v) dg,

where we have used B to denote inner products on Ω̃ψv and on πv by abuse of notation, defines
a linear form on

Ω̃ψv ⊗ πv ⊗ Ω̃ψv ⊗ πv

which descends to an inner product on Θ̃ψ−1,v(πv) which we denote by B′v. Put

B′\v = B′v
(
Lψv,−1(1

2 , πv × χV,v)∏n
i=1 ζFv(2i)

)−1

.

Then in this case, the Rallis inner product formula claims that

1

2

Lψ−1(1
2 , π × χV )∏n

i=1 ζF (2i)

∏

v

B′\v
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equals the Petersson inner product on Θ̃ψ−1(π). Let I ′v be the linear form defined in the same
way as Iv but using the inner product B′v. Define

I ′\v = I ′v ·
(

∆Hv

L(1
2 , Θ̃ψ−1,v(πv)× σv)

L(1, Θ̃ψ−1,v(πv),Ad)L(1, σv,Ad)

Lψv,−1(1
2 , πv × χV,v)∏n

i=1 ζFv(2i)

)−1

.

It follows that we have a decomposition

I =
2γ−1∆H

|S
Θ̃ψ−1

(π)
||Sσ|

L(1
2 , Θ̃ψ−1(π)× σ)

L(1, Θ̃ψ−1(π),Ad)L(1, σ,Ad)

Lψ−1(1
2 , π × χV )∏n

i=1 ζF (2i)

∏

v

I ′\v . (7.3.2)

This is an identity of elements in

Hom
G̃(AF )×Hλ(AF )

(Ω̃ψ ⊗ π ⊗ σ,C)⊗Hom
G̃(AF )×Hλ(AF )

(Ω̃ψ ⊗ π ⊗ σ,C),

which descends to an identity of elements in

HomHλ(AF )(Θ̃ψ−1(π)⊗ σ,C)⊗HomHλ(AF )(Θ̃ψ−1(π)⊗ σ,C).

We now compute I(f, Θ̃ψ−1(ϕ,Φλ ⊗ φ)) using decomposition (7.3.2). Note that

Ω̃ψ|G̃(AF )×Hλ(AF )
' Ωψ ⊗ ωψλ ,

where G̃(AF ) acts on both factors on the right-hand side and Hλ(AF ) acts only on Ωψ. We also
note that if v 6∈ S, then

I ′\v (Φλ,v ⊗ φv, ϕv, fv) = 1.

Then the identity (7.3.1) follows.
We continue the proof of Theorem 7.1.1. The double integral on the right-hand side of (7.3.1)

is absolutely convergent by Lemma 7.2.2. Thus, we can change the order of integration by
integrating over g ∈ G(Fv) first. Then we apply Rallis inner product formula (for theta lifting
from Hλ to G), and get

|FJ ψλ(ϕ, ξ, φ)|2

=
2γ−1∆S

H

|S
Θ̃ψ−1

(π)
||Sσ|

· LS(1
2 , Θ̃ψ−1(π)× σ)

LS(1, Θ̃ψ−1(π),Ad)LS(1, σ,Ad)

(
LS(1, σ)∏n
i=1 ζ

S
F (2i)

)−1

×
LSψ−1

(1
2 , π × χV )

∏n
i=1 ζ

S
F (2i)

∏

v∈S

∫

Hλ(Fv)
B(Θψv(σv)(g)ξv, ξv)B(πv(g)ϕv, ϕv)B(ωψ−λ(g)φv, φv) dg,

where Θψ(f,Φλ) = ξ =
⊗
ξv ∈ Θψ(σ). Here we fixed a surjective map ϑv : σv ⊗Ωψv → Θψv(σv)

for each v and put ϑv(fv,Φλ,v) = ξv, so that ξ =
⊗
ξv holds. By Lemma 5.2.3, |S

Θ̃ψ−1
(π)
||Sσ| =

2γ−1|Sπ||SΘψ(σ)|. Theorem 7.1.1 then follows from Lemma 5.2.2.

7.4 Some remarks
We end this section by some remarks on Theorem 7.1.1.

Remark 7.4.1. We have proved in the theorem that we can deduce Conjecture 2.3.1(3) from
Conjecture 6.3.1 under the assumptions of the theorem. Similarly, we may also deduce
Conjecture 6.3.1 from Conjecture 2.3.1(3). We only need to run the above argument backwards.
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Remark 7.4.2. Instead of the seesaw diagram that has been used in the proof of Theorem 7.1.1,

we may consider the following seesaw diagram.

Mp(2n)×Mp(2n) O(2n+ 2)

Sp(2n) O(2n+ 1)×O(1)

Then we can go back and forth between Conjecture 2.3.1(3) for Sp(2n) × Mp(2n) and the

Ichino–Ikeda conjecture for SO(2n+ 2)× SO(2n+ 1).

In particular, if n = 1, then the Ichino–Ikeda conjecture, hence Conjecture 6.3.1 is known.

In this case, without assuming Hypotheses LLC, GLC and O, [Qiu14, Theorem 4.5] proved

Conjecture 2.3.1(3) with |Sπ2 ||Sπ0 | replaced by 1
4 . This result is compatible with our conjecture

if we assume Hypotheses LLC, GLC and O.

Remark 7.4.3. Instead of the seesaw diagrams above, we may consider the following.

Mp(2n)× Sp(2n) O(2n+ 2r + 1)

Mp(2n) O(2n+ 2r)×O(1)

Mp(2n)×Mp(2n) O(2n+ 2r)

Sp(2n) O(2n+ 2r − 1)×O(1)

In this way, the Conjecture 2.3.1(3) for tempered representations on Sp(2n) ×Mp(2n) will

be related to the Ichino–Ikeda conjecture for nontempered representations. Ichino [Ich05] and

Ichino and Ikeda [II02] made use of the following seesaw diagrams respectively.

