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ABSTRACT

In this paper, we propose a conjectural identity between the Fourier—Jacobi periods on
symplectic groups and the central value of certain Rankin—Selberg L-functions. This
identity can be viewed as a refinement to the global Gan—Gross—Prasad conjecture for
Sp(2n) x Mp(2m). To support this conjectural identity, we show that when n = m and
n =m =+ 1, it can be deduced from the Ichino-Tkeda conjecture in some cases via theta
correspondences. As a corollary, the conjectural identity holds when n = m = 1 or when
n =2, m = 1 and the automorphic representation on the bigger group is endoscopic.

1. Introduction

In this paper, we propose a conjectural identity between the Fourier—Jacobi periods on symplectic
groups and the central value of certain Rankin—Selberg L-functions. This identity can be viewed
as a refinement to the (global) Gan—Gross—Prasad conjecture [GGP12] for Sp(2n) x Mp(2m).

The Gan—Gross—Prasad conjecture predicts that the nonvanishing of certain periods is
equivalent to the nonvanishing of the central value of certain L-functions. There are two types
of periods: Bessel periods and Fourier—Jacobi periods. Bessel periods are periods of automorphic
forms on orthogonal groups or hermitian unitary groups. A lot of work has been devoted to
the study of Bessel periods, starting from the pioneering work of Waldspurger [Wal81]. In their
seminal work [IT10], based on an extensive study of the known low-rank examples, Ichino and
Ikeda proposed a precise formula relating the Bessel periods on SO(n 4+ 1) x SO(n) and the
central value of some Rankin—Selberg L-functions. The analogous formula for Bessel periods on
the hermitian unitary groups U(n+1) x U(n) has been worked out by Harris in his thesis [Har11].
Zhang [Zhal4a, Zhal4b| then proved a large part of the conjectural formula for U(n+ 1) x U(n),
using the relative trace formulae proposed by Jacquet and Rallis [JR11]. This has been further
improved by Beuzart-Plessis [Beul6]. Recently, Liu [Liul6] proposed a conjectural formula for
Bessel periods in general, i.e. the Bessel periods on SO(n+2r+1) xSO(n) or U(n+2r+1) xU(n).
Some low-rank cases have also been considered in [Liul6].

There is a parallel theory for the Fourier—Jacobi periods. They are the periods of automorphic
forms on Mp(2n + 2r) x Sp(2n) or U(n + 2r) x U(n). The case of Fourier-Jacobi periods on
U(n) x U(n) has been considered in [Xuel4, Xuel6]. We proposed a conjectural formula relating
the Fourier—Jacobi periods on U(n) x U(n) and the central value of some L-functions. We proved
this conjectural formula in some cases, using the relative trace formula proposed by Liu [Liul4].
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In the other extreme case, where one of the groups is trivial, the Fourier-Jacobi periods are
simply the Whittaker—Fourier coefficients. In this situation, Lapid and Mao [LM15a] proposed a
formula computing the norm of the Whittaker—Fourier coefficients. In a series of papers [LM15c,
LM15b, LM14], they proved the formula for Whittaker—Fourier coefficients on Mp(2n), under
some simplifying conditions at the archimedean places.

The goal of this paper is to formulate a conjectural identity between the Fourier—Jacobi
periods and the central value of some Rankin—Selberg L-functions for symplectic groups. We
also verify that this conjecture is compatible with the Ichino—Ikeda conjecture in some cases. As
a corollary, the conjectural identity holds in some low-rank cases. We now describe our results
in more detail.

For simplicity, in the introduction, we consider only the Fourier—Jacobi periods on Sp(2n +
2r) x Mp(2n) (r > 0). The case r < 0 will be explained in the main context of the paper. Let F
be a number field and ¢ : F\Ar — C* be a nontrivial additive character. Let (W2, ¢2) be the
symplectic space over F' with an orthogonal decomposition Wy + R + R* where R and R* are
isotropic subspaces and R + R* is the direct sum of » — 1 hyperbolic planes. We fix a complete
filtration of R and let IV,_; be the unipotent radical of the parabolic subgroup of G5 fixing the
complete filtration. .

Let Gy = Sp(Ws), Go = Sp(Wp) and Go = Mp(Wy) (the metaplectic double cover). Let
my (respectively mp) be an irreducible cuspidal tempered (respectively genuine) automorphic
representation of G2(Ap) (respectively Go(Ar)). Let 2 € m2 and pg € mp. Let H = Wy x F' be
the Heisenberg group attached to Wy and w, be the Weil representation of H(Ap) x Go(Ar)
which is realized on the Schwartz space S(A%L). Let ¢ € S(A%) be a Schwartz function and
0y (-, @) be a theta series on H(Ap) x Go(Ar). Let ¥,_1 be an automorphic generic character of
N,_1(Ar) which is stable under the conjugation action of H(Ar) x Go(Ar). The Fourier—Jacobi
period of (p2, g, @) is the following integral

FT (2,00, )

w2(uhgo)wo(go)r—1(w)0y (hgo, @) dudh dgo.
(1.0.1)

/GO(F)\GO(AF) /H(F)\H(AF) /er(F)\er(AF)

This integral is absolutely convergent since o and ¢ are both cuspidal. It defines an element
in

HomNrfl(AF)N(H(AF)NGO(AF))(7T2 ® T ® wy ® Pp—1, C).
This space is at most one dimensional [LS13, Sun12].

The Gan—-Gross—Prasad conjecture predicts [GGP12, Conjecture 26.1] that if the above Hom-
space is not zero, then the integral (1.0.1) does not vanish identically if and only if Li(%, Ty X T0)

is nonvanishing, where S is a sufficiently large finite set of places of F' and Li(s, 9 X o) is the
tensor product L-function of w9 and 7y (note that this L-function depends on ).
The conjectural identity that we propose is

AS, LS (L m x m0)
B |S7T2||S7TO| LS(la T2, Ad)Li(lvTr(bAd)

|-7_'jw(80273005¢)|2 X HaU(QOZ,UaQOO,ansU)? (102)
es

where:

- P2 = ®<P2,v, Po,v = ®900,v7 o= ®¢v§
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— Li(s, Ty X mp) is the tensor product L-function and L°(s, ma, Ad), Li(l7 7o, Ad) are adjoint
L-functions;

— «ay is a local linear form defined by integration of matrix coefficients (see §2.2 for the
definition); it is expected that v, # 0 if and only if Hompy, | (5, ) (H(F,)xGo(F,)) (T20 @ 0,0 @
PYr—1,0 @ Wy, , C) # 0;

— dgo in the definition of F7 is the Tamagawa measure on Go(Ar), du and dh are the
self-dual measures on N,_1(Ap) and H(Ap) respectively;

— Sr, and Sy, are centralizers of the L-parameters of mo and 7, respectively; they are abelian
2-groups (see §2.3 for a discussion).

This conjectural identity can be viewed as a refinement to the Gan—Gross—Prasad conjecture.
It is motivated by the existing conjectural identities of this type [II10, Liul6, Harll, Xuel6].
The conjectural identity claims that we should expect the same for both of the Bessel periods
and the Fourier-Jacobi periods. In the first part of this paper, we show that the conjectural
identity (1.0.2) is well-defined, i.e. the local linear form «,, is well-defined and the right-hand side
of (1.0.2) is independent of the set S. In the definition of the local linear form a,, we introduce a
new way to regularize a divergent oscillating integral over a unipotent group. This gives the same
results as the existing regularizations [LM15a, Liul6], but has the advantage of being elementary,
purely function theoretic and uniform for both archimedean and non-archimedean places.

One might be asking what happens for the Fourier—Jacobi periods on skew-hermitian unitary
groups. An identity similar to (1.0.2) should also hold. We exclude that in the present paper
for two reasons. First, sticking to the symplectic groups greatly simplifies the notation. More
importantly, in showing that the right-hand side of (1.0.2) is independent of S, we make use of
some results in [GJRS11]. The analogue results for unitary groups have not appeared in print
yet. Jiang has informed the author that Shen and Zhang are working on a more general version
of the results in [GJRS11], which should cover Fourier—Jacobi periods for both symplectic groups
and skew-hermitian unitary groups. Once such results are available, one can then formulate the
refined Gan—Gross—Prasad conjecture in the context of skew-hermitian unitary groups.

To support our conjecture, in the second part of this paper, we show, under some hypothesis
on the local and global Langlands correspondences which we will state in § 5, that our conjecture
is compatible with the Ichino-Ikeda conjecture in some cases. Thus (1.0.2) holds in some low-rank
cases when the Ichino-Ikeda conjecture is known. We have the following cases.

(i) If n =1 and r = 0, then (1.0.2) has been proved in [Qiul4, Theorem 4.5].

(ii) If » = 0 and 79 is a theta lift of some irreducible cuspidal tempered automorphic
representation of O(2n), then (1.0.2) can be deduced from the Ichino-lkeda conjecture for
SO(2n + 1) x SO(2n). In this case, if mg is not a theta lift from any O(2n + 1), then both
sides of (1.0.2) vanish.

(iii) If » = 1 and my is a theta lift of some irreducible cuspidal tempered automorphic
representation of O(2n + 2), then (1.0.2) can be deduced from the Ichino—Tkeda conjecture for
SO(2n 4 2) x SO(2n + 1). In this case, if 7y is not a theta lift from O(2n + 1), then both sides
of (1.0.2) vanish. In particular, when n = 1, (1.0.2) holds for Sp(4) x Mp(2), if the automorphic
representation on Sp(4) is a theta lift from O(4).

See Theorems 7.1.1 and 8.1.1 for the precise statements. See also Theorem 8.6.1 for an
analogous statement in the case r = —1. In the course of proving these results, we derive a
variant for the Ichino—lkeda conjecture for the full orthogonal group, cf. Conjecture 6.3.1 and
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Proposition 6.3.3. The author hopes that this variant is of some independent interest. See [GI11]
for the case of the triple product formula on GO(4).

Ichino informed the author that there are some minor inaccuracies in the original formulation
of the Ichino-Ikeda conjecture [I110, Conjecture 2.1] when the automorphic representation on
the even orthogonal group appears with multiplicity two in the discrete automorphic spectrum.
In this case, one needs to specify an automorphic realization. Moreover, the size of the centralizer
of the Arthur parameter needs to be modified accordingly. We will take care of this modification
in §6.

It is expected that our conjecture is compatible with the refined Gan—Gross—Prasad
conjecture for SO(2n + 2r + 1) x SO(2n) proposed by Liu [Liul6]. To keep this paper within a
reasonable length, we postpone to check this more general compatibility in a future paper.

This paper is organized as follows. The first part of the paper consists of §§2—4. In § 2, we first
define the Fourier-Jacobi periods and the local linear form «,. Then we state the conjectural
formula for the Fourier—Jacobi periods. In §3, we show that the local linear form «,, is well-
defined, i.e. its defining integral is either absolutely convergent or can be regularized. We also
prove a positivity result for a,,. In §4, we compute «a,, when all of the data involved are unramified.
The argument is mostly adapted from [Liul6]. The second part of this paper consists of §§5-8.
In §5, we state some working hypotheses on the local and global Langlands correspondences
and make some remarks on the theta correspondences. For orthogonal groups and symplectic
groups, these hypotheses should follow from the work of Arthur [Art13]. For metaplectic groups,
they should eventually follow from the on-going work of Li (e.g. [Lil5]). In §6, we review the
Ichino-Tkeda conjecture and derive a variant of it for the full orthogonal group. In § 7, we study
the conjecture in the case Mp(2n) x Sp(2n) via a seesaw argument. This type of argument has also
been used in [Atol5, GI16, Xuel6]. In § 8, we study the conjecture in the case Sp(2n+2)xMp(2n).
For the convenience of the readers, we remark that §§3 and 4 and the second part of the paper
are logically independent. Sections 7 and 8 are also logically independent. They can be read in
any order.

Notation and convention

The following notation will be used throughout this paper. Let F' be a number field, op the ring
of integers and A the ring of adeles. For any finite place v, let og, be the ring of integers of
F, and w, a uniformizer. Let ¢, = |0p,/w,| be the number of elements in the residue field of v.
We fix a nontrivial additive character ¥ = @1, : F\Ap — C*. We assume that 1 is unitary,
thus ¢~ = 9. For any a € F'*, we define an additive character 1), of F\Ap by ¥,(x) = ¢ (az).
For any place v of F, let (-,-)r, be the Hilbert symbol of F, and ~,, the Weil index, which is an
eighth root of unity. Note that [], vy, = 1.

Suppose that V' is a vector space and vy,...,v, € V. Then we denote by (vy,...,v,) the
subspace of V' generated by v, ..., v,. We write S(V') for the space of Schwartz functions on V.

Let (V,qy) be a quadratic space of dimension n over F' where V is the underlying vector
space and gy is the quadratic form. We can choose a basis of V' so that its quadratic form is
represented by a diagonal matrix with entries aq, ..., a,. We define the discriminant discV of V'
by

discV = (=1)"(=D/2¢; ... q, € F*JF*2.

Define a quadratic character xy : F*\A% — {£1} by xv(z) = (x,disc V).
Let (W, qw) be a symplectic space of dimension 2n over F' where W is the underlying vector
space and qpy is the symplectic form. Then we denote by Sp(W) or Sp(2n) the symplectic group
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attached to W and Mp(W') or Mp(2n) the metaplectic double cover. By definition, if v is a place
of F, then Mp(W)(F,) = Sp(W)(F,) x {£1} and the multiplication is given by

(91, €1)(g2, €2) = (9192, 1€2¢(91, 92)),
where ¢(g1, g2) is some 2-cocycle on Sp(W) valued in {£1} (see [Ran93]). Moreover,

Mp(Y) () =TT o) ) Jaen | a-1}

v
If g € Sp(W)(Ap) (respectively Sp(W)(F,)), then we define «(g) = (g,1) € Mp(W)(Ap)
(respectively Mp(F,)). Note that g — ¢(g) is not a group homomorphism.

By a genuine function on Mp(W)(F,), we mean a function on Mp(W)(F;,) which is not the
pullback of a function on Sp(W)(F,). We always identify a function on Sp(W)(F,) with a non-
genuine function on Mp(W)(F,). Suppose that f1,..., f, are genuine functions on Mp(W)(F3)
and hq,...hs are functions on Sp(W)(F,) such that the product fi--- f. is not genuine. Then
we write

/ £1(9)- Fr(@)ha(g) -+ halg) dg = / £1((9)) - r((@))ha(g) -~ halg) do.
Sp(W)(Fv)

Sp(W)(Fv)

An irreducible representation of Mp(W)(F},) is said to be genuine if the element (1, ¢€) acts by e.
We always identify an irreducible representation of Sp(WW)(F,) with a non-genuine representation
of Mp(W)(F,). We make similar definitions for genuine functions and representations of
Mp(W)(AF).

Suppose v is a non-archimedean place of F' whose residue characteristic is not two. Let
B =TU is a Borel subgroup of Sp(2n) and B = TU the inverse image of B in Mp(2n)(F%,). Then
T ~ (F))" x {£1}. We define a genuine character x,;(t) of T' by

Xibu((tl? costn),€) = efywv%pvl,tlmtn .

Suppose that the conductor of 9, is 0f,. By an unramified principal series representation of
)(E) X, X, Where x be a
character of T' >~ F)' defined by x(t1,...,tn) = [t1]|* -+ |tn|*", a1,...,apn € C. This convention
of parabolic inductions of the metaplectic group is the one in [GS12]. If 7, is an unramified
representation of Mp(2n)(F},), then we can find an unramified character x of 7" as above and
7y C I(x). The complex numbers (aq,. .., a,) are called the Satake parameters of m,. Note that
the Satake parameters of m, depend also on .

We write 1, for the r x r identity matrix. We recursively define w; = {1} and w, = (1 W’“‘l).
Suppose a = (ai,...,a,) € (F*)". We let diag[ai,...,a,] be the diagonal matrix with diagonal
entries ai,...,a,.

Suppose that G is a unimodular locally compact topological group and dg a Haar measure.
Suppose that 7 is a representation of G, realized on some space V. Let f be a continuous function
on G. Then we put (whenever it makes sense, e.g. f is compactly supported and locally constant)

(f)o = /G f(g)n(9)-v dg.

Let S be a finite set of places of F. We define a constant A2, as follows. If G = Mp(2n) or
Sp(2n), we define A2, = [[i_, (2(2i). If G = O(V) or SO(V)) when n = dim V > 3, then we define

Mp(2n)(F,), we mean the induced representation I(x) = Indl\gp(?n

5 CE(Q)C}é;(‘l) e C?(n -1) if n is odd,
86 = CE(Q)CI?(ZL) e Q?(n —2)L° (Z, XV) if n is even.
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Suppose that v is a place F', then we define Ag, in an analogous way, replacing the partial
L-functions by the local Euler factors at v. In this case, if 7" is a split maximal torus in Sp(2n)
and T is the inverse image of T in Mp(2n), then we define Az = Ap, = (1 —¢; )"

PArRT I. CONJECTURES
2. Conjectures for the Fourier—Jacobi periods

2.1 Global Fourier—Jacobi periods

Let (W2, ¢2) be a 2m-dimensional symplectic space over F'. We choose a basis {¢},,...,e],e1,...,
em} of Wy so that ga2(ef, ej) = d;5. For 1 <i < m, let R; = (em—it1,...,em) and R} = (es, ...,

er,_i+1) be isotropic subspaces of W. Put Ry = Rj = {0}. Let 0 < < m be an integer and put
n=m—r and (W, qo) the orthogonal complement of R, + R}. We define (W1, q1) = Wy + (en+1,
eny1)- Let Gy = Sp(W;) and G; = Mp(W;).

Let 0 <7 < n be an integer. Let P; be the parabolic subgroup of G2 stabilizing the flag

O:RQCR1C"'CRZ',

with the Levi decomposition P; = M;N;. Here and below in this article, the notation P = M N
signifies that M is the Levi subgroup and N is the unipotent radical of P. We denote by W*
the orthogonal complement of R; + R} and G = Sp(W?). Then M; = G x GL}. Let 1y, be the
character of IV, defined by

m—1
Ym(n) = w(z (1 em—i) + ma(nel, e“f))-
j=1

Let 1; be the restriction of ¥, to IV;.
Let H = H(W)) be the Heisenberg group attached to the symplectic space Wy. By definition,
H = Wy x F and the group law is given by

(w1, t1)(we, t2) = (w1 + wa, t1 + t2 + go(wi, w2)).