SL(2)× S̃L(2) O(5)

S̃L(2) O(4)×O(1)

S̃L(2)× S̃L(2) O(6)

SL(2) O(5)×O(1)

At this moment, there is no precise form of the refined Gan–Gross–Prasad conjecture

for nontempered representations. We hope that Conjecture 2.3.1(3) together with the seesaw

diagrams as above could shed some light on the formulation of this conjecture.

8. Compactibility with the Ichino–Ikeda conjecture: Sp(2n + 2) × Mp(2n)

8.1 The theorem

The goal of this section is to study Conjecture 2.3.1(3) for Sp(2n+ 2)×Mp(2n).

Let W be a (2n + 2)-dimensional symplectic space and G = Sp(W ). We choose a basis

{e1, . . . , en+1, e
∗
1, . . . , e

∗
n+1} of W so that symplectic form on W is given by the matrix

(
1n

−1n

)
.

Let X = 〈en+1〉, X∗ = 〈e∗n+1〉 and W0 = 〈e1, . . . , en, e
∗
1, . . . , e

∗
n〉. With this choice of basis, we

identify W with F 2n+2 and W0 with F 2n. Let L = 〈e1, . . . , en〉 ' Fn and L∗ = 〈e∗1, . . . , e∗n〉 ' Fn.

Then W0 = L+ L∗ is a complete polarization of W0. We represent elements in G as matrices.
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Let R = R(W0) = NG0 be the Jacobi group associated to W0, where N is the unipotent
radical and G0 ' Sp(W0). The group R takes the form




1n
ty

x 1 y κ
1n

tx
1






a b

1
c d

1




where x, y ∈ Fn, κ ∈ F and
(
a b
c d

)
∈ G0. We write the first matrix as n = n(x, y, κ). Let G̃0 =

Mp(W0) and R̃ = RG̃0.
Let (V, qV ) be a (2n + 2)-dimensional orthogonal space and H = O(V ). Let λ ∈ F× and

v0
λ ∈ V such that qV (v0

λ, v
0
λ) = λ. Let Vλ be the orthogonal complement of 〈v0

λ〉 and Hλ = O(Vλ).

Let ωψλ be the Weil representation of R̃(AF ) which is realized on S(AnF ). Let Ωψ be the
Weil representation of G(AF ) × H(AF ) which is realized on S(V (AF )n+1). Let Ω0

ψ be the

Weil representation of G0(AF ) × H(AF ) which is realized on S(V (AF )n). Let Ω̃ψ be the Weil

representation of G̃0(AF )×Hλ(AF ) which is realized on S(Vλ(AF )n). Suppose that φ ∈ S(AnF )

(respectively Φ ∈ S(V n+1(AF )), respectively Φ̃ ∈ S(Vλ(AF )n)). Then we have the theta series

on R̃(AF ) (respectively G(AF )×H(AF ), respectively G̃0(AF )×Hλ(AF ))

θψλ(r, φ), respectively Θψ(g, h,Φ), respectively Θ̃ψ(g̃, hλ, Φ̃).

Let π be an irreducible cuspidal tempered automorphic representation of H(AF ). We denote
by Θψ(π) the global theta lifting of π to G(AF ), i.e. the automorphic representation of G(AF )
generated by the functions of the form

Θψ(f,Φ)(·) =

∫

H(F )\H(AF )
f(h)Θψ(·, h,Φ) dh, f ∈ π, Φ ∈ S(V (AF )n+1).

Let σ be an irreducible cuspidal tempered genuine automorphic representation of G̃0(AF ) and
Θ̃ψ(σ) be the theta lifting of σ to Hλ(AF ), i.e. the automorphic representation of Hλ(AF )
generated by the functions of the form

Θ̃ψ(ϕ, Φ̃)(·) =

∫

G0(F )\G0(AF )
ϕ(g)Θ̃ψ(g, ·, Φ̃) dg.

Theorem 8.1.1. Assume that Θψ(π) and Θ̃ψ(σ) are both cuspidal. If Conjecture 6.3.1 holds

for (π, Θ̃ψ(σ)), then Conjecture 2.3.1(3) holds for (Θψ(π), σ) (with the additive character ψλ).
In particular, if n = 1, then Conjecture 2.3.1(3) holds for (Θψ(π), σ) (with the additive
character ψλ).

The proof of this theorem will occupy the following four subsections. The last assertion follows
from the fact that the Ichino–Ikeda conjecture is known for SO(4)×SO(3). Thus, Conjecture 6.3.1
holds for O(4)×O(3).

Remark 8.1.2. We do not assume that Θ̃ψ(σ) is not zero. In fact, if Θ̃ψ(σ) is zero, then it follows
from the computation below that both sides of the identity in Conjecture 2.3.1(3) are zero.

Remark 8.1.3. By assumption, there is a v0
λ ∈ V such that qV (v0

λ, v
0
λ) = λ. If follows from

the computation below that if such a v0
λ does not exist, then both sides of the identity in

Conjecture 2.3.1(3) are zero.
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8.2 Measures

Without saying to the contrary, we always take the Tamagawa measure on the group of adelic

points of an algebraic group. Note that volA(F )\A(AF ) = 1 where A = G,G0, H,Hλ. Note also

that volG0(F )\G̃0(AF ) = 1. Suppose that A = G,G0, H,Hλ or G̃0. We fix a decomposition

dg =
∏
v dgv where dgv is a measure on A(Fv) so that for almost all places v, volKv = 1 where

Kv = A(oF,v) is a hyperspecial maximal compact subgroup of A(Fv).