The group H embeds in Gy as a subgroup of Gy and H = G1 N N, N, = N,_1H. Let L = (ey,

., en)and L* = (e, ..., e]). Then Wy = L+ L* is a complete polarization. We sometimes write
an element h € H as h(l +1*,t) where l € L, [* € L* and t € F. Let v be a place of F' and wy,
be the Weil representation of H(F,) which is realized on S(L*(Fy)). It is defined by

Wy, (R(y + 2, ) f(I7) = P(t + g2 (22 + 1", y)) f(I" + ),
feS(L*(E)), I*,z € L*(F,), y € L(F)).

This is the unique irreducible infinite-dimensional representation of H(F,) whose central
character is 1,. It induces an action of af)(Fv) on S(L*(Fy)). We denote the joint action of
H(F,) % EJ\E)(FU) on S(L*(Fy)) again by wy, . We take the convention that if Wy = {0}, then
Wy, = y.

Taking restricted tensor product of the Weil representations wy, , we obtain a global Weil
representation wy, of H(Ar) x aE)(AF) which is realized on S(L*(Ar)). We define the theta series

Ou(hgo,®) = > wylhgo)e(l), ¢ € S(L*(Ap)), h € H(Ap), go € Go(Ap).
I*eL*(F)
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We now talk about automorphic representations. There are two cases.

Case Mp. Let my = @) w2, be an irreducible cuspidal genuine automorphic representation of

G2(Afp) and mp = Q) o, be an irreducible cuspidal automorphic representation of Go(Ap).

Case Sp. Let my = @ w2, be an irreducible cuspidal automorphic representation of Ga(Ar)
and my = @) 7, be an irreducible cuspidal genuine automorphic representation of Go(Ar).

Let S be a sufficiently large finite set of places of F' containing all archimedean places and
finite places whose residue characteristic is two, such that m, and 7, are both unramified
and the conductor of v, is o, if v € S. Let (a1,,...,Qmy) and (Biy, ..., Bnw) be the Satake
parameters of m , and g ,, respectively. Put

: -1 ~1
Ay — diag[a,vy - -y vy Qs+ -+ 5 O] Case Mbp,
=\ 1 ~1
diagla,vy - -y @mwy 1, Qs - -+, ] Case Sp,

and
_ {diag[ﬁl,u,...,ﬁn,v,l,ﬁ,;i,...,ﬂl,;] Case Mp,

diag[B1o, - B B b B} Case Sp.

We then define the tensor product L-function

Ly, (5,2 X mop) = det(l — Ay @ Ay - qv_s)_l, Li(s,wz X o) = H Ly, (8,245 X Tow).
vgS

The partial L-function is convergent for #s > 0. We denote by Ly, (s, 7, Ad) and Li(s,
mi, Ad) = [[,zg Ly, (s, Tiw, Ad) the (local and partial) adjoint L-functions of ;. If m; is an
automorphic representation of the metaplectic group (respectively symplectic group), then they
depend (respectively do not depend) on 1. We include the subscript ¢ in both cases to unify
notation. We assume that these L-functions can be meromorphically continued to the whole

complex plane.
Let 2 € ma, o € mo and ¢ € S(L*(Af)). Define

‘7:‘71/)(¢27 ©o, ¢)

w2(uhgo)po(go)r—1(uw)by(hgo, ¢) dudh dgo.

B /GO(F)\GO(AF) L(F)\H(Ap) /er(F)\N,«l(AF)
The measures du and dh are the self-dual measures on N,_1(Ar) and H(AF), respectively. The
measure dgo is the Tamagawa measures on Go(Ap).

2.2 Local Fourier—Jacobi periods
We fix a Haar measure dgg, on Go(F},) for each v such that the volume of Gy(0,) equals one for
almost all v. Then there is a constant Cy such that dgo = Co [, dgo,». Following [I110], we call
Cy the measure constant.

Let By, (i = 0,2) be the canonical bilinear pairing between ; and 7’ defined by

Br,(p,¢") =/ e(9)¢'(9)dg, pem, ¢ emn.
G2(F)\G2(Ar)

We fix a bilinear pairing B, , between m;,, and ﬂ;fv for each place v such that By, =[], Br, -
Put @, v (9) = Br, , (Ti0(9) i 0, @Xu) if ;4 € mp and gva € va.
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The contragredient representation of wy, is wy-1 (again realized on S(L*(Af))) and there is
a canonical pairing between wy, and wy,-1 given by

Bu, (6.6") = / o)V (1) dIF, 6,8" € S(L*(Ap)),

L*(Ar)

where the measure di* is the self-dual measure on L*(Ap). Similarly, for any place v, there is a
canonical pairing between wy, and Wyt given by

B (0wl = [ 0B, 6] € SR,

where the measure dl* is the self-dual measure on L*(F,). Then B, =[], By, - Put @4, 4v(g9) =

Bw'd}v (wwu (g)¢vv ¢’l\)/)
We now fix a place v of F'. Recall that the group P, of G2 is a minimal parabolic subgroup

which is contained in P._;. For any real number v or v = —oo, define
Nur = {u € Nua(F) | lgauei, )] < €, ga(uef )| < €, 1< i <m—1}.

For any v > —oo, we define N; , = N;(F,) N Ny . Define

.7:1/,”(1)@2”’% (hgo) = lim <I><p2v’<p2v (hgow)Yr—10(u) du, @2, € T2y, ©3 5 € T 0,
) U ~y—00 NT_L»Y(F'U) > ,v ) ’

where h € H(F,) and gy € Go(F,) in the case Sp (respectively gy € Go(F,) in the case Mp).
Define

aU(SDQ,Ua 90\2/,1)7 ©0,v5 SOE)/,U) (Z)vv ¢1\;/) = / / fwégogw,gogv (th)q)soo,u,sogu (go)(I)(bm@f (hgo) dh dgo,
Go(Fy) JH(Fy) ’ ’

for @iv € i, 0y € Ty v, by € S(L*(Fy)). If v < 1, then it is to be understood that
Fy® v =& . Moreover, if » = 0, then it is to be understood that the integral over

Vv
P2,0:,P3 P2,v5P3 4

PROPOSITION 2.2.1. Assume that m, and m, are both tempered. Then the limit in the

definition of Fy, q)cpz,v,cp;v exists. Moreover, the defining integral of «,, is absolutely convergent.

If 7; , is unitary, then we may identify 7y, with 7;,. We then define

Oév(802,v7 ©0,v;5 ¢v) = av(@2,va ©2.v, P00, PO, Do, %)

PROPOSITION 2.2.2. Assume that mo, and m, are unitary and tempered. Then a, (924, %00,
¢v) = 0 for all smooth vectors s, € T2, Pov € Top and ¢, € S(L*(Fy)).

These two propositions will be proved in § 3.

We now consider the unramified situation. Note first that the symplectic spaces W;, the
isotropic subspaces R; and hence the groups G; are naturally defined over op. Let S be a
sufficiently large finite set of places of F' containing all archimedean places and finite places
whose residue characteristic is two, such that if v € S, then the following conditions hold.
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(i) The conductor of 1, is 0.
(ii) We have ¢, = ¢y = 11+(0p,)-
(iii) Fori=0,2, ¢;, and ‘va are fixed by G;(0r,) and satisfy By, , (50, (va) = 1. In particular,
the representations ; , and TI'X , are unramified.
(iv) We have fGO(UF,U) dgo, = 1.

PropoSITION 2.2.3. Ifv ¢ S and the defining integral of «,, is convergent, then

Ly, (3, ™20 X T0,0)
L¢v(1, 7T0,v, Ad)va(l, 7T27U, Ad) '

V v \%
041;(802,1)7 P2,03 PO,vs P0ovs v, Py ) = AGz,v

We will prove this proposition in §4. Note that in this proposition, we do not assume that
the representations ms , and m, are tempered.

2.3 Conjectures

Following [IT10] and [Liul6], we say that the representations 7y and 7y are almost locally generic
if for almost all places v of F', the local components 73, and m, are generic. Suppose that we
are in the case of Mp. As explained in [II10], the automorphic representations o and 7y should
come from some elliptic Arthur parameters

Wy : Lp x SLy(C) — Ga = Sp(2m,C), W : Lp x SLy(C) — Go = SO(2n + 1,C),
where Lp is the (hypothetical) Langlands group of F. If m; is tempered, then W; is trivial
on SLy(C). It is believed (Ramanujan conjecture) that almost locally generic representations

are tempered. We define Sy, (respectively Sr,) to be the centralizer of the image of ¥y in G,
(respectively Gp). They are finite abelian 2-groups. In the case Sp, we have the same discussion,
except that we replace G2 by G2 and replace Gg by Gg.

CONJECTURE 2.3.1. Assume that w9 and 7y are irreducible cuspidal automorphic representations
that are almost locally generic. Then the following statements hold.

(i) The defining integral of ., (02,0, 3 s P0.0s £ 4 Pvs Py ) is convergent for any K;-finite vectors
Givs gva and Ko-finite Schwartz functions ¢,, ¢,/ , where K; is a maximal compact subgroup
of G;(F,),i=0,2.

(ii) We have ay (92,4, @00, ¢v) = 0 for any K;-finite vectors ¢; , and Ko-finite Schwartz function
¢v. Moreover, o, (2,4, Po,u, $v) = 0 for all K;-finite ¢;, and Ko-finite ¢, precisely when

Homp, | (F,)x(H(F,)xGo(Fy)) (T2 ® Tow @ Y15 ® wy,,, C) = 0.

(iii) Assume that ¢; = @), piv € T (1 =0,2) and ¢ = @, ¢y € S(L*(AF)) are factorizable,
then

_ C’oAg2 Li(s,wz X )
|S7T2||S7T0| Li(s + %7W2>Ad)Li(8 + %a 0, Ad) s=1/2

X H av(‘PQ,Ua@O,m‘bv)~ (231)

vES

| FT 402, 00, )2

Remark 2.3.2. It follows from the Proposition 2.2.3 that the right-hand side of (2.3.1) does not
depend on the finite set S.
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Remark 2.3.3. Assume that 79 and 7y are both tempered. It is then believed that Li(s, g X )
and Li(s, 7, Ad) should be holomorphic for fs > 0. Moreover, Li(l, i, Ad) # 0.

Remark 2.3.4. Without the assumption of almost local genericity of mo and my, we expect that
local linear forms «, can be ‘analytically continued’ in some way so that it is defined for all
representations 7o, and mg,. This is indeed the case if v € S. Thus «,, is well-defined for all v
if m and my satisfy the property that ma, and my, are both tempered if v € S. Moreover, we
expect that the identity (2.3.1) holds with the quantity |Sy,||Sx,| replaced by some 277 where
5 is an integer. The nature of 5, however, remains mysterious at this moment.

We end this section by writing Conjecture 2.3.1(3) in an equivalent form which does not
involve the finite set S. We may define the completed L-functions

Ld,(s,ﬂ'g X 7T()), Lw(s,ﬂ'i,Ad), i:0,2.
The actual definition of the local Euler factor of these L-functions is not essential to us since
Conjecture 2.3.1 does not depend on the definition of these Euler factors. Put

Ly (s,m X mp)

L=A
o Ly(s+ 3, m2, Ad)Ly (s + 3,0, Ad)

s=1/2

and let £, be its local Euler factor evaluated at s = % at the place v. Define
of = L .

Then the identity (2.3.1) can be rewritten as

- Cy b
: ==L . 2.3.2
FIy FIv =155 L 1:[% (2.3.2)

The product is convergent since there are only finitely many terms which do not equal to one.
This is an equality of elements in

Hom(ma ® mo ® 1r—1 ® wy, C) ® Hom(my ® 7o @ 1r—1 @ wy, C).

Note that by [Sunl2, SZ12, LS13], this space is at most one dimensional. So we know a priori
that there is a constant C' such that

FTy FTyp=C-]] b
v
The point of Conjecture 2.3.1 is thus to compute the constant C.

3. Convergence and positivity

For the rest of Part I of this paper, we fix a place v of F' and suppress it from all notation.
Thus F is a local field of characteristic zero. To shorten notation, for any algebraic group G or
G = Mp(2n) over F', we denote by G instead of G(F') for its group of F-points. We have fixed
a basis {e},,...,e},e1,...,em} of Wa. We thus realize the group G2 and its various subgroups
as groups of matrices. We also identify W;, L, L* as spaces of row vectors. We put K; = G;(op).
This is a maximal compact subgroup of G;. The group P, consists of upper triangular matrices.
The group P,, N G; is a minimal parabolic subgroup of G;.

Suppose a = (a1,...,a,) € (F*)". Then we let d(a) € Gy so that d(a)e] = a;e} for any
1 < i < n. We also put a = diaglay, .. .,a1] € GL,.
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3.1 Preliminaries
We recall some basic estimates in this subsection. We follow [I110, §4] rather closely.

Let G be a reductive group over F. Let Ag be a maximal split subtorus of G, My the
centralizer of Ag in G. We fix a minimal parabolic subgroup Py of G with the Levi decomposition
Py = MyNy. Let A be the set of simple roots of (Pp, Ag). Let dp, be the modulus character of
Po. Let

Al ={a€e Ay ||a(a)] <1 forall a € A}.

We fix a special maximal compact subgroup K of G. Then we have a Cartan decomposition
G=K AZSK . We also have the Iwasawa decomposition

G = MoNoK, g =mo(g)no(g)ko(g).

Let f and f’ be two nonnegative functions on G. We say that f < f’ if there is a constant
C such that f(g) < Cf'(g) for all g € G. We say that f ~ f/if f < f' and f' < f. In this case
we say that f and f’ are equivalent.

For any function f € L'(G),

/Gf(g) dg:/A+ v(m) //KXKf(klmkg)dkl dky dm, (3.1.1)

where v(m) is a positive function on A} such that

v(m) ~ dp,(m)~1. (3.1.2)

Let 1 be the trivial representation of My and let e(g) = p,(mo(g))'/? be an element in

IndgO 1. Let dk be the measure on K such that vol K = 1. We define the Harish-Chandra
function

=(9) = [ elkg)dk = [ op,(malkg))” dk

This function is bi-K-invariant. This function depends on the choice of K. However, different
choices of K give equivalent functions on G. So this choice will not affect our estimates.

We define a height function on G. We fix an embedding 7 : G — GL,,. Write 7(g) = (ai;)
and 7(g71) = (b;;). Define

s(g) = sup{1,log |aj|,log |b;;| | 1 < i,5 < n}. (3.1.3)
There is a positive real number d such that
8o(a)/? < E(a) < do(a)%s(a)?, a e AF. (3.1.4)

Now let 7w be an irreducible admissible tempered representation of G. Let ® be a smooth
matrix coefficient of G. Then there is a constant B such that

B (9)] < E(g)s(9)" (3.1.5)

This is classical and is called the weak inequality when @ is K-finite and due to [Sun09] when ®
is smooth.

We finally assume that G = Mp(2n). This is not an algebraic group, but it behaves in
many ways like an algebraic group. In particular, we have a Cartan decomposition for G,
ie. G=K AEK where K is the inverse image of a special maximal compact subgroup of Sp(2n)
(e.g. Sp(2n)(op) if F is non-archimedean and U(n) is F' is archimedean) and A, is the inverse
image of A;p@n) in G. We define =g = Zg,(2n) © p where p : G — Sp(2n) is the canonical
projection. Then the weak inequality holds for tempered representations of G.

78

https://doi.org/10.1112/50010437X16007752 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007752

REFINED GLOBAL GAN—GROSS—PRASAD CONJECTURE

3.2 Some estimates
LEMMA 3.2.1. There is a d > 0, such that

/ Eqi (um)s(u) 4 du
Niy1 NGt

is absolutely convergent for all m € Gy. Moreover, in this case, there is an 8 > 0 so that
/ Eqi(um)s(u) "4 du < Egivi(m)s(m)?,  m e Gy.
Ni+1ﬂGi

Proof. In the archimedean case, this is [Har75, §10, Lemma 2]. In the non-archimedean case,
this is [Sil79, Theorem 4.3.20]. O

LEMMA 3.2.2. There is some constant ¢ > 0 so that
Eqilge) < Egi(g)e=).
In particular, if ¢ = 1, then we have
2(g) > e =),

Proof. This can be proved by mimicking the argument in [Wall2, § 3.3] and [Liul6, Lemma 3.11].
O

LEMMA 3.2.3. Fix a real number D. Then there exists some 3 > 0, such that
/ Eqi(um)s(w)? du < 4P¢(m)PEgin (m), m e G
Ni+1’»yﬁGi

Proof. We fix some real number b to be determined later. We denote the left-hand side of the
inequality by I. Then, I = I + I>} with

L= [ deEe(um)sw)? du
NH—LWQGZ

Iy :/ 1<2b(u)Egi(um)§(u)D du,
Nit1,,NG?

where 1.y is the characteristic function of {u € N;11NG? | ¢(u) < b} and 1.5y is the characteristic
function of {u € N;11 NG | ¢(u) > b}.
By Lemma 3.2.1, we have

Ly < b / 1 (1) Egs (um)s (u) P~ du
NiJrly»YmGi
< bls(m) 1 E i (m),

where 3 is a positive real number and d is a positive real number so that the integral
/ Eqi(um)s(u)P = du
Ni+1ﬁGi

is convergent.

79

https://doi.org/10.1112/50010437X16007752 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007752

H. XUE

Let A: N;11NG? — F be a character defined by A\(n) = q2(ne’,_;,em—i—1). Then by [Beulb,
Corollary B.3.1], there is an € > 0, such that the integral

/ Eai (w)e™e(u)? (14 [A(u)) " du
N,'+10Gi

is convergent. We have Z¢i(um) < (™= (u) for some o > 0, cf. Lemma 3.2.2. It follows that

Ly < et / Lo () B (u)s () Pe s (1 + M w)]) e (1 + |A(u)]) du
Niy1,,NG?

< e M=(1 4 ¢7) / Losp(u)Eg (u)s (u) e (1 + [A(u)]) ™ du
NiJrl,-ymGi

<o) [ S0 e @1+ AW du
Ni+1ﬂGi
< esm=eb(q 4 7).
There is a constant ¢ > 0, such that Zgis1(m) > e~ then we have
I < b qir1 (m)s(m)Pr + el@Festm=eb(1 4 eNE i (m).
We may thus choose b = e 1(log(1 + €7) + (o + ¢)s(m)) and get
I < (€ %(m)M (v + (a+ )s(m)? + 1)Egiri (m).