Lemma 8.2.1. Let f ∈ S(V (AF )). Then

∫

AF

(∫

V (AF )
f(v)ψ(κqV (v, v)) dv

)
ψ(−λκ) dκ =

∫

Hλ(AF )\H(AF )
f(h−1v0

λ) dh. (8.2.1)

Proof. Suppose that V is not a four-dimensional split quadratic space. Then the lemma follows

from the Siegel–Weil formula for SL2×H. Let E(g,Φ
(s)
f ) be the Eisenstein series on SL2(AF )

where Φ
(s)
f ∈ Ind

SL2(AF )
B χV |·|s is the Siegel–Weil section where B is the standard upper triangular

Borel subgroup of SL2. Then the left-hand side of (8.2.1) is the ψλ-Fourier coefficient of E(g,Φ
(s)
f )

at s = s0 = n. The right-hand side of (8.2.1) is the ψλ-Fourier coefficient of the theta integral

∫

H(F )\H(AF )
θψ(g, h, f) dh,

where θψ(g, h, f) is the theta series on SL2(AF ) × H(AF ). The lemma then follows from the

(convergent) Siegel–Weil formula

E(g,Φ
(s)
f )|s=s0 =

∫

H(F )\H(AF )
θψ(g, h, f) dh.

Suppose that V is split and dimV = 4. Without loss of generality, we may assume that λ = 1.

Then V is identified with the space of 2 × 2 matrices over F and the quadratic form is given

by the determinant. We may assume v0
1 = 12 ∈ V . Under this identification, H1(AF )\H(AF ) is

identified with SL2(AF ) and the quotient measure is identified with the Tamagawa measure on

SL2(AF ). This is because the volume of H(F )H1(AF )\H(AF ) equals one.

We write an element in V as
(
x1 x2
x3 x4

)
. The left-hand side of the desired identity equals

∫

AF

∫

A4
F

f(x1, x2, x3, x4)ψ(κ(x1x4 − x2x3)− κ) dx1 dx2 dx3 dx4 dκ.

By the Fourier inversion formula, it equals

∫

A2
F

∫

AF
f(x0

1 + ax3, x
0
2 + ax4, x3, x4) da dx3 dx4,

where (x0
1, x

0
2) ∈ A2

F is a fixed vector of norm one and perpendicular to (x3, x4) under the usual

Euclidean inner product on A2
F . The choice of (x0

1, x
0
2) is not unique, but the above formula does

not depend on the choice. The measure da dx3 dx4 gives a measure on SL2(AF ) which is invariant

under the right multiplication of SL2(AF ). It is clear that it gives SL2(F )\ SL2(AF ) volume one,

hence it is the Tamagawa measure on SL2(AF ). The lemma then follows. 2
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8.3 Global Fourier–Jacobi periods of theta liftings
The goal of this subsection is to compute

∫

G0(F )\G0(AF )

∫

N(F )\N(AF )

∫

H(F )\H(AF )
f(h)Θψ(ng, h,Φ)θψλ(ng, φ)ϕ(g) dh dn dg. (8.3.1)

The idea of the computation is putting in the definition of the theta series and unfolding the
integrals. The essential step is the identity (8.3.2). In this identity, the summation over rational
points in V of norm λ is replaced by the summation over Hλ(F )\H(F ). This is the key step
which enable us to unfold the integrals. We divide the computation in several steps.

Step 1. The goal is to unwind the definition of the theta functions.
Suppose that n = n(x, y, κ), κ ∈ F\AF , x = (x1, . . . , xn) ∈ (F\AF )n and y = (y1, . . . , yn) ∈

(F\AF )n. By definition, we have

θψλ(ng, φ) =
∑

l1,...,ln∈F
ωψλ(g)φ(l1 + x1, . . . , ln + xn)ψ(λy1(x1 + 2l1) + · · ·+ λyn(xn + 2ln) + λκ).

Suppose that Φ = Φ0 ⊗ Φn+1 where Φ0 ∈ S(V (AF )n) and Φn+1 ∈ S(V (AF )). We have an
H(AF )×G0(AF ) equivariant isomorphism

S(V (AF )n+1) ' S(V (AF )n)⊗ S(V (AF )),

where the left-hand side is the Weil representation Ωψ restricted to H(AF ) × G0(AF ) and this
group acts on the first factor via the Weil representation Ω0

ψ and on the second factor via
projection to H(AF ) and multiplication from the left.

Then we have

Θ(ng, h,Φ) =
∑

v1,...,vn,vn+1∈V
Ω0
ψ(g)Φ0(h−1(v1 + x1vn+1), . . . , h−1(vn + xnvn+1))Φn+1(h−1vn+1)

×ψ(2y1qV (v1, vn+1) + · · ·+ 2ynqV (vn, vn+1) + (κ+ ytx)qV (vn+1, vn+1)).

Therefore,
∫

F\AF
Θ(ng, h,Φ)ψλ(κ) dκ

=
∑

v1,...,vn∈V
qV (vn+1,vn+1)=λ

Ω0
ψ(g)Φ0(h−1(v1 + x1vn+1), . . . , h−1(vn + xnvn+1))

×Φn+1(h−1vn+1)ψ(2y1qV (v1, vn+1) + · · ·+ 2ynqV (vn, vn+1) + ytxλ).