Note that «, f1, d and ¢ are constants which are independent of v or m. We therefore conclude
that there is some § > 0, such that

I < ’Y'B§(m)’BEG1'+1 (m)
This proves the lemma. o

LEMMA 3.2.4. Fix a real number D. Then there is some 8 > 0 such that

/ i (um)s(u)? du < ¢(m)PEgivi(m), me G
Nit1,—coNG?

Proof. Choose a subgroup NT of N;;1NG? so that the multiplication map N x (Nit1,—0oNG?) —
N;11NG" is an isomorphism. Recall that Z¢: is itself a matrix coefficient of a (unitary) tempered
representation which we temporarily denote by e. Thus Zq:i(g) = (e(g)v,vY) where (—, —) is the
inner product on e and v,v" € e. It follows from the Dixmier—Milliavin theorem [DM78] that v"
is a finite linear combination of the elements of the form

f(n)e(n™ )" dn,
Ny
where f € C3°(N;). Thus Egi is a finite linear combination of the functions of the form
g [ 1)@(ng)dn,
Nt

where f(n) is a compactly supported function on Nt and ® is a smooth matrix coefficient of a
tempered representation of G*, namely e. The lemma then follows from Lemma 3.2.3. O
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LEMMA 3.2.5. Let f be a nonnegative function on L* such that P(x)f(x) is bounded for any
polynomial function P(x) on L* (e.g. f is compactly supported). Let p : H x Gy — L* be the
projection given by

n
hgo = Y ga(hgoey i1, ei)er.

i=1

Then there is a real number B such that
| e (ha) ok dh < Za, (a)s(a0)”, a0 € G

Proof. By the Cartan decomposition of Gy, we may assume that g = d(a) where a = (aq,...,
an) € (F*)", lap| < -+ < |a1] < 1. Then p(h(l + 1*,t)d(a)) = I*a where a = diag[ay,...,a1].

We fix some 7 which will be determined later. Let H, = HNN,,  and H” be the complement
of H, in H. Then

/ =g, (hd(a)) f(I"a) dh = / =6, (hd(a))f(I"a) dh + / =g, (hd(a)) f("a) dh.
H

H, HY
By Lemma 3.2.3, the first integral is bounded by
77E6,(d(a))s(d(a))”.
Write I* = (I3,...,0%) and I" = (0,03,...,0}) € F™. Then

/ e (hgo) f (") dh = / Ze ({1 + 1% )d(@)h(Lan, 0, . .., 0) f(I*a) dh.
H~ H~

There is some positive constant « such that
Ea, (h(l+ 1™, t)d(a)h(lfan, 0)) < Eg, (h(1 + 1", t)d(a))e e m>tianl 1},

Therefore,

/ Eq, (hd(a)) f(I*a) dh < / Z¢, (hd(a)) dh x / e losmax{llianl 1} £ (1%, ) dI%,
HY

—00 |17 an|>eY

where f1 is a function on F' such that fi(z)P(x) is bounded for any polynomial function P on
F. 1t follows from Lemma 3.2.4 that there is a positive real number D such that

/ Eq, (hd(a)) dh < Eg,(d(a))s(d(a))”.
Since f1(z)P(z) is bounded for any polynomial function P on F', we have

/ extosmax{llianl 1} £ (1xq, ) dIF < |an| e ™7,
[ an|ze

where the implicit constant in < does not depend on a,, or 7. We may choose v with v > —log |ay,|.

Then
/ ealogmax{\li‘aﬂ,l}fl (lTan) le < 1.
[Ifan|>eY
Therefore,
/H Ec, (hd(a)) f(la) dh < Eg,(d(a))s(d(a))”.
N
The desired estimate then follows. O
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LEMMA 3.2.6. Let ® be a smooth matrix coefficient of a tempered representation m of Go. Then
the limit

lim ®(ng)r—1(n)dn, g€ Ga

—> 00
K Nr—1,4

exists and defines a continuous function in v,y (for a fixed g). If F' is non-archimedean, then
the integral is in fact a constant for sufficiently large ~y. Moreover if g € G1, then

lim / ®d(ng)r_1(n) dn| < Zq,(9)s(g)".
Nr_14

Y—> 00

Proof. First recall that N,_; is the unipotent subgroup of some parabolic subgroup P,_; of Ga,
the Levi part being isomorphic to G x GLg_l. Put T = GL71"_1 and denote an element in 7" by
a=(ay,...,a,_1) where a; € F*.

If F' is non-archimedean, the constancy of the integral when ~ is large can be proved in the
same way as [Wall2, Lemma 3.5]. In fact, suppose that ®(g) = (7(g)v,v") where v € m, vV € "
and (—, —) stands for the pairing between 7 and its contragradient 7¥. Suppose that K’ is an
open compact subgroup of G such that v and vV are fixed by K'. Let K " = K'NgK'g~'. This is
an open compact subgroup of Ga. Let ¢ > 0 and T, be the subgroup of T' consisting of elements
a=(ay,...,ar—1) so that |a; — 1| < e~ for all 7. The intersection T'N K" is an open subgroup
of T. Moreover, m(g)v and vV are both fixed by T'N K”. Thus there is some ¢(g) > 0 depending
on g, and ¢(g) ~ <(g), such that w(g)v and v" are fixed by T,(,). We have

/ ®(g)r—_1(n) dn:/ / (m(a"'nag)v, v )h,_1(n) dadn
Nr_1, Nr—1,7 T )

_ /N gy ( /T y wr_l(ana_l)da) dn.

There is some c'(g), ¢/(g) ~ <(g), so that if v > ¢/(g) and n € Ny—1,\N,_1 ¢(g), then the inner
integral vanishes. It follows that if v > ¢/(g), then

[ epaman= [ elgi
N,_ N,
It also follows, by Lemma 3.2.3, that if v > ¢/(g), then there is some D > 0 so that

1,y r—1,¢/(g)
[ @
Nrfl,w

As d(g) ~<(g), we get the desired estimate (possibly for some larger D). This proves the lemma
in the non-archimedean case.

From now on we assume that F' is archimedean.

To simplify notation, we put

I(v,9,®) = /N ®(ng)r—1(n)dn, g€ G.

-1y

< d(9)"Za,(9)s(9)”, g€ G

Note that to prove the limit exists, we may even assume that g = 1. By the Dixmier—Malliavin
theorem, it is enough to prove the lemma for limy_. (7, g, f * ®) where f € C2°(T) and

/ f()®(t " gt) dt

is a function on G'2. When there is no confusion, we write I(y) = I(7, g, f * ®) for short.
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Let (z1,...,7,—1) € F"~Vand n(z1,...,2,_1) € N,_1 so that n(z1,... M 1)eh i = €+
wi1ey ;g fori=2,...,r. Let Ny = {n(x1,...,2,-1) | (x1,...,2,1) € Fr1} Tt is a subgroup
of N,_1 which is stable under the conjugation by T" and the multiplication map Nt X Ny_1, oo —
N, _1 is an isomorphism. Let N; , = Ny N;._1 . We denote by ]/V\T the group of additive characters
of N; and by J/V\Treg the open subset consisting of generic characters. Then ¢, € ]/\T\Treg. Let 9! be
the character of NT defined by ¢!(n) = ¢, _1(tnt~'). The map t > 9! defines a homeomorphism
from T to NT . A compactly supported function on 7' is then identified with a compactly
supported function on NT . We may thus talk about the Fourier transform of f, which is a
Schwartz function on N;. Let ¢q,...,t,—1 € F* and t € T so that tn(xy,...,z,—1)t~ V= n(t12q,

-str—12Zr—1). The measure [t ...t,_1|dt is, up to a positive constant, the restriction of the
self-dual measure of N to N™®& under this homeomorphism. We may assume that the constant
is one.

We have

/T 17/f (¢t 'ntg)h,_1(n)dtdn
/T 1/f V1N, 1, (W)@t ntg)yy—1(n) dt dn

— /N | < /T f(t)lNM(tnt_l)@Z)t(mClt) < /N ety dn’> dn,  (3.2.1)

where in the last identity, we have made the change of variable n — tnt~! and split the integral
over N,_1 as a double integral over Ny X Ny_1 o
We claim that there is a constant C' which does not depend on « so that

r—1
/Tf(t)le (tnt_l)wt(n)dt‘ <C H max{1, |z;|} 1, (3.2.2)

where n = n(xy,...,2,-1) € N;. In fact, we integrate ¢; € F* with |z;| < 1 via integration by
parts. The anti—derlvatlve of 1. <eny (zt)ih(xt) is a function of the form |z|~' X, (xt) where X,
is bounded by a constant independent of . It then follows that

/f )1y, (tnt ™)t (n) dt = / I =il ' Xy (@it)ofa(ta, . tea) dt,
" i:]z4|<1

where fi(t1,...,t,—1) = f(t1,...,tr—1)|t1---t.—1|"! and Of; is the partial derivative of f; with
respect to all ¢; such that |z;| < 1. As f, so fi, are in C°(T'), and X, is bounded by a constant
independent of v, the desired estimate (3.2.2) follows.

By [Beul5, Corollary B.3.1], the integral

/ /Nr Hmax{l lz; |} 1@ (n(xy,. .., zr—1)n g) dn’ dn

1,—00 j=1

is convergent. By the Lebesgue dominated convergence theorem, we have

T I(7) = / ( /T 7113010 ()1, (tntl)z/ﬂf(n)dt> ( /N ey dn’> dn

/ / Y®(nn'g) dn’ dn.
NT Ny— 1,—c0

The rest of the assertions of the lemma follow easily from this expression. a
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3.3 Proof of Proposition 2.2.1
The case r = 0 is rather straightforward. Indeed, in this case Gy = G1 = G2. By the weak
inequality, we only need to prove that

/ =00 (9)%] @00 (9)] dg
Go

is absolutely convergent. By the Cartan decomposition and the estimates (3.1.2) and (3.1.4), the
convergence is reduced to the convergence of

n D
1/2
/ lag - an| / < E log]ai|) day -+ -day,.
an|<<lar <1 i=1

This is clear. Proposition 2.2.1 is thus proved when r = 0.
The case r > 2 follows from the case » = 1 by Lemma 3.2.6.
We now treat the case r = 1. In this case Go = G1. The defining integral of o reduces to

a(QOZaQO%/vSDO)SOB/aQSa@bV):/G /H%,w(hgo)%g,@g(go)‘1>¢,¢V(hgo)dhdgo,
0

Since w9 and 7y are both tempered, we need to prove that

/ / =6, (hg0)Zco (90)| @5+ (hgo)| dh dgo
Go JH

is convergent.

Let go = k1d(a)ka be the Cartan decomposition of gy where a = (ay,...,a,) € (F*)" with
las] < --- < Jar] < 1. We first estimate |®g4 4v (hd(a))|. We claim that there is a function f on L*
so that f(I*)P(l*) is bounded for any polynomial function P on L*, such that

@y 4v (R(1 + 1%, t)d(a))| < |det a|V2f(I*a). (3.3.1)

Indeed
B 1+ I, (@) < [deta]' [ lolaa -+ 1'0)" (@) da.

*

Thus, to prove (3.3.1), it is enough to prove that for any polynomial function P on L*,

sup |P(y)| / b(za + )¢ (2)| do < oo.
yeL* L*

We have

sup 1P| [ foteat )o*@ldr < [ (sup [Potea s n))lo* (o)l

yeL* yeL*

Since P is a polynomial function, we may choose a sufficiently large N, such that

sup [P(y)p(xa+y)| < (1 +[z1an] + - |znar )N < (1 +|a1] + - Jza])",
yel*

where x = (z1,...,x,) € L*. We have the second inequality because |a;| < 1 for all . Then

/* (sup |P(y)p(xa + y)]) 1Y (2)| dz < /L*(l +|z1] + -z )YV (2)] do < 0.

yeL*
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We have thus proved (3.3.1).
By (3.1.1), to prove the convergence of the defining integral of «, it is enough to show the
convergence of

[ [ Za e+ v @) Ze d@)5g g, (dla)ldet o 20" ) dh do

Then Lemma 3.2.5 reduces the convergence of this integral to the case r = 0.

3.4 Proof of Proposition 2.2.2
We are going to use the notation in the proof of Lemma 3.2.6, one paragraph before (3.2.1). To
simplify notation, we write ®,, = ®,, ., i = 0,2 and Oy = Dy 4.

To facilitate understanding, we divide the proof into several steps.

Step 1. The goal is to reduce the Proposition to the inequality (3.4.1).
In order to prove that a(y2, o, ¢) = 0, it is enough to show that for any function f € C°(T),
we have

Joli ]

We denote this expression by I. Since f(t) is compactly supported, by Fubini’s theorem, we have

By (nhgo) by 1 (bt 1) dn) B o (90) B (o) (1) (D) dh dgo dt > 0.

-1y

= /G O /H ( /T Jim /N <I><p2(nhgo)f(t)f(t)z/zr_l(tnt—l)dndt)(bm(go)@d,(hgo)dhdgg.

y— 00

We denote the integral in the parentheses by II. It follows from Lemma 3.2.6 that

lim P, (nhgo)r—1(tnt=1) dn

Y—> N’r‘fl,’y
is bounded by a constant which depends continuously on ,_1. Since f is compactly supported
on T, we can choose this constant to be independent of ¢ (but depends on hgg). Then by the
Lebesgue dominated convergence theorem, we have

II = lim /T/N P, (nhgo) f(t) f(t)r—1(tnt=1) dndt.

y— 00

Moreover, the double integral on the right-hand side is absolutely convergent. We can thus
interchange the order of integration. Finally, we conclude that

II = lim /
7= SN,

Let fi(t) = f(t)|t1---t,_1|7/2 € C°(T). Recall that the map t — ' identifies T with N; -
which is an open subset of N; consisting of generic characters. The measure |t;---t,_1|dt is

| @) 1) 7001t ) .

~1

g

identified with the self-dual measure on N; under this map. In this way, f, as well as f1, are
viewed as compactly supported functions on ]/V\T and we may talk about their Fourier transform
fand fl which are functions on ;. The Fourier transform of a product of two functions is the
convolution of the Fourier transforms of these two functions. We conclude that

~

/T FOFOU—1(tnt= 0 dt = [ fi(ning)fi(ng) dno.

Ny
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Therefore,

y—00

= / / / D, (nlngln/hgg)ﬁ(nl)ﬁ(ng) dny dn’ dny
Ny J Ny r—1,—00

_ R / ’
- [V (I)W2(f1)802(n hgo) dn’,
r—1,—o0

where Wg(ﬁ)goz =/ N fAl(n)Wg(n)cpg dn. This expression makes sense since f; is a Schwartz

II = lim / / / <I>¢2(n1n’hgo)f1(n1n2)ﬁ(n2)dng dn’ dny
Nty I Neo1, oo NG

function on NNV;. Thus to show that I > 0, it remains to show that

L] 1o (1190) @, (90) T (o) dn’ dhdgo > 0
0 7‘ 1,—oc0

Actually, we will show that

/G // Dy, (n'1ig0) Py (90) Py (hgo) dn’ dh dgo > 0, (3.4.1)
0 Ny 1,—oc0

for all smooth vectors 2 € T and g € mp. Unlike the proof of [II10, Proposition 1.1] and [Liul6,
Theorem 2.1(2)], we cannot apply [He03, Theorem 2.1] directly, as Go x HGy is not reductive.
However, we are going to mimic the proof of [He03, Theorem 2.1] to prove (3.4.1).

Step 2. The goal is to reduce (3.4.1) to the case of K-finite vectors.

We claim that it is enough to prove (3.4.1) for a Ks-finite (respectively Kj-finite) vector
w9 € my (respectively ¢g € mp). This is only an issue when F' is archimedean. So we assume
temporarily that F' is archimedean. Since K»s-finite vectors are dense in the space of smooth
vectors in 7y, we may choose a sequence of Ky-finite vectors Lpg) which is convergent to o. It
follows that ®,, is approximated pointwisely by <I> . Moreover, by [Sun09], there exists an

element X in the Lie algebra of G5, which depends on K2 only, such that
D0 (92) < By (ma( X)), ma(X))Z s (92) = [ma(X) 0 PEciy (g2)-

Since gpg) is convergent to 2, we see that |ma (X)cpg) ? . In particular,

(4)

it is bounded by some constant which is independent of <pg). Similarly we choose a sequence
of Ky-finite vectors in 7y which approximate ¢q. Since

/GO/ / e 6> (1n'hgo)Ec, (90) @4 (hgo) dn’ dh dgo

is absolutely convergent, by the Lebesgue dominated convergence theorem

/// Dy, (1'hgo) s (90) s (hgo) dn’ dh dgo
GO H N'rfl,foo
:-hm/ // ® o (n'hgo)® @ (90)®4(hgo) dn’ dh dgo.
Go Nrfl,foo 2 %0

1—> 00

is convergent to |m2(X)ps|?

So the positivity in (3.4.1) for smooth vectors follows from the positivity for K-finite vectors.
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From now on, we assume that ¢o and g in (3.4.1) are Ks-finite and Ky-finite, respectively.
We come back to the situation F' being an arbitrary local field of characteristic zero.

Step 3. The goal is to reduce (3.4.1) to the inequality (3.4.2).
Since my is tempered, by (the proof of) [He03, Theorem 2.1] (which is also valid when F is
non-archimedean), one can find a sequence of compactly supported continuous functlons f2 jon

G2 and a sequence of positive real numbers a( ), j=1,...,s; such that Zj 145 @ — 1 and the
functions

gy > A Za / 152 (9295) 15 (92) dg>
approximate P, (g5) pointwisely. Moreover, there is a constant Ca, such that

A (gh)] < C2Ec,(92)-

Similarly, we can find a sequence of compactly supported continuous functions féij) on GGy and a

sequence of positive real numbers bg-i), j=1,...,k;, such that E b(z = 1 and the functions

s = B8 = 0 [ 15 aust) 15 o) doo
i=1 0

approximate @ (g(,) pointwisely. Moreover, there is a constant Cp, such that

1B (g0)] < CoZy(gh)-

Since the integral

/ / / EGQ(n'hgo)EGO(go)q)¢(hgo) dn’ dh dgg
G() H Nr 1,—c0

is absolutely convergent, by the Lebesgue dominated convergence theorem, to prove (3.4.1), it
is enough to prove that for any 4, 7,

L (L menso )

( / 1(g084) S (90)d90>‘1>¢>(h90)dn dhdg) > (3.4.2)

We denote the left-hand side by (). Note that this integral is absolutely convergent. To simplify
notation, we write fo = fz(lj) and fy = félj)

Step 4. Proof of (3.4.2).
We can write the inner product on S(L*) as

Bo, (6.4) = /L oy OO TNTO)
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Using this expression of the inner product, we have

Q= /G 0 /H /N m( B fz(gan’hgé)h(gz)dgz)( A fo<gog6>fo<go>dgo)

([ RS0 )60 i) it dh s
L+F\H

_ /G 0 /H /N m( B fz(gzn’hgé)h(g2)d92> ( /G 0 fo(gogf))fo(go)dgo>

. ( [ gm0 (W gn)0) dh') dn' dh g
L+F\H

Note that we have used the fact the pairing B,,, is Go-invariant.
We make the following change of variables

96— 95790, h— go'h'thge, n'— gi'hTIn'h g0, g2 g2l go.

X fo(g6) fo(go)wy (hgl) #(0)wy (R’ go)#(0) dgo dgg dh db’ dn' dga,

where L 4+ F embeds in H x H diagonally.
Finally we decompose the integral over G2 as

/;2/(NT1,mX(L+F)) /]V'r‘l,oc A+F .
2

/ / Jo(ganhgo) fo(g0)wpn(ig0) B(0) dgo dh dn| dgs > 0.
Nrfl,foo H GO

Then

We conclude that

/;2/(Nr1,mN(L+F))

We have thus proved (3.4.2) and, hence, Proposition 2.2.2.
3.5 Regularization via stable unipotent integral
In this subsection, we give an alternative but equivalent way to define the linear functional «
when F' is non-archimedean following [LM15a, Liul6]. This definition is better for the unramified
computation and is valid for nontempered representations. In this subsection, F' is always
assumed to be non-archimedean.

Let N be a unipotent group over F' and f a smooth function on N. We say that f is compactly

supported on average if there are compact subsets U and U’ of N, such that L(dy/)R(dp)f is
compactly supported. Here 0y stands for the Dirac measure on U, i.e. 0y = (volU) 1y, and

LRG0 = [ 80ty ') i d

If f is compactly supported on average, we then define

/S f(n)dn ::/ L(oy)R(0p) f(n) dn.
N N
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This is called the stable integral of f on N. The definition is independent of the choice of U
and U’.

We denote temporarily by G a reductive group over F. Let Pyin = MpinNmin be a fixed
minimal parabolic subgroup of G. Let P = M N D Py, be a parabolic subgroup of G. Let ¥
be a generic character of IV, i.e. the stabilizer of ¥ in M, is the center of My,;,. Let m be an
irreducible admissible representation of G and ® a matrix coefficient of 7. Then we have the
following result.

PROPOSITION 3.5.1 [Liul6, Proposition 3.3]. The function ®|y, - ¥ is compactly supported on
average.

Now let G = Mp(2n). Then Proposition 3.5.1 still holds. The same proof as in [Liul6,
Proposition 3.3] goes through as it uses only the Bruhat decomposition and Jacquet’s
subrepresentation theorem, which are valid for G.

Now we retain the notation Go, G1, G, etc. Let ® be a matrix coefficient on Gy (respectively
G3). Define

st
Fiid(g) = /N B(gn) i1 () dn,

which is a function on Ga (respectively @;) This definition makes sense because of
Proposition 3.5.1.

LEMMA 3.5.2. Assume that ® is a matrix coefficient of a tempered representation of G
(respectively Ga). Then

]-'f‘ptCI)(hgg) = Fy®(hgo), he H, go € Gy, (respectively g € az))

Proof. By definition,
fth)g(hgo) :/ ((VOIU)_I/ & (unhgo)pr—1(un) du> dn,
Ny_q U

where U is an open compact set of IN._1. The inner integral, as a function of n, is compactly
supported. Therefore, we may take a sufficiently large v, such that N,_;, contains U and the
support of the inner integral (as a function of n) and that

FypPa(hgo) = /N Dy (nhgo)r—1(n) dn.

It follows that

]:5}(1)2 (hg()) = /

(VOIU)l/ O (unhgo)pr—1(un) dudn,
Neoi U

= / ®(nhgo)br_1(n) dn x (volU) ™! / du
Ny 1+ U
= Fy®a(hgo),
where in the second equality, we have made a change of variable n — v 'n. O

Thanks to Lemma 3.5.2, if F' is non-archimedean, then we may use }“fpt instead of Fy, in the
definition of the local linear form «. We will not distinguish ]:zt and Fy from now on and write
just Fy.
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4. Unramified computations

In this section, we assume the conditions prior to Proposition 2.2.3. In particular, F' is a non-
archimedean local field of residue characteristic different from two. The argument is mostly
adapted from [Liul6], except that at the end we use a different trick, which avoids the use of
the explicit formulae of the Whittkaer—Shintani functions as in [Liul6, Appendix]. Some of the
arguments which are identical to [Liul6] are only sketched.

4.1 Setup

For i = 0,1,2, let B; = P,, N G; = T;U; be the upper triangular Borel subgroup of G; where
T; is the diagonal maximal torus of G;. We have a hyperspecial subgroup K; = Sp(W;)(or) of
Sp(W;). Recall that the twofold cover a; — (; splits uniquely over K;. We can thus view K; as
a subgroup of 52 Let Z (respectively &) be an unramified character of Ty (respectively Tp). In
the case Sp, we consider the unramified principal series mo = I(Z) of G2 and 7y = I(&) of CTO. In
the case Mp, we consider the unramified principal series mo = I(Z) of Go and mo = 1(&) of Gy.
Note that the unramified principal series representation of the metaplectic group depends on the
additive character ¢, even though this is not reflected in the notation. We frequently identify
E with an element in C™ which we also denote by = = (Z1,...,=,,), the correspondence being
given by

=(diagam,, - - - ,al,afl, ... ,a;ll]) = |(11|El S |am|Em.

Similarly we 1dent1fy & with an element in C". The contragredlent of 7 (respectively mg) is I (E

Y
(respectively I1(£€71)). Let fz € I(2), f=—1 € I(E7") (respectively fe € I(§), fe-1 € 1(§71)) be
the Ky-fixed (respectively Ko-fixed) elements with f=(1) = f=-1(1) = 1 (respectively f¢(1) =

fe-1(1) = 1). Let

P=(g2) = - fz(kage) dka,  P¢(go) / fe(kogo) dko,
2

4 (hgo) = / wy (hgo) 1+ (o) () dz,
L(UF)
and

I(gs,Z.6,) = /G /H Fs®=(g5 " hgo)®e (g0) B (haio) dh dgo.

Then a(fz, fz-1, fe; fe-1, 0, 9) = I(L, B, &, ).

Let J = H x Go and J = H x Go We define the Borel subgroup B (respectively By) of J
(respectively J ) as a subgroup of J (respectively J ) consisting of elements of the form hby where
by € By (respectively BNO, the inverse image of By in CTO) and h € H is of the form h(l,t), 1 € L.
We define the unramified principal series representation of J (respectively J ) as

I(6,9) = {f € C=(J) | f(h(l,t)bohgo) = 611 (bo)é(bo)ib(t) f (hgo)},

respectively

I7(¢,9) = {f € C(J) | f(h(l,t)bohgo) = o (b0)6x (b0)P(t) £ (hgo) },

where &xy(bo) = (diaglty, ... ,tl,tl_l, . ,t;l])xd,(tl cooty) and  ty,... ,tl,tl_l, cooty b are
diagonal entries of bg.
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The group J (respectively JN) acts on I7(¢,v) (respectively Ij(ﬁ, 1)) via the right translation.
Let K; = J N K. There is a canonical J (respectively J)-invariant pairing given by

Bir ) = [ Ha 0k (0, 0)ko) ko

where f € I7(¢,4), f¥ € I7(€71, ) (respectively f € Ij(g,E),fV € Ij(ﬁ_l,d))).
In the case Mp, there is a canonical inner product preserving isomorphism

wy®I(6) > ¢9), ¢® fe = Tep

where fg@(hgo) = wa(hgo)qé(())fg(go), h e H and g9 € ag. In the case Sp, there is a canonical
inner product preserving isomorphism

wp®1(&) = (%), 6® fe — fe

where f; 7 (hgo) = w;(ht(g0))$(0) fe(1(go)). Analogous isomorphism also holds in the case Mp.

For the ease of the exposition, we slightly modify our notation in the case Mp for the rest
of this section. For i = 0,1,2, we put G; = Mp(W;) and B; the standard Borel subgroup of
G;. Denote by J = H x Mp(W}), which is a subgroup of G1, and By its Borel subgroup. We
denote by K; = Sp(W;)(or) a hyperspecial maximal subgroup of Sp(W;). The metaplectic cover
Mp(W;) — Sp(W;) splits canonically over K;, so we view K; as a compact (but not maximal)
subgroup of G; and an element in K; is naturally viewed as an element in G;. Let Ky = K1 N J.
The subgroup P; = M;N; (i = 1,...,r — 1) is a parabolic subgroup of Sp(Ws) as before. The
metaplectic double cover splits canonically over IV;, so we consider N; as subgroups of Gs. By
the Weyl group of Mp(W;), we mean the Weyl group of Sp(W;). We let

Wi, Wn+1 Wp,
W2 long = <—W > y  Wilong = <—W 1 y  Wolong = —w
m n n

be representatives of the longest elements in the Weyl groups Wg,, Wg, and W, respectively.
They are viewed as elements in Go, G1 and Gy, respectively.

For (Z41,...,5,,) € C™ and (&1, ...,&,) € C", we denote by = and £ the genuine character of
By and By, respectively, defined by

=((diag[tm, - - - t1, 17 -

1 i) =€ (wE0) () - (XwEm) (Em),
E((diagltn, ..., ti,ty ..o ty

Lt
Lt 6) = e €0 gl (tn).
We have the unramified principal series representation I(Z) of Gy and I(&,¢) of J. We let
f&@ be the K fixed element in I(£,1)) such that ng(l) = 1. We will need to integrate over
Mp(Wp). For this, we pick a measure dz on Mp(W)), such that for any f € C°(Sp(Wy)), we
have fsp(WO) f(g)dg = fMp(WO) f(z) de. When integrating over K;’s or K, we always use the
measure so that the volume of the domain of the integration is one.

With this modification of notation, the integral I(gs,=,&,) in both cases Mp and Sp can
be written as

1(g2,E,&,v) :/J . Fp®=(95"97) fe 5(ksgs) dky dg,.
J
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4.2 Reduction steps: r > 1

We distinguish two cases: » = 0 and r > 1. We treat the case r > 1 first.
Let w = wy llon g W2,long be a representative of the longest element in Wg, \Wg,.

LEMMA 4.2.1. If go € G9 and g5 € J, then

Fp®=(95 " 9s) = W_I/K /; Fy(ma(gs) fz) (krim) (w3 (g2) fz—1) (krom) dn dky,

where

, . Ar, (A \ 7!
w = f=(wn) fz—1(wn)dn = —2 <1> .
Ny_1 (i) Ag, \Ag,
Proof. By definition,

st

Fybz(gyes) = / By (ma(g5 g 0) fo, f1)tb(u) " du

NT*I

st

= [ Bualmalarn fo.m (gn) fo ()™
N’,«,1

By [Liul6, Lemma 3.2] (it is valid also for metaplectic groups since the Bruhat decomposition

is valid for metaplectic groups), there is an open compact subgroup U of N,_j, such that

(73 (92) f=-1)° = R(0u)(73 (g92)f=1) and (m2(g2)fz)° = R(év¥)(m2(g2) f=) are supported in

BQ'Li)Pr_l. Then

Fy®=(95"9s) = /N Bry (2 (u) (m2(g) f2)°, (75 (92) f=-1)°)p (u) ™" du.

We use the following realization of Br,:

st
Bry(p,0") =w! p(kyim) @Y (k) dn dky,
2
K1 JNp_1

where .
Arp, (Ar ™
w = f=(n) fz—1 (wn) dn = —2 ( L ) .
Ny_1 Ag, \Ag,

In fact, the pairing is G2 invariant since BoKjwN,_1 is an open subset of G5. The evaluation
of w is as follows. Denote temporarily by f; (i = 1,2) the function on Sp(W;) which satisfies
filx, =1, fi(bg) = 0;(b) fi(g) for all b € B; where B; is the Borel subgroup of Sp(W;) and J; is
the modulus character of B;. Define a function f{ on Sp(W7) by

filg) = /N fa(ing) dn.

Then w = f{(1). Since f{(bg) = 61(b)fi(g) and f{|k, is a constant, it follows that f] = wfi.
Therefore,

/ fi(w1 1ongn) dn = w fi(wi1ongn) dn.
Nmﬂsp(Wl) Nmﬂsp(Wl)
The left-hand side equals

f2 (w2,longn) dn
N,
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by the definition of f{. It follows from [Gro97, Proposition 4.7] that

Ar.
fi W; long T dn = .
/NmﬂSp(Wi) (ijong) Ag,

W = Ay (ATl >_1
Ag, \ Ag, '

We continue the computation of F,,®=(g; 'gs). We have

We then conclude that

Fovelgrton =wt [ [ [ (malan) f2) nioma ( (g0) fo-2) kuiim) ) ! iy do,
Ny—1 JK1 Ny
where the integrand is compactly supported. It equals
W [ Fumalos) f2) i) (53 (92) o) i) iy
Ky SNy
st
= [T Futmalos o) i) (v (ga) ) ki) i o
K1 SNy
By Lemma 4.2.1, we have

st
(g2, E,&,9) =w! / / / Fyfz(krimgr)my (g2) fz—1 (krim) fe 5 (kyg.) dky dndky dg,.
JJKy IN,_1 JK;
Let
l(] = (1,...,1) € L*, 1 :leongh(lS,O) € G, n=wn1 € Go.
LEMMA 4.2.2. The double coset Ban(N,_1 x By) is open dense in Gs.

Proof. This is straightforward to check. O

Thanks to this lemma, we can define a function Yz ¢, on G2 with the following properties:

(1) Yz e(bageh(l, t)bou) = (E1057) (b2) (€652%) (b0) b (£)thr—1 () Yz,g,4(g2) for any by € By, by €
By,l € L and u € N,_q;

(11) the support of Ygéﬂp is BQT](NT_I X BJ);
(iil) Yzeu(n) =1

The space of functions that satisfy the first two conditions is one dimensional by Lemma 4.2.2.
We have

Ya ¢ p(banh(l, )bou) = (716, (b2) (€05, ) (bo) B (D)1 (w),
for by € By, bg € By, l € L and u € N,_1. We define a function T= ¢, on Go as

/J Fuf2(9290)f¢ 5(90) dgs g2 € Ban(Nr—1 x By),

0 otherwise.

Tz¢p(92) =

If the defining integral of Tz ¢ 4 is convergent, then we have

TE,{,¢(92) = TE,s,w(U)YE—l,g—l,w—l(92), g2 € Gs.

93

https://doi.org/10.1112/50010437X16007752 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007752

H. XUE

We assume that the defining integral of Tz ¢, is convergent for the moment. This will be
proved later. It follows that

1(927 Eu 57 W
st
— Wfl / / / TEyg,w(klwnkJ)Tr%/(.gQ)fafl(klwn) dkj dn dkl
Kl Nr—l KJ

st
= w_ng’g’w(n) / / / Y571’§71’¢71(klwnkj)ﬂ%/(gz)fgfl(klwn) dkjdndk;.
Ky JNr—1 JKy
Define

st
S/E—l,g—l,zp—l(gZ) =w ! / / Ya-1 g1 o1 (krimky)ms (g2) fz-1 (k1in) dk. g dn dk; .
Ky JNy—1 VK

(4.2.1)
Then we have

I(g% Ev ‘Ea 17/)) = TE,E,iﬁ(n)S/E*l,g*l,w*l (gQ)
4.3 Reduction steps: » = 0

‘We now treat the case r = 0.
The integral we need to compute is

1(9,5, &%) Z/G /K . fa(kog) fe (kg " g) dko dk; dg.

We define
lo = (1, e 1) elL, n= wO,longh(ZOa 0) e J

Similar to Lemma 4.2.2, it is straightforward to prove the following lemma.
LEMMA 4.3.1. The double coset BjnBy is open dense in J.
We define a function Y= ¢, on J which is supported on B nBy by
/ —1 1/2 /N —cl/2 /
Yze (Rl 1)bonbo) = (§0;7)(bo)(E6y"")(bo)b(t),  bo, by € Bo, I € L.

We define the function 7= ¢ on J by

f2(9)fe 5 (919) dg g5 € BynBo,
Tzep(97) = { /6o

0 otherwise

and the function Sz ¢ by

Szep(97) = / / Yz ¢ (kg ko) dko dk ;.
Kj JKo
It follows that

1(95,2,8,9) = Tz¢p(n)Sz-1.¢-1 p-1(97)-
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We now prove the convergence of the defining integral of Tz ¢ and Sz-1¢-1,-1. Assume
that » > 0.

LEMMA 4.3.2. The defining integrals for T= ¢, and Sz-1 ¢-1 -1 are absolutely convergent if =’
and & are sufficiently close to the unitary axis, where Z' is the restriction of Z to Tj.

Proof. If r = 0, then it follows from Proposition 2.2.1 (or its proof, applied to |Z| and |{]) that
I(g7,=2,&,1) is convergent if = and ¢ are sufficiently close to the unitary axis. It then follows that
for a fixed g; € J, the defining integral of Tz ¢ 4 (ksgsko) is convergent for almost all k; € K;
and kg € Ky such that /wg;lk‘o € BynBy. By the definition of Tz ¢, its defining integral is
convergent for some g; € BynBy is and only if it is convergent for all g5 € BjynBy. Therefore,
the defining integral of T=¢ (n) is convergent. This then implies that the defining integral of
Sz-1¢-1,4-1 Is convergent.

The convergence in the case of r = 1 can be proved similarly. We only need to change the
notation at several places.

Now assume that r > 2. By [Liul6, Lemma 3.3|, there is an open compact subgroup U of
N,_1, such that for all g; € J,

Fyfz(ngs) = /Ufa(ﬁgJUWr—l(U) du.
Therefore there is a constant C, such that

| Fyfz(ngs)| < C % fizr((mg).

The lemma in the case r > 2 then follows from the case r = 1. O

4.4 Proof of Proposition 2.2.3
Assume that r > 1. Let 20 = (Z1,...,Z,) € C". Let o be the unramified principal series
representation of G defined by Z°. We let 7 be the unramified principal series representation of
GL, defined by the unramified characters (Z,41,...,Zm)-

Following the notation of [II10] and [Liul6], we shall denote T= ¢ .,(n) by ((Z,&, ).