From this we get
∫

N(F )\N(AF )
Θ(ng, h,Φ)θψλ(nι(g), φ) dn

=
∑

v1,...,vn∈V
qV (vn+1,vn+1)=λ

l1,...,ln∈F

∫

(F\AF )2n
Ω0
ψ(g)Φ0(h−1(v1 + x1vn+1), . . . , h−1(vn + xnvn+1))

×Φn+1(h−1vn+1)ωψλ(ι(g))φ(l1 + x1, . . . , ln + xn)ψ (2y1(qV (v1, vn+1)− l1λ)

+ · · ·+ 2yn(qV (vn, vn+1)− lnλ)) dx dy.
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Recall that if g ∈ G0, then we define ι(g) = (g, 1) ∈ G̃0.

Step 2. This is the key step. We replace the summation over rational points in V of norm λ by

the summation over Hλ(F )\H(F ).
Let Λλ = {v ∈ V | qV (v, v) = λ}. Then the group H(F ) acts transitively on Λλ(F ) and

identifies Hλ(F )\H(F ) with Λλ(F ) by h 7→ h−1v0
λ. It follows that

(8.3.1) =
∑

v1,...,vn∈V
l1,...,ln∈F

∫

(F\AF )2n

∫

G0(F )\G0(AF )

∫

Hλ(F )\H(AF )
f(h)

×Ω0
ψ(g)Φ0(h−1(v1 + x1v

0
λ), . . . , h−1(vn + xnv

0
λ))Φn+1(h−1v0

λ)ωψλ(g)φ(l1 + x1, . . . , ln + xn)

×ψ(2y1(qV (v1, v
0
λ)− l1λ) + · · ·+ 2yn(qV (vn, v

0
λ)− lnλ))ϕ(g) dh dg dx dy. (8.3.2)

Then

(8.3.1) =
∑

v1,...,vn∈V
l1,...,ln∈F

∫

(F\AF )2n

∫

G0(F )\G0(AF )

∫

Hλ(AF )\H(AF )

∫

Hλ(F )\Hλ(AF )
f(hλh)

×Ω0
ψ(g)Φ0(h−1h−1

λ v1 + x1h
−1v0

λ, . . . , h
−1h−1

λ vn + xnh
−1v0

λ)

×Φn+1(h−1v0
λ)ωψλ(g)φ(l1 + x1, . . . , ln + xn)

×ψ(2y1(qV (v1, v
0
λ)− l1λ) + · · ·+ 2yn(qV (vn, v

0
λ)− lnλ))ϕ(g) dhλ dh dg dx dy.

Step 3. Simplifying the expression. This step is mostly formal.
Integrations over yi yield

(8.3.1) =
∑

v1,...,vn∈V
l1,...,ln∈F

qV (vi,v
0
λ)=liλ,∀i

∫

(F\AF )n

∫

G0(F )\G0(AF )

∫

Hλ(AF )\H(AF )

∫

Hλ(F )\Hλ(AF )

× f(hλh)Ω0
ψ(g)Φ0(h−1h−1

λ v1 + x1h
−1v0

λ, . . . , h
−1h−1

λ vn + xnh
−1v0

λ)

×Φn+1(h−1v0
λ)ωψλ(g)φ(l1 + x1, . . . , ln + xn)ϕ(g) dhλ dh dg dx.

The variables vi have to be of the form liv
0
λ + wi where wi ∈ Vλ. Therefore,

(8.3.1) =
∑

w1,...,wn∈Vλ
l1,...,ln∈F

∫

(F\AF )n

∫

G0(F )\G0(AF )

∫

Hλ(AF )\H(AF )

∫

Hλ(F )\Hλ(AF )

× f(hλh)Ω0
ψ(g)Φ0(h−1h−1

λ w1 + (l1 + x1)h−1v0
λ, . . . , h

−1h−1
λ wn + (ln + xn)h−1v0

λ)

×Φn+1(h−1v0
λ)ωψλ(g)φ(l1 + x1, . . . , ln + xn)ϕ(g) dhλ dh dg dx.

Thus

(8.3.1) =
∑

w1,...,wn∈Vλ

∫

AnF

∫

G0(F )\G0(AF )

∫

Hλ(AF )\H(AF )

∫

Hλ(F )\Hλ(AF )
f(hλh)

×Ω0
ψ(g)Φ0(h−1h−1

λ w1 + x1h
−1v0

λ, . . . , h
−1h−1

λ wn + xnh
−1v0

λ)

×Φn+1(h−1v0
λ)ωψλ(g)φ(x1, . . . , xn)ϕ(g) dhλ dh dg dx.
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We define

Φ0 ∗ φ(w1, . . . , wn) =

∫

AnF
Φ0(w1 + x1v

0
λ, . . . , wn + xnv

0
λ)φ(x1, . . . , xn) dx1 · · · dxn. (8.3.3)

Then Φ0 ∗ φ ∈ S(Vλ(AF )n).
It is straightforward to check that

Ω̃ψ(g̃, hλ)(Φ0 ∗ φ) = (Ω0
ψ(g, hλ)Φ0) ∗ (ωψλ(g̃)φ), g̃ ∈ G̃0(AF ), hλ ∈ Hλ(AF ),

where g is the image of g̃ in G0(AF ). With this definition, we have

(8.3.1) =

∫

Hλ(AF )\H(AF )

(∫

Hλ(F )\Hλ(AF )
f(hλh)Θ̃ψ(ϕ, (Ω0

ψ(h)Φ0) ∗ φ)(hλ) dhλ

)
Φn+1(h−1v0

λ) dh.

We summarize the above computation in the following lemma.

Lemma 8.3.1. We have
∫

G0(F )\G0(AF )

∫

N(F )\N(AF )

∫

H(F )\H(AF )
f(h)Θψ(ng, h,Φ0 ⊗ Φn+1)θψλ(ng, φ)ϕ(g) dh dn dg

=

∫

Hλ(AF )\H(AF )

(∫

Hλ(F )\Hλ(AF )
f(hλh)Θ̃ψ(ϕ, (Ω0

ψ(h)Φ0) ∗ φ)(hλ) dhλ

)
Φn+1(h−1v0

λ) dh.

8.4 Local Fourier–Jacobi periods of theta liftings
We now switch to the local situation. We fix a place v of F and suppress it from all notation. So
F stands for a local field of characteristic zero. We have the local version of all of the previous
objects, e.g. Weil representations, the representations π, σ, and the theta liftings Θψ(π), Θ̃ψ(σ),
the orbit Λλ of v0

λ under the action of H(F ), which is identified with Hλ(F )\H(F ), etc. We
denote by B the inner products on various unitary representations.

The goal is to compute
∫

G0(F )

∫

N(F )

∫

H(F )
B(π(h)f, f)B(Ωψ(ng, h)Φ,Φ)B(ωψλ(ng)φ, φ)B(σ(g)ϕ,ϕ) dh dn dg, (8.4.1)

where Φ = Φ0 ⊗ Φn+1 with Φ0 ∈ S(V n) and Φn+1 ∈ S(V ).
The computation is parallel to the global computation as given in the previous subsection.

The idea is again to unwind the definition of the Weil representations. The unfolding argument in
the global situation is replaced by several integration formulas in the local case. The computation,
however, is messy and technical. We list the main steps.

(i) Showing that the integral (8.4.1) is absolutely convergent. Thus, we may change the order
of integration.

(ii) Computation of the integral over N(F ), namely,

∫

N(F )
B(Ωψ(ng, h)Φ,Φ)B(ωψλ(nι(g))φ, φ) dn

for g ∈ G0(F ) and h ∈ H(F ). The goal is to unwind the definition of the Weil representations
and show that this integral equals (8.4.6). The key point in this step is the integral formula
Lemma 8.4.3.
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(iii) Simplifying the results from the previous step. Here we make use of the integration
formula Lemma 8.4.4 which is a variant of the fact that Fourier transform preserves L2 norm of
Schwartz functions. The final outcome is a clean expression (8.4.7) of the integral over N(F ).

(iv) Computing (8.4.1) using (8.4.7). The final result is summarized in Lemma 8.4.5. This
steps requires no more than making change of variables.

We organize the following computation in the above described steps.

Step 1. Absolute convergence.

Lemma 8.4.1. The integral (8.4.1) is absolutely convergent.

Proof. In view of Proposition 2.2.1 (the case r = 1), we only need to prove that for some A > 0,
we have ∫

H(F )
Ξ(h)|B(Ωψ(g, h)Φ,Φ)| dh� Ξ(g)(1 + ς(g))A, g ∈ G(F ). (8.4.2)

Note that ∣∣∣∣
∫

H(F )
Ξ(h)B(Ωψ(g, h)Φ,Φ) dh

∣∣∣∣� Ξ(g)(1 + ς(g))A, g ∈ G(F ),

since the left-hand side is a matrix coefficient of a tempered representation.
Even though in general |B(Ωψ(g, h)Φ,Φ)| is not a matrix coefficient of the Weil representation,

we claim that it is dominated by a matrix coefficient of the Weil representation. In fact, by the
Cartan decomposition, we only need to prove this when g = a ∈ A+

G and h = b ∈ A+
H . Then

|B(Ωψ(g, h)Φ,Φ)| 6
∫

V (F )n+1

|Φ(b−1va)Φ(v)| dv.

We may find a Schwartz function Φ+ so that |Φ| 6 Φ+ (pointwise). We have proved the claim
and hence the lemma. 2

Step 2. Computing the integral over N(F ).
We recall the following well-known lemma.

Lemma 8.4.2 [Liu16, Lemma 3.18]. There is a unique measure dh on Hλ(F )\H(F ), such that
for any f ∈ S(V ), we have

∫

V
f(v) dv =

∫

F×

∫

Hλ(F )\H(F )
f(h−1v0

λ) dh dλ,

where dv is the self-dual measure on V and dλ is the self-dual measure on F .

For the rest of this section, when we use the notation d to denote a measure on Hλ(F )\H(F ),
we always mean the measure defined in this lemma.

We need the following integration formula.

Lemma 8.4.3. Let f ∈ S(V ). Then
∫
V f(v)ψ(κqV (v, v)) dv is absolutely integrable as a function

of κ. Moreover,
∫

F

(∫

V
f(v)ψ(κqV (v, v)) dv

)
ψ(−λκ) dκ =

∫

Hλ(F )\H(F )
f(h−1v0

λ) dh. (8.4.3)
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Proof. The integral
∫
V f(v)ψ(κqV (v, v)) dv equals

Φn
f

((
1

−1

)(
1 κ

1

))
,

where Φn
f is the Siegel–Weil section of IndSL2(F ) χV | · |s at s = s0 = n. Then by the decomposition

(
1

−1

)(
1 κ

1

)
=

(
−κ−1 1

−κ

)(
1
κ−1 1

)
,

the order of magnitude of
∫
V f(v)ψ(κqV (v, v)) dv is |κ|−n−1 when |κ| is large. The integrability

then follows.
By Lemma 8.4.2,

∫

V
f(v)ψ(κqV (v, v)) dv =

∫

F×

(∫

Hλ′ (F )\H(F )
f(h−1v0

λ′) dh

)
ψ(−λ′κ) dλ′.