LEMMA 4.4.1. We have

————((27,&,v) Case Sp,
L(1,0 x T)L(1,7,A2) 1<g<7’ L(l,:nﬂ':n}rj)

CE, &) =

L(%,T[‘O X T) 1 0
———((=°,¢,v) Case Mp.
Ly(1,0 x 7)L(1,7,Sym?) KE@“ L(l,:nﬂ-znij)

Proof. Recall that [ = (1,...,1) € L*. By definition,

CE 6w = / / / Fe(Ws.10mgh (15 0)1thgo) fe (90)Pr—1 (@) (hgo)B(0) du dh dgo.  (4.4.1)
GoJH JN,_1

We combine the integral over H and N,_; to get an integral over N, and get

C(E, &) I/G . J=(w2,10ng " (15, 0)vg0) fe(90)r—1(v)wy (€(v)g0) P(0) dv dgo,
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where ¢ : N, — H is the natural projection whose kernel is N,_;. We make a change of variable
v h(l§,0)" v and get

C(EW fv 1/}) = / fE (wQ,longUQO)fﬁ (90>w7‘—1(v)ww<h(l(>;7 0)_1£(U)90)¢(0> dv ng

Go Y Nr

— /G [ e ntong) e a0 (0T TR, O 0 (0)1000) o i,

where in the second equality we made a chance of variable v — govgy 1 and used the fact that

Yr-1(govgy ) = Pr-1(v).
Let Ng be the unipotent radical of the upper triangular Borel subgroup of GL, and

fWT,EO(g) = N fE(Wrng)wr(n) dna g€ G2~

Then by the Casselman—Shalika formula, we have

fw,(M = 1

= =1
1<i<j<r L(1, “”J”“n-i-j)

1

We can then write the integral (4.4.1) as

H 7 ! )X/N e Jo fw, 20 (W0 1onggo1Wv) fe(go)w(h(I5, 0)~gol(v))¢(0) dv dgo,

(1, EnsiZ b
1<i<j<r » =t =ngj

.. 1T . p—
where W = ( 12n ) We make a change of variable g — w, 1long9U’07long and v —

wy, %onngﬂ,long- Then since wo 1ong € Ko and fyy, =0, fe, ¢ are all Ko-fixed, we conclude that

(Eew= ] !

= =1
I<i<j<r (L, EntiZniy)

X / fw, 20 (9i0v) fe(wolongg)w (wo,long A (15, 0)g€(v))(0) dv dg.
Ng\N, JGo

By definition,

C(an 67 1/}) = /G fEO (g)fE (wO,longg)de (wo,longh(lav 0)9)¢(0) dg

We then apply [GJRS11, Theorem 4.3] and [GJRS11, End of §4, (4.7)] to get the lemma.
(In the notation of [GJRS11], we apply this to the case r = 0 and b, (f=o, fe, ¢) = ((E°,&,4).) D

We now compute SZ_, ¢-1,4-1(1). Define the projection pr : C*(G2) — I(E) by

pro(Fo)(ge) = | Falbags)(E'65/%) (ba) dbo,
Bs

where the measure dbs is the left invariant measure on Bj so that pry(1x,) = fz. Then we define

lz¢.p € Homy, s (1(Z), I7(671,¢) @ ¢br_1)
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by
Iz¢0(f2)(97) :/G f5(929.0)Y=e(92) dga,

where f3 is any element in C°(G2) with pry(f3) = fo. It is not hard to check that Iz ¢ is
independent of the choice of fi. We define

Szew(92) = Broe gy (fe o lmew(m2(g2) f2))-

The defining integral of Iz ¢ 4 is convergent if Yz ¢ 4 is continuous. By [Shel4, § 3], whose method
is valid for both cases Mp and Sp, Yz ¢, is continuous if (Z,¢) lie in some (nonempty) open
subset of C"* x C%. We refer the readers to [Shel4, §3] for a precise description of this open
subset.

LEMMA 4.4.2. We have Sz, = Sz¢¢-

Proof. We check that Sz ¢ and S/E,g,¢ agree when Yz ¢ 4 is continuous. We divide the proof into
two steps.

Step 1. The goal is to reduce the lemma to the identity (4.4.2).

Let 2! = (Z1,...,Z,4+1) and I(Z') be the unramified principal series representation of G
defined by the character Z!. Let Fu(f2)(g2) == Fy(f2)(g20). Then Fy(fo)la, € I(Z'). Define
the projection pr; : C2°(G1) — I(Z!) by

pry (F)(gn) = /B F(bign) (EY) 16 (by) dby,

where the left invariant measure db; is the one so that pr;(1x,) = f=1. Note that pr; is surjective
and for any element f € I(Z'), one can choose F whose support lies in K7 such that pry(F) = f.
Define the intertwining operator lls,s,w € Homy, s (I(2),I7(671,4) ® 1) by

I5 e (f2)(95) = ; 12(9190)Yz¢.0(910) dg1.
1

where f3' is any element in C2°(G1) with pry(f3) = F,(f2)lc:-
Fix g2 € G2 and let fJ € C°(G1) be a smooth function whose support is contained in K;
and pry(f3) = F,(m2(92) f=)|c,- Then

Stey(ge) =w! /K . Yz ¢ (k1iky) F(m2(g2) f=) (k1) dk g dk:
1 J
=w! /K /K Yz ¢ o (krwky) f3 (k1) dk g dky
1 J

=w! / Yz ¢y (k1) f3 (kiky) dk g dky
K K,
=W Brye ) (fe i 1e0 (m2(92) f2))-

Therefore, in order to prove the lemma, we only need to show w - Iz ¢ 4 = & e We have

dim Homy, |« (I(2), vy @) =1
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This is proved in [Shel4] in the case Sp, but the proof works equally well in the case Mp as it
uses only the decomposition G; = B;K;. Therefore, we only have to find a function ¢ € I(E)
such that Iz ¢ ()(1) # 0 and show that

ze0(P)(1)/lzep(0)(1) = w. (4.4.2)

Step 2. Proof of (4.4.2).
Let KZ( ) be the Iwahori subgroup of K;. Let T( ) = T;(or) and T( ) be the kernel of the

reduction map T( ) (op/w). Note here that by T;, we mean the diagonal torus of Sp(W;)
in both cases Sp and Mp. Let B; be the opposite Borel subgroup of G; and N; be its unipotent
radical. Let N\”) = N; N K;, N\' A EY and N = w7 gﬁgl)wumg. Let NV, = N,y n
NQ(I). Note that in the case Mp, these subgroups of K; are considered as subgroups of GG; via the
splitting K; — G;.

Let ¢ = pry(1 ) € C°(G3). Then

K§n
tzea(lp, )0 = [ Yosolhon) dis

Recall that [§ = (1,...,1) € L* and n = w2 1ongh(l§, 0). By the Iwahori decomposition of Kél), it
is not hard to check that

K = TOND w songh (15, 0) TS VNI N (4.4.3)
Therefore, Yz ¢ (kan) = Yz ¢,4(n) = 1 for any ko € Kél). Thus,
1
201, )(1) = vol KW,

/ .
We now compute lag,w(prQ(lKél)n))(l). First

Fu(Pra(1.m ))(g1) =/ / 1, (bagrin) (E710y%) (bo)er—1 (u) dba du, g1 € G
2 1 Ny—1J By 2 1

By the decomposition (4.4.3) again, for any u € N,_1, if bagrwu € Kél)n, then u € N( )1 and
bogiw € Kél)n. Therefore,

y o (1) —151/2

Fulpral g, Do) = ol N [ 1,0 (b G103 )
—volN, . / e, (brgrd)(E) 718 %) (br) dby.
By
Thus,
1 : .
I ¢ (pra(Lgqn,)) (1) = vol N2y /G 10, (919)¥z1 . (9110) dgy
1
—volN( )1 volK( )

The lemma then follows since VOIN( )1 VOIK( ) = wol Kél). o
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LEMMA 4.4.3. We have

A
Szen(l) = ATQGSTOC(E’W)’ Szo,e(1) =

AGO

C( ,6,0).

Proof. We claim that the restriction of the measure dg to the open subset BonBjN,_1

decomposes as
Ag,

A, Ar,
where dby = dby dl dt if by = bph(l,t). In fact, on the one hand,

dg|BynByN,_, = dby dn,_1 dby,

/ 1K(1) (g) dg — [K2 . Kél)]_l — q—dlmG2+d1mN2+dlng Go )
G2 21 ATQ

On the other hand, it follows from (4.4.3) that

/ / / 1, (banbyny_1) dbydn,—ydby = g~ W TomdmNy=dmNe-i Ay
By JN,._1 /By 2

The claim then follows. Therefore,

A _ -
Iz (f2)(97) = AT;ZTO/B /N Fe(nbyn,—19.)(E85 ) (b.1) b1 (nr—1) dby dn,—1.

We have

Ag,
SE,&w ATQATO /*l{o \/BJ /N,n lf_ W2 long (107 )anr 1h(l O)k)
X (€710Y2) (01)br—1(ne1) fe 5 (h(I*, 0)k) iy dby dk di*.

We combine the integration over L, Ky and B as an integral over J and then conclude that

Ag . -
Szew(l) = AAQ// fz(w21ongh(1g, 0)12r—19.)¥r—1(nr—1) f¢ 75(9.7) dnr—1 dg.s
Ts TO N,n_l
 Agy, -
- ATQATO C(‘—‘a 57 d})
The equality
Ag
Szoep(1) = OC( &)
can be proved similarly. In fact,
A
dgs|B,mBy = A—?" db,y dby
To

Therefore,

SEO,f,w(l)_/J/G 1, (90) 1o (90) Yoo £.(9590 ) dgr dgo
0

A
= §°/ / / 1k, (bsnbogo)Lx,(g0) Y=o ¢ (banbo) db.y dbo dgo
ATg Go J By JBo
A
GOC( E0). =
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Proof of Proposition 2.2.3. If r = 0, then Proposition 2.2.3 can be proved in exactly the same

way as [Xuel6, Appendix D.3]. We omit the details. See also Lemma 7.2.2.
Assume that r > 1. Suppose that we are in the case Sp. It follows from Lemmas 4.4.1 and 4.4.3

that
Ap, \ 7 Ag Ly(3,m0 X 7) !
(1,2 = - :
(1,E,&,9) (AG) (Aoo> (L(l,g x 7)L(1,7, A2) 11 L(1,E+i5,3)

Ii<y<r +
Ly(, 7wy x 7V 1
- <L 1 = N ) a1 i )I(l,f,zo, )
( , 0" X T ) ( , TV, )lgi<j<r ( ":'n—‘ri‘:‘n"rj)

Proposition 2.2.3 in the case r > 1 is then reduced to the case r = 0. The case Mp can be proved
in the same way. We only need to change notation at all necessary places. o

PART II. COMPATIBILITY WITH THE ICHINO-IKEDA CONJECTURE

The notation in this part of the paper is independent from Part I. We keep the notation and
convention from the Introduction. Additional notation will be fixed in each section.

5. Some assumptions and remarks

5.1 Parameters

We will prove that Conjecture 2.3.1(3) is compatible with the Ichino-Tkeda conjecture [II10,
Conjecture 2.1]. The most subtle part is the appearance of the size of the centralizer of the
global L-parameters in the formula. To address this issue, of course, one has to assume that the
Langlands correspondence exists and satisfies some expected properties. We begin by setting
down the precise hypotheses that we require. We remark that for orthogonal groups and
symplectic groups, they follow from the work of Arthur [Art13] and the recent work of Atobe
and Gan [AG16]. For metaplectic groups, they should eventually follow from the on-going work
of Wen-Wei Li (e.g. [Lil5]).

We first state the hypothesis on the local Langlands correspondences.

HypotHESIs (LLC). We assume the Hypotheses (LLC), (Local factors), (Plancherel measures)
from [GI14, Appendix C] at all non-archimedean places v of F.. Thus [GI14, Theorem C.5] holds
if v is non-archimedean. It also holds if v is archimedean by [Pau05].

We note that if v is an archimedean place, then the Hypothesis (LLC) is established by
Langlands [Lan89]. Hypothesis (Local factors) is proved in [LRO5]. Hypothesis (Plancherel
measures) is proved by [Art89]. If v is non-archimedean, then they should follow from [Art13,
Theorems 1.5.1, 9.4.1, Conjecture 9.4.2].

Thus, if v is a place of F' and , is an irreducible admissible representation of G(F),), where
G = S0(2n + 1) (respectively SO(2n), respectively Sp(2n)) gives rise to a 2n (respectively 2n,
respectively (2n+1))-dimensional selfdual representation ¥, of the Weil-Deligne group WD(F,,)
of sign —1 (respectively +1, respectively +1). We call it the local L-parameter of .

Let 7, be an irreducible admissible genuine representation of Mp(2n)(F,) and Oy, (m,) be
the restriction to SO(V')(F,) of its theta lift to O(V')(F,) where V is a (2n + 1)-dimensional
orthogonal space over F,, of discriminant 1. By [GI14, Theorem 1.1], the map m, — Oy, (7y)
gives a bijection between the set of irreducible admissible genuine representations of Mp(2n)(F3)
and the union of the sets of irreducible admissible representations of SO(V')(F,) where V ranges
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over all (2n+ 1)-dimensional orthogonal spaces over F,, of discriminant 1. This bijection satisfies
several expected properties (cf. [GI14, Theorem 1.3] for a list). The local L-parameter of m, is
defined to be Vg s (mp)- Note that the local L-parameter of m, depends on .

We now turn to the global Langlands correspondences. We shall be concerned only with
tempered cuspidal automorphic representations. To avoid mentioning the hypothetical Langlands
group Lp, we use the following substitute of the global L-parameters following [Art13, §1.4]
and [GGP12, §25, pp. 103-105].

Let m be an irreducible cuspidal tempered automorphic representation of G(Ar), where
G = SO(2n + 1) (respectively SO(2n), Sp(2n), Mp(2n)). By the global L-parameter of m, we
mean the following data:

— a partition N = Ny + -+ + N,, where N = 2n (respectively 2n, 2n + 1, 2n);
— a collection of pairwisely inequivalent selfdual irreducible cuspidal automorphic
representations II; of GLy,(Ar) of sign —1 (respectively +1, +1, —1), i =1,...,7;

which satisfy the condition that for all places v of F, ¥y, ~ @;_, ¥, , as representations of

WD(F,), where Wry, , is an N;-dimensional representation of WD(F,) associated to II;,, by the

local Langlands correspondences for GLy;, (which is known due to [HT01] and [Hen00]). By [JS81,

Theorem 4.4], the global L-parameter of 7 is unique if it exists. We write formally ¥, = EE|Z:1HZ~.
We now state the hypothesis on the global Langlands correspondences.

HypoTHESsIs GLC. The global L-parameter of m exists.

For orthogonal and symplectic groups, a weaker version of this (namely, replacing the
requirement ‘for all places v’ by ‘for almost all places v’) follows from [Art13, Theorems 1.5.2,
9.5.3]. For metaplectic groups, this should follow from the work of Wen-Wei Li.

With this reformulation of the L-parameter of 7, we (re-)define the centralizer

Sﬂ' = S\Ijﬂ. = {(az) S (Z/QZ)T ’ aivl .. 'CLiVT — 1}

From now on, when we speak of the global L-parameters and their centralizers, we always
mean the one defined here.

We end this subsection by some discussions on the automorphic representations on the
even orthogonal groups. Suppose that 7 is an irreducible cuspidal tempered automorphic
representation of O(2n)(Ar). We are interested in the restriction 7|gon)ay)- Here by
W‘So(Qn)(AF), we mean the following. Suppose that 7 is realized on V, which is a subspace
of the cuspidal automorphic spectrum of O(2n)(Ar). Let VO = {flso@n)yay | f € V}. Then
T|s0(2n)(ap) Stands for the natural action of SO(2n)(Ar) on V°. We summarize some recent
results of Atobe and Gan [AG16] as the following Hypothesis O.

HypoTHESIS O. Each tempered automorphic representation m appears with multiplicity one
in the discrete spectrum of O(2n)(Ar). The following three cases exhaust all possibilities of
T|s0(2n)(Ap)-

(i) We have that T|so(2n)(a,) IS irreducible and appears with multiplicity one in the discrete
spectrum of SO(2n)(Ar).

(ii) We have that 7|30 (2n) () 1S irreducible and appears with multiplicity two in the discrete
spectrum of SO(2n)(Ar). In this case, there is an automorphic representation ' of O(2n)(Ar)
such that m # 7' and 7|go2n)ar) © T |s0@n)(ar) 15 the T[S0 (2n)(a)-iS0typic component of the
discrete spectrum of SO(2n)(Ag). Note that 7' is not uniquely determined.

101

https://doi.org/10.1112/50010437X16007752 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007752

H. XUE

(iii) We have 7|son)ap) = 7% @ m~ where mt and 7~ are inequivalent automorphic
representations of SO(2n)(Ar). Both 7™ and m~ appear with multiplicity one in the discrete
spectrum of SO(2n)(Ar). Moreover, ¥+ =¥ __.

In each case, let 7° be an irreducible component of Tlso(2n)(ap)- Then we define the L-
parameter ¥, of m by ¥, = W_o. Suppose that U, =1II; B --- HII, where II; is an irreducible
cuspidal automorphic representation of GLy,(Ar). Then in the first (respectively second and
third) case (respectively cases), at least one of N; is odd (respectively all N; are even).

Let € € O(2n)(F)\ SO(2n)(F'). Conjugation by e induces an outer automorphism of order
two of SO(2n) which does not depend on the choice of the element e. We denote this outer
automorphism also by e. If n # 2, then this is the unique nontrivial outer automorphism of
SO(2n). For any automorphic representation o of SO(2n)(Ar), we let o€ be its twist by €. In the
first two cases, (7[so(2n)(ar)) = Tlso@n)(ax)- In the third case, (7t)¢ = 77, Here we use ‘=" to
indicate that not only the automorphic representations are isomorphic, but the spaces on which
they realize are the same.

The automorphic representation 7 appears with multiplicity one in the discrete spectrum of
O(2n)(AFr), so the space on which it realizes is canonical. Suppose that m|go(2n)(a,) 18 irreducible
and appears with multiplicity two in the discrete spectrum of SO(2n)(Ap). The restrictions of
7 and 7’ to SO(2n)(AF) are canonical subspaces of the discrete spectrum of SO(2n)(Ap) and
give a canonical decomposition of the 7|so(2n)(a)-iSotypic component of the discrete spectrum
of SO(2n)(Ar) (we are not able to distinguish the restrictions of 7= and 7). Moreover, these
subspaces are characterized by the fact that they are invariant under the outer twist €. In other
words, if 7¥ (as an abstract representation) is an automorphic representation of SO(2n)(Ar) and
appears with multiplicity two in the discrete spectrum of SO(2n)(Ar), then there are precisely
two automorphic realizations V; and V5 of 7° that are invariant under the outer twist by e. Both
Vi and V3 can be extended to automorphic representations of O(2n)(Ar). Moreover, Vi and V3
are orthogonal in the discrete spectrum of SO(2n)(Ar) and V; @ V4 is the 7% isotypic component
of the discrete spectrum of SO(2n)(Ar).

Finally, assume that SO(2n) is quasi-split and 7° is an irreducible cuspidal tempered
generic automorphic representation of SO(2n)(Ar) which appears with multiplicity two in the
discrete spectrum. Suppose that W o = II; B --- BII,. Then (at least conjecturally) the descent
construction [GRS11] provides us with an automorphic realization of 7% which is invariant under
the outer twist e. We refer the reader to [LM15c, § 5] for some further discussions on the descent
construction.

Convention. We assume the Hypotheses LLC, GLC and O from now on, unless otherwise
specified.

5.2 Theta correspondences
We are going to use the Rallis inner product formula in the later sections of this paper. We
will not recall the precise form of this formula in various cases, but refer the readers to [Yam11,
Yam14] for the formula in the first term range and to [GQT14] for the formula in the second
term range.

We now consider the behavior of the L-parameters under theta correspondences.

LEMMA 5.2.1. Let V be a 2n-dimensional orthogonal space over F' and m an irreducible cuspidal
tempered automorphic representation of O(V)(Ar). Let ©y () be its theta lift to Sp(2n)(Af)
with additive character 1. Suppose that ©.(m) is nonzero and cuspidal. Let ¥, = EE:ZIHi be
the L-parameter of w. Then II; # 1 (the trivial character of A}.) for all i.
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Proof. Suppose that II; = 1 for some i. We may assume that ¢ = 1. Then by Hypothesis O,
T|sovy(ay) 18 irreducible. We prove that m has a nonzero theta lift to Sp(2n — 2)(Ap). The
lemma then follows from the tower property of the theta lift [Ral84].

If 7 has a nonzero theta lift to Sp(2n — 2r)(Ap) for some r > 1, then by the tower property
of the theta lift, 7 has a nonzero theta lift to Sp(2n —2)(Ar). Thus, we may assume that 7 does
not have a nonzero theta lift to any Sp(2n — 2r)(Ap) for any r > 1.

We fix a sufficiently large finite set S of places of F' which contains all the archimedean
places, so that if v ¢ S, then 7w (hence, II;) is unramified. By the Hypotheses LLC and GLC,

L5(s,m) = H L5(s,11,),
i=1

where the left-hand side is the standard L-function of n defined by the doubling method and
the right-hand side is the standard L-function of II;. If i # 1, then L®(s,II;) is holomorphic and
does not vanish at s = 1 (see [JS76/77]) and L(s,1) have a simple pole at s = 1. Therefore,
LS(S7 7) has a simple pole at s = 1.

Let v be a place of F. By assumption, m,|so(vy(r,) is irreducible. By [GI14, Theorem C.5],
there is an irreducible admissible representation o of Sp(2n—2)(F},) such that m, = ©y, (o). This
means that 7, has a nonzero theta lift to Sp(2n — 2)(F}).

It then follows from [Yam14, Theorem 10.1] that 7 has a nonzero theta lift to Sp(2n—2)(Ar).
This proves the lemma. o

LEMMA 5.2.2. Let V' be a 2n + 1 (respectively 2n)-dimensional orthogonal space over F and
7 be an irreducible cuspidal tempered automorphic representation of O(V)(Ar). Let ©y(m) be
its theta lift to Mp(2n)(Ar) (respectively Sp(2n)(Ar)) with additive character 1. Assume that
Oy (m) is cuspidal and nonzero. Then

VYo, (r) = Vr @ xv, respectively Vg (n) = (U.H1) @ xv,
where 1 stands for the trivial character of Aj.
Proof. Let v be a place of F. By [GI14, Theorem C.5] and [GS12], we see that
Yo, (r) = ¥r, ® Xvu, respectively Yo, (r,) = (Vr, ® 1y) @ XV,

By the previous lemma, in the case dim V' = 2n, ¥ does not contain 1. The lemma then follows
from [JS81, Theorem 4.4]. O

LEMMA 5.2.3. Let w be an irreducible cuspidal tempered automorphic representation of
O(V)(AFp) where V is a 2n-dimensional orthogonal space over F'. There is a canonical injective
map Sy — Se,(r)- It is not bijective if and only if ¥ =11, 8- --BIL, where I; is an irreducible
cuspidal automorphic representation of GLy,(Ar) with N; being even. In this case, Sy is an
index two subgroup of Sg (x)-

Proof. Suppose that ¥, = Bﬂgzlﬂi, where II; is an irreducible cuspidal automorphic
representation of GLy, (Ar) and > ;_; = 2n. By Lemma 5.2.2,

Sp={(@) € (2/22)" | " -+ a2 =1}, Som = {(ai) € (Z/22)™ [ @ -+ ax"apyy = 1}.

The map (a1, ...,a,) — (a1,...,a,,1) is clearly injective. It is not bijective if and only if there

are elements (a1, ...,a,) € (Z/2Z)" so that a)* - --a)» = —1. This is equivalent to that at least

one of the N; is odd. O
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6. The Ichino—Ikeda conjecture for the full orthogonal group

We review in this section the conjecture of Ichino and Ikeda [II10] and extend it to the full
orthogonal group. There are minor inaccuracies in the formulation of the conjecture in [II10]
when the automorphic representation on the even orthogonal group appears with multiplicity two
in the discrete automorphic spectrum. We will take care of this issue in §6.2. The Ichino-Tkeda
conjecture for the full orthogonal groups is stated in §6.3. We will show that it follows from the
Ichino—Ikeda conjecture for the special orthogonal groups. The argument is close to [GI11, §§ 2, 3]
at various points. We give details on the new difficulties that arise in our situation (mainly due
to the failure of multiplicity one in the discrete automorphic spectrum) and only state the result
when its proof is identical to that in [GI11].

6.1 Inner products
Let F' be a number field and (U, gi7) be an n-dimensional orthogonal group over F. Let H = O(U)
and HY = SO(U). Recall that there is an exact sequence

1—>H0—>H—>,u2—>1.

We view pg as an algebraic group over F. We write ¢ for the nonidentity element in ps(F') and
t, its image in uo(F,) for each place v of F. Note that if n is odd, then we may take t = —1.
The sequence splits canonically and gives an isomorphism H ~ H? x ps.

Let de, be the measure on jia(F,) so that vol i2(F,) = 1. Then de =[], de, is the Tamagawa
measure of us(Ar). Let Z be the center of H°. Note that the group Z is trivial unless n = 2.
Let dh and dh® be the Tamagawa measure of Z(Ap)\H(Ar) and Z(Ar)\H°(AF), respectively.
Then we have

/ h)dh = / / f(h%) dhP de,
Z(Ap)H(F)\H(AF) p2(F)\p2(AF) J Z(Ap)HO(F)\HO(AF)
for all f € LY(Z(Ap)H(F)\H(AR)).

We fix a decomposition dh =[], dh, where dh, is a measure on H(F,). Let dhd =2 th\HO(Fv)
be a measure on HY(F,). Then dh® =[], dhf.

Let m be an irreducible cuspidal automorphic representation of H(Ar). We denote by V the
space of automorphic functions on which 7 is realized. Let 7° = 7| HO(A) and VO = {f] HO(Ap) |
f €V} Let & be the set of places v of F' such that 7, |go(p,) is reducible. This is also the set of
places v of F' so that m, ® det, ~ m,. Let B, be the Petersson inner product on V given by

B/, f') = / FW TR dh,  f.f €V,

Z(Ar)H(F)\H(AF)

We fix a decomposition B, =[], Br, where By, is an inner product on 7.
We distinguish two cases.

Case I: G = (. In this case, 7° is irreducible and the restriction to H°(Ar) as functions induces
an isomorphism V ~ V? as representations of H°(Af). Let B,o be the Petersson inner product
on VY (defined using the Tamagawa measure on HY(AF)).

LEMMA 6.1.1. For any f, f' € V, we have

Bro(flaoary f'laowmey) = 2B (f, f').
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Proof. This can be proved in the same way as [GI11, Lemma 2.1]. O

Case II: & # (). We fix an isomorphism

v:n?m<®vv> o (@)

ves véS

where V,, is the space on which 7, is realized and ¢, is an H(op,)-invariant vector in V,, for
ve&S.

If v € &, then 7, ® det, % 7, and 70 ~ 7 @© 7w, where 7 are irreducible admissible
representations of H°(F,). We have V0 ~ V.F @ V= where V¥ is the space on which 7} are
realized and x = + or 0. Note that V, =~ m,(¢t)V,;". For almost all places v € &, we have
by = ¢ + ¢, where ¢ is an H°(op,)-invariant element in V.= and ¢, = m,(t,)¢; . If v ¢ &,
then 7¥ is an irreducible admissible representation on the space V.

In this case, by the Hypothesis O, there are two irreducible cuspidal automorphic
representations 7t and 7~ so that 7 ~ 7t @7, 7~ ~ 7t o Adt, VO = VT @ V~ where
V¥ are the spaces on which 7+ are realized. We may label the two irreducible components of 70
for v € G so that

()¢ (@)

veS vgS
V- (@) e (@W) o (@) o (Qe).
S Nes veS vgS vgS
veS vgS vES vgS

Let B+ be the Petersson inner product on V' with a fixed decomposition
Bev =[] Bot [] Br.:
veS vgS
where:

- B +isan H 9(F,) invariant pairing on V" if v € & and B,, is an H(F,) invariant pairing
onV, if v € G;
= B (¢F,07) = Bu(¢,6) = 1 for almost all v.

If v € &, we define an HO(F,) invariant pairing on V= by B; (¢v, ¢v) = B (mu(ts) o,
Tu(ty)Py). Then for almost all v, we have By (¢, , ¢, ) = 1. We then define an H(F,) invariant
pairing on V, by

LB (oF, o) + By (8y,07)) ifve®,

f _
Bi(9v,90) = {Bv(qﬁv,gbv) ifved.

Then for almost all v, BE,((Z)U, ¢y) = 1.

LEMMA 6.1.2. We have

B. =[] B

Proof. This can be proved in the same way as [GI11, Lemma 2.3]. O
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6.2 The Ichino—Ikeda conjecture for special orthogonal groups

We review the Ichino-Ikeda conjecture [I110, Conjecture 2.1] in this subsection. There is a
slight inaccuracy in its original formulation in [II10] when the multiplicity of the automorphic
representation on the even orthogonal group in the discrete automorphic spectrum is two. We
will make some modifications to the conjecture in this case.

Let n > 2 and U,,41 and U, be orthogonal spaces of dimension n+1 and n with an embedding
Un CUpy1. Let H? = SO(U;) (i = n,n+1). Let dh be the Tamagawa measure on H2(Af) and we
fix a decomposition dh = [], dh, where dh, is a Haar measure on HO(F,) and vol HO(0p,) = 1
for almost all v.

Let mpt1 = @, Tnt1,0 and m, = Q), Tn,w be irreducible cuspidal tempered automorphic
representations of H,?H(AF) and H?(Ap), respectively. Let V,, 11 = X, Varipwand V, = Q, Vo
be the space on which ;1 and m, are realized, respectively. Let By, ,, and By, be the Petersson
inner products on V,41 and V,,, respectively. We fix a decomposition

Bﬂn+l = H‘Bﬂ'n+l,v’ Bﬂ'n = H Bﬂ'n,v
v v

where B, 41, and Bﬂn,v are inner products on V41, and V;, , respectively.
Let fni1 = ®fn+17v,f7’1+1 = ®f7’l+m € Vo1 and fr, = Q) frw, [, = ®f7,w € V,,. Define

T(fvs Frers fs £1) = /

Hu (F)\H(AF)

fraW by dn- [ P () £ (h) db.

HR (F)\HY (AF)

For each place v, we define

jv(fnJrl,m f7/z—|—1,m fn,va f'r/L,v) = /[;IO(F )BnJrl,v(7Tn+1,v(hv)fn+1,va fr,/L+17U)Bn,v (Wn,v(hu)fn,v, f,lz’v) dhv

Let S be a sufficiently large finite set of places of F' containing all archimedean places so
that if v & S, then fui1., f11, (respectively fn., fh.,) are HY, (0F,) (respectively H))(0r,))
fixed and By, , (fnii0, f7’1+17v) = Br,..(fnw, frn) = 1. In particular, 7,41, and m,, are both
unramified if v € S. Let {a1,4, .-+, Q(n11)/2,0} a0d {B1,v,- - -, Bln/2),0} be the Satake parameters
of Tp41,0 and 7,4, respectively. Let

Apnyi0 = diag[al,v, e O(n41) /2] aRrILJrl)/Z],v’ RN 041_771}]

An,v = diag[ﬁl,v» ey B[n/QLva B[;}Q]ﬂ)v cee aﬁ;ﬂl)]

Let
LS(S, gl X ) = H det(1 — Apy10®@ Apy - q;s)f1
vegS
be the tensor product L-function and L°(s, 7,1, Ad) and L(s,m,, Ad) be the adjoint L-
functions.

CONJECTURE 6.2.1 (Ichino-Tkeda [II10, Conjecture 2.1]). (i) Suppose that 7,41 and 7, appear
with multiplicity one in the discrete spectrum. Then the automorphic realization Vi1
(respectively V;,) of m,41 (respectively m,) is canonical. We have

1 LY, mpy1 x mp)
/ A S 95 tn+1 n
j(fn-‘rla fn+17 fm fn) - ’Sﬂn+1||Sﬂ'n| Hg+1 LS(l,Wn+1,Ad)LS(1,7Tn,Ad)

X H ju(fnJrl,v, fylﬁ-l,va fn,va f;l,l})'

veES
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(ii) Suppose that n is odd and 7,41 appears with multiplicity two in the discrete spectrum
of HY, (Ap). Then the automorphic realization V;, of m, is canonical. Let L2 ., be the isotypic
component of 7,41 in the discrete automorphic spectrum of HY 4+1(AFr). Then there are two
possibilities.

(a) The linear form J is identically zero on L2 o X L 1 X Vi X Vi, This is equivalent to that
either HOHng(AF)(TFnH ® 7, C) =0 or LS(%, Tnt1 X ) = 0.
(b) There is a unique irreducible subrepresentation V;,; of L?rn ., such that it is invariant under

the outer automorphism of Hg 41 and J is not identically zero on V11 X Vi1 X Vi X Vi,
We have

S 1, |~ e LS (1, 41, Ad) LS (1, 700, Ad)

X H I’U(fn'i‘lﬂh f1/1+171)7 fn,va f'r/zm)a

veS

if fort, frer € Vart, foofl, € Vo Let Vi, (# Vag1) be the other irreducible
subrepresentation of L2 ., that is invariant under the outer automorphism of H? . Then
J is identically zero on Vy , x Vi | x Vi, X V..

j(fn+17f7/1+17fn7f7/1) =

If n is even, then we have a similar statement, with the role of m,11 and 7, being switched.

Remark 6.2.2. The same inaccuracy also occurs in [Liul6]. One also needs to modify [Liul6,
Conjecture 2.5] in a similar way when the automorphic representation on the even orthogonal
group has multiplicity two. In this case, the automorphic realization is required to be invariant
under the outer twist and (in the notation of [Liul6]) 1/[Sy(r,)|[Sw(x,)| needs to be replaced by

2/|S\I!(7r2)||S\II(7ro)|

6.3 The Ichino—Ikeda conjecture for full orthogonal groups

Let U,+1 and U, be orthogonal spaces of dimension n + 1 and n with an embedding U,, C Uy, 41.
Let H; = O(U;) and HY = SO(U;) (i = n,n+1). Let dh be the Tamagawa measure on H,,(Ar) and
we fix a decomposition dh =[], dh, where dh,, is a Haar measure on H,,(F,) and vol H,,(0F,) =1
for almost all v.

Let mp41 = @, Tnt1,0 and 1, = Q), Tnw be irreducible cuspidal tempered automorphic
representations of Hy,11(Ap) and H,(AF), respectively. Let V11 = @), Viy1,0 and V, = Q, Vo
be the space on which m, 1 and m, are realized, respectively. Let By, ,, and By, be the Petersson
inner products on V41 and V,,, respectively. We fix a decomposition

B7rn+1 = HBWn+1,v7 Br, = HBﬂ—n,U
v v

where By, ., , and By, , are inner products on V11, and V,,,, respectively.
Let fny1 = Q) futiw € Vog1 and f, = Q) fno € Vi, Define

T(funsfo) = [

Hn(F)\Hn(AF)

fra(W by dn- [ far (W fuhy b, (6.3.1)

Hn(F)\Hn(AF)

For each place v, we define

Iv(fnJrl,m fn,v) = A (F) Bn+1,v(7rn+1,v(hv)fn+1,m fn+1,v)8n,v(ﬂ'n,v(hv)fn,va fn,v) dhy. (632)
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Let S be a sufficiently large finite set of places of F' containing all archimedean places so
that if v ¢ S, then fu11, (respectively f,,) is Hyy1(0Fy) (respectively H,(op,)) fixed and
Br, i1 (faste far1w) = Br, o (frws frnw) = 1. In particular, 7,41, and 7, are both unramified
if v € S. We define the partial L-functions

LS(s,ﬂnH X Tp,) = LS(S,frn+1 X T ), LS(s,m,Ad) = LS(S,ﬁ'Z‘,Ad), t=n,n+1,

where 7; is an irreducible constituent of 71'? which is invariant by the nontrivial outer
automorphism e. The L-functions on the right-hand side of each equality is independent of
the choice of this irreducible constituent.

The Ichino-Ikeda conjecture for the full orthogonal group is the following.

CONJECTURE 6.3.1. We have

27 L33, g1 x )
1z n n) = AS 2 I n+1,v5 Jnv
(f +17f ) ’ 7rn+1HS7rn‘ Hp41 LS(l 7Tn+1,Ad)LS(1 7Tn,Ad H f +1, 7f )

(6.3.3)

where 7 is given as follows. Suppose that n is even (respectively odd). Let ¥, = H;
(respectively W, ., = EE‘Hi) where II; is an irreducible cuspidal automorphic representation
of GLy,(Ar). Then v = 0 (respectively 1) if at least one of N; is odd (respectively all N; are
even).