Since f is Schwartz,
∫
Hλ′ (F )\H(F ) f(h−1v0

λ′) dh is integrable as a function of λ′ and is continuous

on F×. The lemma then follows from the Fourier inversion formula. 2

Thanks to Lemma 8.4.1, we may change the order of integrations in (8.4.1). We integrate
over N(F ) first. By definition,

B(Ωψ(ng, h)Φ,Φ) =

∫

V n+1

Ω0
ψ(g)Φ0(h−1(v1 + x1vn+1), . . . , h−1(vn + xnvn+1))Φ0(v1, . . . , vn)

×ψ(2y1qV (v1, vn+1) + · · · 2ynqV (vn, vn+1) + (κ+ ytx)qV (vn+1, vn+1))

×Φn+1(h−1vn+1)Φn+1(vn+1) dv1 · · · dvn+1.

Here n = n(x, y, κ) and x = (x1, . . . , xn) ∈ Fn, y = (y1, . . . , yn) ∈ Fn, κ ∈ F . It follows from
Lemma 8.4.3 that
∫

F

∫

V n+1

Ωψ(ng, h)Φ(v1, . . . , vn, vn+1)Φ(v1, . . . , vn, vn+1)ψ(−λκ) dv1 · · · dvn dvn+1 dκ

=

∫

Hλ(F )\H(F )

∫

V n
Ω0
ψ(g)Φ0(h−1(v1 + x1h

′−1v0
λ), . . . , h−1(vn + xnh

′−1v0
λ))Φ0(v1, . . . , vn)

×ψ(2y1qV (v1, h
′−1v0

λ) + · · · 2ynqV (vn, h
′−1v0

λ) + (x1y1 + · · ·xnyn)λ)

×Φn+1(h−1h′−1v0
λ)Φn+1(h′−1v0

λ) dv1 · · · dvn dh′. (8.4.4)

The integral on the right-hand side is absolutely convergent. In fact, the integrand is bounded
by

C|Φ0(v1, . . . , vn)Φn+1(h′−1v0
λ)|,

where C is a constant which is independent of x and y.
By definition,

B(ωψλ(n(x, y, 0)g̃)φ, φ) =

∫

Fn
ωψλ(g̃)φ(l1 + x1, . . . , ln + xn)φ(l1, . . . , ln)

×ψ(λy1(x1 + 2l1) + · · ·+ λyn(xn + 2ln)) dl1 · · · dln,

where g̃ ∈ G̃0.
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We claim that
∫

F 2n

∫

Hλ(F )\H(F )

∫

V n
| ∗ ||B(ωψλ(n(x, y, 0)g̃)φ, φ)| dv1 · · · dvn dh′ dx dy (8.4.5)

is convergent, where ∗ stands for the integrand of the right-hand side of (8.4.4). Indeed, this
integral is bounded by the convergent integral

C ×
∫

Hλ(F )\H(F )

∫

V n
|Φ(v1, . . . , vn, vn+1)Φn+1(h′−1v0

λ)| dv1 · · · dvn dh′

×
∫

F 2n

|B(ωλ(n(x, y, 0)g̃)φ, φ)| dx dy,

where C is some constant.
Thanks to the convergence of (8.4.5), we can change the order of the integration of x, y ∈ Fn

and h′ ∈ Hλ(F )\H(F ). We end up with
∫

N(F )
B(Ωψ(ng, h)Φ,Φ)B(ωψλ(nι(g))φ, φ) dn

equals the following integral:
∫

Hλ(F )\H(F )

∫

F 2n

∫

V n

∫

Fn
Ω0
ψ(g)Φ0(h−1(v1 + x1h

′−1v0
λ), . . . , h−1(vn + xnh

′−1v0
λ))

×Φ0(v1, . . . , vn)

×ψ(2y1qV (v1, h
′−1v0

λ) + · · ·+ 2ynqV (vn, h
′−1v0

λ) + (x1y1 + · · ·xnyn)λ)

×ωψλ(ι(g))φ(l1 + x1, . . . , ln + xn)φ(l1, . . . , ln)ψ(−λy1(x1 + 2l1)− · · · − λyn(xn + 2ln))

×Φn+1(h−1h′−1v0
λ)Φn+1(h′−1v0

λ) dl1 · · · dln dv1 · · · dvn dy1 · · · dyn dx1 · · · dxndh′. (8.4.6)

Step 3. Simplifying the three inner integrals of (8.4.6).
We need the following integration formula.

Lemma 8.4.4. Let f be a Schwartz function on V n and φ a Schwartz function on Fn. Let v0 ∈ V
with qV (v0, v0) = λ and {v0}⊥ be its orthogonal complement. Then

∫

Fn

∫

V n

∫

Fn
ψ(2y1qV (v1, v

0) + · · · 2ynqV (vn, v
0)− 2y1l1λ− · · · − 2ynlnλ)

× f(v1, . . . , vn)φ(l1, . . . , ln) dl1 · · · dln dv1 · · · dvn dy1 · · · dyn
equals

|2λ|−n
∫

({v0}⊥)n

∫

Fn
f(l1v

0 + w1, . . . lnv
0 + wn)φ(l1, . . . , ln) dl1 · · · dln dw1 · · · dwn.

Proof. Let f̂ and φ̂ be the Fourier transform of f and φ respectively (with respect to ψ). Then
the first integral in the lemma equals

∫

Fn
f̂(2y1v

0, . . . , 2ynv
0)φ̂(2y1λ, . . . , 2ynλ) dy1 · · · dyn.

The lemma then follows from the fact that the Fourier transform preserves the inner product of
Schwartz functions. 2
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Applying this lemma, we see that

Inner three integrals of (8.4.6)

= |2λ|−n
∫

V nλ

∫

Fn

∫

Fn
Ω0
ψ(g)Φ0(h−1h′−1(w1 + l1v

0
λ + x1v

0
λ), . . . , h−1h′−1(wn + lnv

0
λ + xnv

0
λ))

×Φ0(w1 + l1h′−1v0
λ, . . . , wn + lnh′−1v0

λ)ωψλ(ι(g))φ(l1 + x1, . . . , ln + xn)φ(l1, . . . , ln)

× dw1 · · · dwn dl1 · · · dln dx1 · · · dxn.