Remark 6.3.2. We may have a neater formulation of the conjecture if we replace our definition
of the centralizers Sy, by the one given in [AG16] for parameters of full orthogonal groups. We
stick to our current formulation as it is more convenient for the applications in this paper.

Similar to Conjecture 2.3.1, we may rewrite the identity (6.3.3) in an equivalent form, which
does not involve the finite set .S. We may define the completed L-function

L(s,Tpy1 X m) = HL(S, Tntiw X Tnw)s L(s,m,Ad) = HL(s,mw, Ad), i=n,n+1.
v

The actually definition of the local Euler factors outside the set .S is irrelevant to our discussion
since the conjecture does not reply on how these Euler factors are defined. Let

L(%, Tn+1 X 7Tn)
1, 7pt1, Ad)L(1, 7wy, Ad)’

L=Aqy,., I
and by £, the Euler factor of £ at the place v. We define
=L, T,

Then Conjecture 6.3.1 can be written as a decomposition of linear forms

I=—"r-J[z: (6.3.4)
ISml HSM\ H

The product on the right-hand side ranges over all places v of F. It is convergent since for almost
all v, i.e.v € 5, 77 = 1. We may write Conjecture 6.2.1 in a similar forms.
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ProprosITION 6.3.3. Conjecture 6.3.1 follows from Conjecture 6.2.1.

Proof. We assume that n is odd. The case n being even can be handled similarly, with
modifications of notation at various places. Then H,, =~ H O % . So 7rnv is irreducible for
all places v of F. Let & be the set of places of F such that 70 +1,, 18 reducible.

If v ¢S, then fr410 = Ppt1, is fixed by Hyy1(0p,) and fy, is fixed by H,(0p,). We may
further assume that fy41, = fn+1 » € v i1 v € SNG. Thus,

fn—i—l,v = H f?j;l,v H fn—i—l,v H ¢n+1,v-
veESNG vESWES vegS

Put
S’:S\(SOG), s=1SNG|, s’:\S'|.

For any finite set of places T' of F', we define Fp =[], . F.
If & # @, then

veT

/ fn-i—l(h)fn(h) dh
Hn(F)\Hn(AF)

28+s 9s+s'+1 Z /HD fn+1(h6)fn(h€) dh

0
ecuz(Fs) F\NHz(AF)

1
= 5ere Tl (fr+1(Re) fu(he) + fr1(het) fo(het)) dh
gerertd @%) HY(F)\HS (Ar)

1
= osrs frnv1(he) fn(he) dh
257 ee,mz(Fs,) HY(F)\HS (Ar)
If & =0, then
frn+1(R) fu(h) dh = 95 +1 Z /H frn+1(he) fn(he) dh

/Hn(F)\Hn(AF cepa(Fs) T HAEN\H (A )

We fix a decomposition

B = B B respectively B.o =2||B,o
rJLr+1 j;—&-l v 7r91+1,v7 b Y T+ Tpt1,v
veES vgS v

if & # @ (respectively & = ¢), so that By, ., , = BEr'rH»l,v if v € & (respectively By, ., , = Bo

n+1 v
Bry =2][ B,
v

if v € &). We fix a decomposition

so that By, , = Bﬂo .
We say that we are in the exceptional case if the following conditions are satisfied.

- We have that 7rn 41 isirreducible and appears with multiplicity two in the discrete spectrum
— The perlod mtegral

/ Fuvsr (1) fu ()
HY(F)\HY(AF)

is identically zero on V,?,; x V!, where we denote as before V; = {fluoap | [ € Vil
1 =n,n-+ 1.
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— The period integral is not identically zero on the isotypic component of 70 11

Suppose that we are not in the exceptional case. Then Conjecture 6.2.1 implies that

m+y' Sl
I(fn+17fn): . 2/2 % s L (277Tn+1;<77n)
BB [S, (18w TS(L, mtny 1, AQ)LS (L, 1y Ad)
X Z H jv(ﬂ-n+1(€)fn+l,va Tn+1 (el)fnJrl,va 7"'n(e)fn,va 7Tn(el)fn,v)a
€,/ €pz(Fgr) vES
where:

— 4/ =1 (respectively 0) if 79, is reducible (respectively irreducible);

— m =1 (respectively 0) if 70, | is irreducible and appears with multiplicity two (respectively
any irreducible constituent appears with multiplicity one) in the discrete spectrum of
H 2+1 (Ap).

We note that v = m + 4. In fact, in the first (respectively second, respectively third) case
in Hypothesis O, we have v = 7' = m = 0 (respectively v = 1,m = 1,4 = 0, respectively
v=1,m = 0,7 = 1). Therefore, to deduce Conjecture 6.3.1 from Conjecture 6.2.1, we only need
to prove the following two identities. If v € &, then

%jv(fn—o—l,va fn+1,va fn,vy fn,v) = Zv(fn—l—l,m fn,v)-
If v ¢ &, then

i Z jv(wn+l(€)fn+1,va7Tn+1(€/)fn+l,v7Wn(e)fn,vawn(el)fn,v) = Iv(fnJrl,vafn,v)-

676,61'42 (F’U)

These two identities can be proved in the same way as [II10, Lemma 3.4]. Therefore
Conjecture 6.3.1 follows from Conjecture 6.2.1 if we are not in the exceptional case.

Now assume that we are in the exceptional case. Let 71';?+1 be an irreducible cuspidal
automorphic representation of H (Ap) which realizes on V%, such that V), is invariant
under the outer automorphism of H 1, V;/%; # V,?, | and w2, ; is isomorphic to 79, ; (as abstract
representations). Then the period integral

/ Foir(B) fou(h) dh
HY(F)\HY(AF)

is not identically zero on V,%; x V;2. Therefore,
Hom o4y (m41 © 7y, C) # 0.

Since V%, is invariant under the outer automorphism of H,,, there is an automorphic
representation 7/, of Hy,11(Ap) which is realized on V) ; whose restriction to HJ, (Ap) is
Ve,
Let T be a finite subset of places of F' and we let dety be the character of H,11(Ap) defined
by
(90) = [] detgo € {1}, (90) € Hura(Ap).
veT

Then detr is automorphic if and only if |T'| is even.
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Note that n > 3 in this case. Let Z, ~ us be the center of H, and it is identified with a
subgroup of H, 1 via the embedding H,, > H, 1. Let | = Q) [, € HomHg(AF)(W;LH ® 7y, C) and
0= (0,) € Zp(Ap). Let I = Q1% ¢ Homo(a ) (7,41 ® 7, C) be defined by

lg“ (£n+1,v ® gn,v) = lv (7Tn+1,v (ev)£n+1,v ® Tnv (ev)gn,’u)a
Since 67 = 1 and dim Hom o (g, ) (7,41, ® Tnw, C) = 1, we have 190 = 41,. Tt follows that there
is finite set T' of places of F' so that [? = detr(0) - I. Since 7, and 7, are automorphic, dety is
also automorphic. It follows that |T'| is even.
Let ), = m, 1 ® dety. Then 7, is an automorphic representation of H,1(Ar) and is
realized on V!, ;. Its restriction to HY, | (Ar) is V,) ;. Moreover, for any place v of F,

HomHn(Fv)(ﬂ-'z—l-l,U ® Wn,va (C) 7& 0.

Since 7,41 and 7, | are not isomorphic but their restrictions to H? +1(AF) are isomorphic, there
is at least one place v, such that m,41, ~ 7r,’; 410 ® det,. We claim that

HOmHn(Fv)(Fn+17U () 7Tn7v, (C) = 0.

In fact, Hompy, g,y (Thi1, @ Tnw,C) # 0 is the +1 eigenspace of 0, = —1 € Z,(F,) on
Hom o g,y (7041, ® 7, C) while Homp, (p,)(Tni1,0 @ Tnw,C) is the —1 eigenspace. Since
dimHomHg(Fv)(ﬂ2+17v ® 7727,],@) = dimHomp, (7, ()41, ® Tnw,C) = 1, we conclude that
Hompy, (7, (Tn+10 @ Tnw, C) = 0.

It follows that the linear form Z, is identically zero in the exceptional case. Therefore, both
sides of (6.3.3) are zero. O

7. Compactibility with the Ichino-Ikeda conjecture: Sp(2n) X Mp(2n)

7.1 The theorem

The goal of this section is to study Conjecture 2.3.1 for Sp(2n) x Mp(2n). We are going to show
that Conjecture 2.3.1 is compatible with the Ichino-Ikeda conjecture for SO(2n + 1) x SO(2n)
in some cases. A result of this sort for unitary groups appeared in [Xuel6, Proposition 1.4.1].
The local counterpart of this argument has been used to establish the local Gan—Gross—Prasad
conjecture for the Fourier-Jacobi models [Atol5, GI16].

Let A € F*. Let (V, qy) be a (2n+1)-dimensional orthogonal space and V), is a 2n-dimensional
subspace such that V/\J— is a one-dimensional orthogonal space of discriminant A. Let H = O(V')
and Hy = O(V)) and ¢y : Hy — H be the natural embedding. B B

Let W be a 2n-dimensional symplectic space and G = Sp(W), G = Mp(W). Let €y
(respectively €2;) be the Weil representation of G(Ap) x H(AF) (respectively G(Ap) x Hy(Ap))
which is realized on S(V(Afr)") (respectively S(VA(AFr)")). Let wy, be the Weil representation
of G(Ap) realized on S (A%). Then we have the theta series

(:51/1 (:gvv h7 Q)), @w (97 h/\7 q))\>7 611»\ (57 ¢)

on G(Ap) x H(Ap), G(Ap) x Hy(Ap) and G(Ap) respectively, where ® € S(V(Ap)"), ®) €
S(VA(Ap)") and ¢ € S(AL). )

Let 7 be an irreducible cuspidal tempered genuine automorphic representation of G(Ap).
Let éw(w) be the theta lift of 7 to H(Af), i.e. the automorphic representation generated by the
functions of the form

O, (. ®)(-) = / 290, B)dg. pem BeSV(Ap)).
G(F)\G(AF)
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Let o be an irreducible cuspidal tempered automorphic representation of Hy(Ar). Let ©y(0) be
the theta lift of o to G(AF), i.e. the automorphic representation generated by the functions of
the form

@w(f, (I))\)() = mew(',h)\,q))\) dh)\, f € o, (I))\ c S(V)\(AF)H)

/HA(F)\HA(AF)

THEOREM 7.1.1. Suppose that éwq(ﬁ) and ©y(o) are both cuspidal (possibly zero). If

Conjecture 6.3.1 holds for (C:)¢71(7r), o), then Conjecture 2.3.1(3) holds for (m,©y(c)) with the
additive character 1_ .

Remark 7.1.2. We have shown in Proposition 6.3.3 that Conjecture 6.3.1 can be deduced
from the original conjecture of Ichino-lkeda (Conjecture 6.2.1). The theorem thus says that
Conjecture 2.3.1(3) and Ichino-Ikeda’s conjecture are compatible in this situation. The same
remark also applies to Theorem 8.1.1 in the next section.

7.2 A seesaw diagram
The proof of Theorem 7.1.1 is very similar to [Xuel6, Proposition 1.4.1]. It makes use of the
following seesaw diagram.

Suppose that f =@ fu €0, p = Qpy €T, ) = ®(I))\,v € S(VA(Ap)") and ¢ = Q ¢y €
S(A’L) are all factorizable.

LEMMA 7.2.1. We have

FT o\ (0:0u(f.83), 6) = / iy T B S O dh

Proof. We have
.Fjll)fx (QD, @Tll(fa q))\)v (b)

-/ / P(9)FIOu(g.1 820, (5:9) dhdg
G(FNG(AF) S HA(F)\H(AF)

©(9)0y (g, tr(h), By ® &) f(h) dg dh

/HA(F)\H/\(AF) G(F)\G(AF)

_ / F(1)By., (0, Fx @ 0)(1a(h)) dh. 0
(F)\Hx(AFr)

Let v be a place of F. We use B to denote the inner products on various unitary
representations.

LEMMA 7.2.2. The integral

/ / B(oo (1) for F2) B (9. 1) B3 0s .0)B(m0(9) 00 00) Bl (@) 0r o) dg dh
H)\(Fv Fu

is absolutely convergent.
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Proof. To simplify notation, we suppress the subscript v from the notation in the proof. Put

Ta) = {1 2l <13

lz|71 |z > 1.

By the weak inequality (3.1.5) and the estimates (3.1.2), (3.1.4), it is enough to prove that
the double integral

/ e @ an VP T TT ity De@) M) dads  (7.2.0)
Ap, JAG i=1j=1

is convergent, where M is some positive real number, r is the Witt index of V) and

Looar'le AL, b=diaglby, ... b, 1, 1 b b € A

a = diagay, ..., an,a, b,

We assume that r» < n. The case r = n is very similar and needs only a slight modification.
We left it to the interested readers.

We have [b1] < --- < |b] < 1. Let j = (j1,...,Jjr) be r nonnegative integers such that
J1+ -+ Jjr <nand let I; be the subset of AZ’; X AEA consisting of elements

ap < <aj; Kby <aj41 <<y K<< b <A 4ggp1 < K ay <L

Then A, x AEA =U i 1. Thus, it is enough to prove the convergence of (7.2.1) when the domain
is replaced by I;.
Over the region I}, the integrand of (7.2.1) equals

lag|'/?- - laj, |(2j1+1)/2,bl‘7j1+1|aj1+1,(2j1+1)/2 o ‘ajlﬂé|(2j1+2j273)/2|b2|fjrjz+2

e |br|_j1—--._jr+7"|aj1+m+jT+1|(2(j1+--~+jr)+1—27’)/2 o |an’(2n—1—2r)/2.
Then lemma then follows from the following elementary fact.

Fact. Fix D a positive real number. The integral

S D
/ P \ms\”sl(—zlog\m) diy - de,
|I1|<"'§‘xs|§1 i=1

is convergent if ny +---+mn; >0 forall 1 <t <s. O

7.3 Proof of Theorem 7.1.1
Let S be a sufficiently large finite set of places of F', such that if v € S, then the following
conditions hold:

(i) v is non-archimedean, 2 and A are in ofﬂ), the conductor of v, is 0p;

(ii) the group A is unramified with a hyperspecial subgroup A(or,), where A = H, Hy, G;

) fois Hx(oFy) fixed and ¢, is G(oF,) fixed; moreover B(fy, fu) = B(puv, ¢u) = 1;

) @, is the characteristic function of Vy(0r)" and ¢, is the characteristic function of 0% ,;

(v) the volume of the hyperspecial subgroup K4, is 1 under the chosen measure on A(F,),
where A = H, Hy,G.

(iii

(iv
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We may assume that (:)¢_1(7r) # 0. If this is not the case, it follows from the computation
below that both sides of Conjecture 2.3.1(3) vanish. Applying Lemma 7.2.1, Conjecture 6.3.1
and the Rallis inner product formula (for theta lifting from G to H), we get

27—1AS
| FT 45 (0,04 (f, P2), 0) = L
|S@w71(7r)HSO"
LS(%,é¢71(W) X o) Li—l(%’ﬂ- < xv)

XLS(l,(:)wl(w),Ad)LS(l,a,Ad) [T ¢ (29)
B(oy(h) fo, fo)B(Q ,h)® 4, Py
xH/WU)/G(Fv) o) o, T B2, (9, 1)y, By, ,)

vES

x B(my(9)pw, %)B(ww_x,v (9) v, dv) dg dh, (7.3.1)

where v is described as in Conjecture 6.3.1. We explain the use the Rallis inner product formula
here in detail. In the remaining part of this paper, we are going to apply the same sort of
argument several times. We will simply say that we apply the Rallis inner product for the rest
of the paper.

First by Lemma 7.2.1, we have

’FJTZ}A(SO? 61/’(f7 Q))\)7¢)‘2 :I(f7 é’l/)—l (907(I)7A® (b)),

where 7 is defined in §6.3. Apply Conjecture 6.3.1 (in the form (6.3.4)), we have

T =

2"/AH fz(%,@¢71<ﬂ') XO’) ng
|S(:)¢_1(W)HSU| L(1,0y_,(m),Ad)L(1,0,Ad)
Note that here the local linear form 1'5 is defined using an inner product B, on (:jw_l (m)y so that

[1, B» equals the Petersson inner product on éw_l(w) (defined using the Tamagawa measure
on H(Ap)). We view the Rallis inner product as another decomposition of the Petersson inner
product on ©y_, (7). The integral

| B 000 8B o) o) do
G(Fv)

where we have used B to denote inner products on §~2¢U and on 7, by abuse of notation, defines
a linear form on

Qy, @7 @ Qy, @7,

which descends to an inner product on é"ﬂfl,v (my) which we denote by B). Put

B - B (L"Z)v,l(%?ﬂ-v X XV,U)>_1.
U T e (20)

Then in this case, the Rallis inner product formula claims that

lLﬂ’fl(%’ﬂ X xv) HB/h
2 [TiL Cr(26) ’
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equals the Petersson inner product on é¢71(ﬂ). Let Z, be the linear form defined in the same
way as Z,, but using the inner product B.. Define

Ilh :I/ X < " L(%7(:jw_1,v(7r’l)) X O—rU) L¢U771(%,7TU X X‘/,’U)>1
v "L(1,04_, 0(m), Ad)L(1,0,,Ad)  [Ti Cr,(20)

It follows that we have a decomposition

-V L($,64_,(7) x 0) Lwl(%aWXXV)HI’“
56, !5 L(1, 64, (), Ad)L(1,0.Ad) - Iy Cr(20) - 517

(7.3.2)

This is an identity of elements in

Hom@(AF)xHA(AF)(Qd’ RTe7,C)® Homé(AF)xHA(AF)(Q¢ ®rT®a,C),

which descends to an identity of elements in

Homy, (4,)(Oy_, (1) ®7,C) @ Homp, (4,1(0y_, (1) 7, C).