This integral is absolutely convergent. We then make change of variables xi 7→ xi − li. Then

Inner three integrals of (8.4.6)

= |2λ|−n
∫

V nλ

∫

Fn

∫

Fn
Ω0
ψ(g)Φ0(h−1h′−1(w1 + x1v

0
λ), . . . , h−1h′−1(wn + xnv

0
λ))

×Φ0(h′−1(w1 + l1v0
λ), . . . , h′−1(wn + lnv0

λ))

×ωψλ(ι(g))φ(x1, . . . , xn)φ(l1, . . . , ln) dl1 · · · dln dw1 · · · dwn dx1 · · · dxn.

We define a local analogue of (8.3.3), i.e.

Φ0 ∗ φ(v1, . . . , vn) =

∫

Fn
Φ0(v1 + x1v

0
λ, . . . , vn + xnv

0
λ)φ(x1, . . . , xn) dx1 · · · dxn.

Then Φ0 ∗ φ ∈ S(V n
λ ) and

Ω̃ψ(g̃, hλ)(Φ0 ∗ φ) = (Ω0
ψ(g, hλ)Φ0) ∗ (ωψλ(g̃)φ), g̃ ∈ G̃0(F ), hλ ∈ Hλ(F ),

where g is the image of g̃ in G0(F ).
We conclude that

(8.4.6) = |2λ|−n
∫

Hλ(F )\H(F )
B(Ω0

ψ(g, h′h)Φ ∗ ωψλ(g)φ,Ω0
ψ(h′)Φ ∗ φ)

×Φn+1(h−1h′−1v0
λ)Φn+1(h′−1v0

λ) dh′. (8.4.7)

Step 4. Computing (8.4.1) using (8.4.7).
Recall that we have fixed a measure on H(F ) and Hλ(F ), respectively. Let dh′ be the quotient

measure on Hλ(F )\H(F ) and c a constant so that c · dh′ = dh′ where dh′ is the measure on
Hλ(F )\H(F ) defined in Lemma 8.4.2. Then we get

(8.4.1) = c · |2λ|−n
∫

Hλ\H

∫

H

∫

G0

B(π(h)f, f)B(σ(g)ϕ,ϕ)B(Ω0
ψ(g, h′h)Φ ∗ ωψλ(g)φ,Ω0

ψ(h′)Φ ∗ φ)

×Φn+1(h−1h′−1v0
λ)Φn+1(h′−1v0

λ) dg dh dh′.

We make a change of variable h 7→ h′−1h and get

(8.4.1) = c · |2λ|−n
∫∫

Hλ\H×H

∫

G0

B(π(h)f, π(h′)f)B(σ(g)ϕ,ϕ)B (Ω0
ψ(g, h)

×Φ ∗ ωψλ(g)φ,Ω0
ψ(h′)Φ ∗ φ)

×Φn+1(h−1v0
λ)Φn+1(h′−1v0

λ) dg dh dh′.
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The group Hλ embeds in H ×H diagonally. This integral is absolutely convergent.
We further split the integration over h as hλh where hλ ∈ Hλ and h ∈ Hλ\H. Then

(8.4.1) = c · |2λ|−n
∫

(Hλ\H)2

∫

Hλ

∫

G0

B(π(hλh)f, π(h′)f)B(σ(g)ϕ,ϕ)

×B(Ω̃ψ(g, hλ)(Ω0
ψ(h)Φ ∗ φ), (Ω0

ψ(h′)Φ ∗ φ))Φn+1(h−1v0
λ)Φn+1(h′−1v0

λ) dg dhλ dh
′ dh.

We summarize the above computation into the following lemma.

Lemma 8.4.5. Suppose Φ = Φ0 ⊗ Φn+1 where Φ0 ∈ S(V n) and Φn+1 ∈ S(V ). Then
∫

G0(F )

∫

N(F )

∫

H(F )
B(π(h)f, f)B(Ωψ(ng, h)Φ,Φ)B(ωψλ(ng)φ, φ)B(σ(g)ϕ,ϕ) dh dn dg

= c · |2λ|−n
∫

(Hλ\H)2

∫

Hλ

(∫

G0

B(σ(g)ϕ,ϕ)B(Ω̃ψ(g, hλ)(Ω0
ψ(h)Φ ∗ φ), (Ω0

ψ(h′)Φ ∗ φ)) dg

)

×B(π(hλh)f, π(h′)f)Φn+1(h−1v0
λ)Φn+1(h′−1v0

λ) dhλ dh dh
′.

8.5 Proof of Theorem 8.1.1
By Lemma 8.3.1, we have

|FJ ψλ(Θψ(f,Φ), ϕ, φ)|2 =

∫∫

(Hλ(AF )\H(AF ))2
Φn+1(h−1v0

λ)Φn+1(h′−1v0
λ)

×
(∫

Hλ(F )\Hλ(AF )
f(hλh)Θ̃ψ(ϕ, (Ω0

ψ(h)Φ0) ∗ φ)(hλ) dhλ

)

×
(∫

Hλ(F )\Hλ(AF )
f(h′λh

′)Θ̃ψ(ϕ, (Ω0
ψ(h′)Φ0) ∗ φ)(h′λ) dh′λ

)
dh dh′.

We fix a sufficiently large finite set of places S of F so that if v 6∈ S, then the following
conditions hold:

(i) v is non-archimedean, 2 and λ are in o×F,v, the conductor of ψ is oF,v;

(ii) the group A is unramified with a hyperspecial maximal compact subgroup KAv = A(oF,v)
where A = G,G0, H,Hλ;

(iii) fv and ϕv are KHv and KG0,v fixed respectively; moreover, they are normalized so that
B(fv, fv) = B(ϕv, ϕv) = 1; in particular, πv and σv are both unramified;

(iv) Φv is the characteristic function of V (oF,v)
n+1, φv is the characteristic function of onF,v;

(v) the volume of the hyperspecial maximal compact subgroup KAv is 1 under the chosen
measure on A(Fv), where A = G,G0, H,Hλ.

Lemma 8.5.1. If v 6∈ S, then cv = Lv(n+ 1, χVv)
−1. Recall that dhv = cv · dhλ,v\ dhv where dhv

is the measure defined in Lemma 8.4.2.

Proof. We denote temporarily by fv the characteristic function of V (oF,v). Recall from the proof
of Lemma 8.4.3 that

∫

Hλ(Fv)\H(Fv)
fv(h

−1v0
λ) dh =

∫

Fv

Φn
fv

((
1

−1

)(
1 κ

1

))
ψv(−λκ) dκ,

where Φn
fv

is the Siegel–Weil section of IndSL2(Fv) χVv | · |s at s = s0 = n. It is well-known that

the right-hand side equals Lv(n+ 1, χVv)
−1.
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We note that since λ ∈ o×F,v, the orbit Λλ of v0
λ is defined over oF,v. The group H(oF,v)

acts transitively on Vλ(oF,v). Therefore, Hλ(oF,v)\H(oF,v) → Λλ(oF,v) is a bijection. Thus,
fv(h

−1v0
λ) = 1Hλ(oF,v)\H(oF,v)(h). Therefore, under the quotient measure dhλ,v\ dhv, the left-hand

side equals one. The lemma then follows. 2

Lemma 8.5.2. We have ∏

v∈S
cv = LS(n+ 1, χV ).

Proof. It follows from Lemma 8.2.1 that
∏
v cv = 1. Then

∏

v∈S
cv =

∏

v 6∈S
c−1
v = LS(n+ 1, χV ). 2

Conjecture 6.3.1, the Rallis’ inner product formula (for theta lifting from G̃0 to Hλ) and
Lemma 8.4.5 lead to

|FJ ψλ(Θψ(f,Φ), ϕ, φ)|2 =
2γ−1

|Sπ||SΘ̃ψ(σ)
|

LS(1
2 , π × Θ̃ψ(σ))

LS(1, π,Ad)LS(1, Θ̃ψ(σ),Ad)

×∆S
H(V ) ·

LSψλ(1
2 , σ × χVλ)

∏n
j=1 ζ

S
F (2j)

∏

v∈S
c−1
v

∫

G0(Fv)

∫

N(Fv)

∫

H(Fv)

×Bv(π(hv)fv, fv)Bv(Ωψv(hv, nvgv)Φv,Φv)

×Bv(ωψλ,v(nvgv)φv, φv)Bv(σv(gv)ϕv, ϕv) dhv dnv dgv,

where γ is described as in Conjecture 6.3.1.
We then apply the Rallis inner product formula for the theta lifting from H to G. We conclude

that

|FJ ψλ(ξ, ϕ, φ)|2

=
2γ−1

|Sπ||SΘ̃ψ(σ)
|

LS(1
2 , π × Θ̃ψ(σ))

LS(1, π,Ad)LS(1, Θ̃ψ(σ),Ad)

×∆S
H ·

LSψ(1
2 , σ × χVλ)

∏n
j=1 ζ

S
F (2j)

(
LS(1, π)∏n

i=1 ζ
S
F (2i)LS(n+ 1, χV )

)−1

LS(n+ 1, χV )−1

×
∏

v∈S

∫

G0(Fv)

∫

N(Fv)
Bv(Θψv(πv)(nvgv)ξv, ξv)Bv(ωψλ,v(nvgv)φv, φv)Bv(σv(gv)ϕv, ϕv) dnv dgv,

where ξ =
⊗
ξv ∈ Θψ(π). Note that |Sπ||SΘ̃ψ(σ)

| = 2γ−1|SΘψ(π)||Sσ| by Lemma 5.2.3.

Conjecture 2.3.1(3) then follows from Lemma 5.2.2.

8.6 A variant
So far we considered the case Sp(2n + 2) ×Mp(2n). The case Mp(2n + 2) × Sp(2n) is similar.
We only mention the following theorem.

Let (V, qV ) be a (2n+3)-dimensional orthogonal space and H = O(V ). Suppose that λ ∈ F×
and there is an element v0

λ ∈ V such that qV (v0
λ, v

0
λ) = λ. Let Vλ be the orthogonal complement

of v0
λ and Hλ = O(Vλ). Let π be an irreducible cuspidal tempered automorphic representation

of H(AF ) and Θψ(π) its theta lift to Mp(2n + 2)(AF ) (with additive character ψ). Let σ be
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an irreducible cuspidal tempered automorphic representation of Sp(2n)(AF ) and Θψ(σ) its theta
lift to Hλ(AF ).

Theorem 8.6.1. Suppose that Θψ(π) and Θψ(σ) are both cuspidal. If Conjecture 6.3.1 holds for
(π,Θψ(σ)), then Conjecture 2.3.1(3) holds for (Θψ(π), σ) (with the additive character ψλ).

The proof of Theorem 8.6.1 is analogues to Theorem 8.1.1 and we leave the details to the
interested reader.
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