We now compute Z(f, C:)lp,l(SD,CIT)\ ® ¢)) using decomposition (7.3.2). Note that

Qw‘é(AF)XH/\(AF) = Chy © wyy,

where G(AF) acts on both factors on the right-hand side and Hy(Ar) acts only on £,,. We also
note that if v € S, then
Ii/)u(q))\,v ® ¢U7@7 f’U) = 1
Then the identity (7.3.1) follows.
We continue the proof of Theorem 7.1.1. The double integral on the right-hand side of (7.3.1)
is absolutely convergent by Lemma 7.2.2. Thus, we can change the order of integration by

integrating over g € G(F;,) first. Then we apply Rallis inner product formula (for theta lifting
from H) to G), and get

|~/—'.ij(()07£7¢)|2
27-TAZ L5(},0y_,(r) x 0) ( L°(1,0) >_1
ITim: ¢3(29)

185, mllSal L5(1,8,_, (), Ad)LS(1, 0, Ad)

Li_l(%,ﬂ' X XV)
e L, ., B0 o006 Br(0)u e B (1601

where Oy (f, ®y) =& = Q& € Oy(0). Here we fixed a surjective map 0, : 7 @ Qy, — Oy, (o)
for each v and put ¥, (fy, Pry) = &b, so that £ = @ &, holds. By Lemma 5.2.3, |Séw (W)HSU| =
-1

QV_IISWHS@MU)\. Theorem 7.1.1 then follows from Lemma 5.2.2.

7.4 Some remarks
We end this section by some remarks on Theorem 7.1.1.

Remark 7.4.1. We have proved in the theorem that we can deduce Conjecture 2.3.1(3) from
Conjecture 6.3.1 under the assumptions of the theorem. Similarly, we may also deduce
Conjecture 6.3.1 from Conjecture 2.3.1(3). We only need to run the above argument backwards.
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Remark 7.4.2. Instead of the seesaw diagram that has been used in the proof of Theorem 7.1.1,
we may consider the following seesaw diagram.

Mp(2n) x Mp(2n) O(2n +2)

e

Sp(2n) O(2n+1) x O(1)

Then we can go back and forth between Conjecture 2.3.1(3) for Sp(2n) x Mp(2n) and the
Ichino-Tkeda conjecture for SO(2n + 2) x SO(2n + 1).

In particular, if n = 1, then the Ichino—Tkeda conjecture, hence Conjecture 6.3.1 is known.
In this case, without assuming Hypotheses LLC, GLC and O, [Qiul4, Theorem 4.5] proved
Conjecture 2.3.1(3) with [S,||Sx,| replaced by 1. This result is compatible with our conjecture
if we assume Hypotheses LLC, GLC and O.

Remark 7.4.3. Instead of the seesaw diagrams above, we may consider the following.

Mp(2n) x Sp(2n) O(2n+2r+1) Mp(2n) x Mp(2n) O(2n + 2r)
Mp(2n) >§(2n +2r) x O(1) Sp(2n) >§+ 2r — 1) x O(1)

In this way, the Conjecture 2.3.1(3) for tempered representations on Sp(2n) x Mp(2n) will
be related to the Ichino—Ikeda conjecture for nontempered representations. Ichino [Ich05] and
Ichino and Tkeda [I102] made use of the following seesaw diagrams respectively.

SL(2) x SL(2) 0(5) SL(2) x SL(2) 0(6)

> >

SL(2) 0(4) x O(1) SL(2) 0(5) x O(1)

At this moment, there is no precise form of the refined Gan—Gross—Prasad conjecture
for nontempered representations. We hope that Conjecture 2.3.1(3) together with the seesaw
diagrams as above could shed some light on the formulation of this conjecture.

8. Compactibility with the Ichino—Ikeda conjecture: Sp(2n + 2) X Mp(2n)

8.1 The theorem
The goal of this section is to study Conjecture 2.3.1(3) for Sp(2n + 2) x Mp(2n).

Let W be a (2n + 2)-dimensional symplectic space and G = Sp(W). We choose a basis
{e1,. . enq1,€],... e 1} of W so that symplectic form on W is given by the matrix

(")

Let X = (eny1), X* = (e,1) and Wy = (e1,...,en,€],...,¢€5). With this choice of basis, we

rn
identify W with F?"2 and Wy with F?". Let L = {eq,...,e,) ~ F" and L* = (e}, ..., e}) ~ F"™.
Then Wy = L 4+ L* is a complete polarization of Wy. We represent elements in G as matrices.
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Let R = R(Wp) = NGy be the Jacobi group associated to Wy, where N is the unipotent
radical and Gy ~ Sp(Wjy). The group R takes the form

1, ty a b
zr 1 vy &k
1, 'tz ) |c d
1 1
where 2,y € F", k € F and (¢}) € Go. We write the first matrix as n = n(z,y, x). Let Gy =
Mp(Wp) and R = RGy.
Let (V,qv) be a (2n + 2)-dimensional orthogonal space and H = O(V). Let A € F* and
v} € V such that gy (v9,09) = X. Let Vy be the orthogonal complement of (v9) and Hy = O(Vy).
Let wy, be the Weil representation of R(Ar) which is realized on S(A%). Let €y be the
Weil representation of G(Ap) x H(Ap) which is realized on S(V(Ap)"*1). Let (22) be the
Weil representation of Go(Ar) x H(Ar) which is realized on S(V(Ar)™). Let §~2¢ be the Weil
representation of Go(Ap) x Hy(Ap) which is realized on S(Vy(Ar)™). Suppose that ¢ € S(A%)
(respectively ® € S(V"T1(Ar)), respectively ® € S(Vy(Ap)™)). Then we have the theta series
on R(Ar) (respectively G(Ar) x H(AFR), respectively Go(Ar) x Hy(AF))

Oy, (r,¢), respectively ©y(g, h, ®), respectively @)Qp@,h,\,(f).

Let 7 be an irreducible cuspidal tempered automorphic representation of H(Ar). We denote
by ©y () the global theta lifting of 7 to G(AF), i.e. the automorphic representation of G(Ar)
generated by the functions of the form

Ou(f, B)(-) = / FROu( b ®)dh, fem ®eSV(Aar)).
H(F)\H(AF)

Let o be an irreducible cuspidal tempered genuine automorphic representation of CTO(AF) and
Oy (o) be the theta lifting of o to Hy(Ap), i.e. the automorphic representation of Hy(Ap)
generated by the functions of the form

Oy, ®)() = 2(9)04(g,-, ®) dg.

/GO(F)\GO(AF)
THEOREM 8.1.1. Assume that ©y(7) and éw(a) are both cuspidal. If Conjecture 6.3.1 holds
for (mw,0y(0)), then Conjecture 2.3.1(3) holds for (©y(n),o) (with the additive character 1)y ).
In particular, if n = 1, then Conjecture 2.3.1(3) holds for (©y(n),o) (with the additive
character 1y ).

The proof of this theorem will occupy the following four subsections. The last assertion follows
from the fact that the Ichino-Tkeda conjecture is known for SO(4) x SO(3). Thus, Conjecture 6.3.1
holds for O(4) x O(3).

Remark 8.1.2. We do not assume that é¢(0) is not zero. In fact, if é¢(0) is zero, then it follows
from the computation below that both sides of the identity in Conjecture 2.3.1(3) are zero.

Remark 8.1.3. By assumption, there is a v) € V such that gy (v3,v9) = A. If follows from

the computation below that if such a U[))\ does not exist, then both sides of the identity in
Conjecture 2.3.1(3) are zero.
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8.2 Measures

Without saying to the contrary, we always take the Tamagawa measure on the group of adelic
points of an algebraic group. Note that vol A(F)\A(Ap) = 1 where A = G, Go, H, H). Note also
that vol Go(F)\Go(Ar) = 1. Suppose that A = G, Go, H, Hy or Go. We fix a decomposition
dg =[], dgv where dg, is a measure on A(F),) so that for almost all places v, vol K, = 1 where
K, = A(op,) is a hyperspecial maximal compact subgroup of A(F).

LEMMA 8.2.1. Let f € S(V(AF)). Then

/AF </V(AF)f(v)¢(ﬁqv(v,v))dv>w(—Am) dr = /HA(AF)\H(AF) F(h™R) dh. (8.2.1)

Proof. Suppose that V is not a four-dimensional split quadratic space. Then the lemma follows
from the Siegel-Weil formula for SLy xH. Let E(g, q)gcs)) be the Eisenstein series on SLy(Ap)

(s) c IndSL2(AF)

where <I> xv|+|? is the Siegel-Weil section where B is the standard upper triangular

Borel subgroup of SLg. Then the left-hand side of (8.2.1) is the 1)-Fourier coefficient of E(g, ® (S))
at s = sop = n. The right-hand side of (8.2.1) is the ¥)-Fourier coefficient of the theta 1ntegra1

/ 0y (g, h, f)dh
H(F)\H(AF)

where 0y(g, h, f) is the theta series on SLo(Ar) x H(Ap). The lemma then follows from the
(convergent) Siegel-Weil formula

E(qu)ng))‘S:SO _/ 9¢(gvha f) dh
H(F)\H(AF)

Suppose that V is split and dim V' = 4. Without loss of generality, we may assume that A = 1.
Then V is identified with the space of 2 x 2 matrices over F' and the quadratic form is given
by the determinant. We may assume v = 15 € V. Under this identification, Hy(Ap)\H(Ar) is
identified with SLy(Afr) and the quotient measure is identified with the Tamagawa measure on
SLa(Ap). This is because the volume of H(F)H;(Ar)\H(AFr) equals one.

We write an element in V as (§§ %ﬁ) The left-hand side of the desired identity equals

/ f(x1, e, w3, x4)Y(K(x124 — T23) — K) do1 dXg drs day dk.
Ap J Al
By the Fourier inversion formula, it equals

/ f(:c(l] +a1:3,xg + azy, x3,x4) dadxs dzy,
A2 Jap

where (29,23) € A% is a fixed vector of norm one and perpendicular to (z3,z4) under the usual
Euclidean inner product on A%. The choice of (x(l), xg) is not unique, but the above formula does
not depend on the choice. The measure da dxs dzry gives a measure on SLo(A ) which is invariant
under the right multiplication of SLa(Af). It is clear that it gives SLa(F')\ SLa(AFp) volume one,

hence it is the Tamagawa measure on SLa(Afp). The lemma then follows. O
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8.3 Global Fourier—Jacobi periods of theta liftings
The goal of this subsection is to compute

/ / / F)Oy(ng, b, ®)8y, (ng, D)plg) dhdndg.  (83.1)
Go(F)\Go(Ar) JN(F)\N(Ar) JH(F)\H(AF)

The idea of the computation is putting in the definition of the theta series and unfolding the
integrals. The essential step is the identity (8.3.2). In this identity, the summation over rational
points in V' of norm A is replaced by the summation over H)(F)\H(F'). This is the key step
which enable us to unfold the integrals. We divide the computation in several steps.

Step 1. The goal is to unwind the definition of the theta functions.
Suppose that n = n(z,y,k), k € F\Ap, x = (z1,...,2,) € (F\Ap)" and y = (y1,...,Yn) €
(F\Ap)"™. By definition, we have

QiﬁA(nqub) = Z ww,\(g>¢(ll +$1>-"7ln+xn)¢()‘y1(xl +2l1) + - +)\yn(xn+2ln) +)\/€)
liydn€F

Suppose that ® = & ® ®,,; where ®° € S(V(Ar)") and ®,,1 € S(V(Ar)). We have an
H(AFr) x Go(AF) equivariant isomorphism

S(V(Ap)") = S(V(Ap)") ® S(V(AF)),

where the left-hand side is the Weil representation €2y restricted to H(Ap) x Go(Ap) and this
group acts on the first factor via the Weil representation Q?/J and on the second factor via
projection to H(Ar) and multiplication from the left.

Then we have

O(ng, h, ®) = > Q@)@ (o1 4+ 210n11)s - BT (00 + Tnng1))Pga (B onga)

V1yeeeyUnyUn+1 €V

X Y (2y1qv (V1, Vn41) + 4 2Ynqy (Vn, Vng1) + (5 + 4" 2)qv (Vng1, Vng1))-

Therefore,

/ O(ng, h, @)y (k) dk
F\Ap

= > Q0 (9)2°(h (01 + 210n41), - - -, B (Un + Tpvpg1))

v1,...,Un €V
qv (Vn41,Un41)=X

X (I)n-l-l(h_lvn-&-l)w(QQIQV(vl, Un—i—l) +oo 2ynQV(Una Un-I—l) + ytx>‘)‘

From this we get

/ O(ng, h, ®)0,, (ni(g), 6) dn
N(F)\N(AF)

- Z /(F\A 2 Q?p(g)‘bo(h_l(m + ZT1Un41)s -, h_l(un + TnUni1))
F n

V1, Un €V
qv (Un41,Un41)=A
Lyl €F

X (pn-i-l(hilvn-‘rl)w'lﬁ)\ (L(g))d)(ll + T1,--- 7ln + x’ﬂ)/l/} (2y1(QV(/U17 Un—i—l) - ll>\)
+ o+ 2yn(QV(Um UnJrl) - ln>‘)) dzx dy.

119

https://doi.org/10.1112/50010437X16007752 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007752

H. XUE

Recall that if g € Gy, then we define «(g) = (g,1) € Go.

Step 2. This is the key step. We replace the summation over rational points in V' of norm A by
the summation over Hy(F)\H(F).

Let Ay = {v € V | gv(v,v) = A}. Then the group H(F') acts transitively on A)(F') and
identifies Hy(F)\H (F) with A\(F) by h — h~'0{. It follows that

(8.3.1) = / / / f(h)
eV (F\Ap)?™ JGo(F)\Go(Ar) JHA\(F)\H(AF)

U1,.-
l17 7lneF

X Q%(g)@o(h_l(vl +210%), s B (n + 200 @1 (B 0wy, (9)0(1 + 21, - 1y + )

x (2y1(qv (v1,03) — WA) + -+ 205 (qv (vn, ¥3) — 1 \))0(g) dh dg dx dy. (8.3.2)
Then
(8.3.1) = / / / / Fnh)
o1, omeV  (FNAR)?™ S Go(F\Go(Ar) J Hx(Ap)\H(Ar) JHX(F)\Hx(AF)
l1,..,ln€F

x Q0 (g)2O(h ' h vy + arh Y, h T R oy 4 b Y)
X (I)n-Fl(h_lv/O\)w’l[)A (g)(b(ll + 1, .. 7lTL + xTL)
x 1 (2y1 (qv (v1, vf)\) — LA+ 4 2y (qy (vn, vg) —1,N\)p(g) dhy dhdg dx dy.

Step 3. Simplifying the expression. This step is mostly formal.
Integrations over y; yield

(8.3.1) = > / / / /
ey E\AR)™ JGo(FN\Go(Ar) JHA(AR)\H(Ap) J Hy(F)\Hx(Ar)

l1,..ln€F
qv(vz,vx) 1; A\ Vi

x f(hah)Q,(g) @O (W by oy + wih ™R, o R Ry oy 4+ 2k 0Y)
X Op1 (W ) wy, (9)d(l + 1, - . ., 1y + 24)0(g) dhy dh dg da.

The variables v; have to be of the form lw?\ + w; where w; € V). Therefore,

(8.3.1) = Z / / / /
wneVy L FNAR)™ S Go(F)\Go(Ar) JHX(Ap)\H(AR) J HX(F)\Hx(AF)

-----

X f(hAh)Qg(g)¢°(h—1h;1w1 + (I +2)h M8, . R R g + (L + 2)R 1Y)
X @1 (W0 )wy, (9)E( + 21, Iy + 2n)(g) dhy dh dg da.

Thus

(8.3.1) = / / / / TR
wneVy VAR S Go(F)\Go(Ar) JHA(AR)\H(AF) J Hx(F)\Hx(AF)

w1,--
x ()@ (A hy hwn + @R BT Ry g 4 wah )
% By (B0 (@) BT, - )i (g) dha dh g de.
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We define

Y % p(wr, ..., wy) = / O (wy + xlvg, oWy xnv?\)qﬁ(a:l, ey Tp)dxy - dxy,. (8.3.3)
A%
Then ®° x ¢ € S(VA(Ap)").
It is straightforward to check that

Qu(7, 1) (@0 % 6) = (2 (9,12)2°) * (wy, (§)9),  § € Go(Ar), ha € Ha(AF),

where ¢ is the image of g in Go(Ap). With this definition, we have

(8.3.1) = / ( / T8, (. (20, (h)2°) » ¢><hx>dm>q>n+l<h1v2>dh-
Hy(Ap)\H(Ar) \JH)(F)\Hx(AF)

We summarize the above computation in the following lemma.

LEMMA 8.3.1. We have

/ / J, )0y (ng,h, @ © Bni1)0y, (ng, )e(9) dhdn dg
Go(F)\Go(Ar) JN(E)\N(Ar) JH(E)\H(AF)

_ / ( / T8, (. (20, (h)2°) = ¢><hx>dhx)<bnﬂ<h1v§>dh.
Hy(Ap)\H(Ap) \JHx\(F)\Hx\(AFr)

8.4 Local Fourier—Jacobi periods of theta liftings
We now switch to the local situation. We fix a place v of F' and suppress it from all notation. So
F stands for a local field of characteristic zero. We have the local version of all of the previous
objects, e.g. Weil representations, the representations 7, o, and the theta liftings ©(7), ©y(0),
the orbit Ay of v§ under the action of H(F), which is identified with H(F)\H(F), etc. We
denote by B the inner products on various unitary representations.

The goal is to compute

/ / / Br (W], 1)B((ng, h)®, 8)Blan, ()6, &)B(0 (). ) dhdndg, (8.4.1)
Go(F) JN(F) JH(F)

where ® = ®° ® @, 1 with ®° € S(V") and ®,,,1 € S(V).

The computation is parallel to the global computation as given in the previous subsection.
The idea is again to unwind the definition of the Weil representations. The unfolding argument in
the global situation is replaced by several integration formulas in the local case. The computation,
however, is messy and technical. We list the main steps.

(i) Showing that the integral (8.4.1) is absolutely convergent. Thus, we may change the order
of integration.

(ii) Computation of the integral over N (F'), namely,

/ B(y(ng, h)®, ) B, (n1(9))6, @) dn
N(F)

for g € Go(F) and h € H(F'). The goal is to unwind the definition of the Weil representations
and show that this integral equals (8.4.6). The key point in this step is the integral formula
Lemma 8.4.3.
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(iii) Simplifying the results from the previous step. Here we make use of the integration
formula Lemma 8.4.4 which is a variant of the fact that Fourier transform preserves L? norm of
Schwartz functions. The final outcome is a clean expression (8.4.7) of the integral over N (F).

(iv) Computing (8.4.1) using (8.4.7). The final result is summarized in Lemma 8.4.5. This
steps requires no more than making change of variables.

We organize the following computation in the above described steps.

Step 1. Absolute convergence.
LEMMA 8.4.1. The integral (8.4.1) is absolutely convergent.

Proof. In view of Proposition 2.2.1 (the case r = 1), we only need to prove that for some A > 0,
we have

/H(F) E()IB(2y (g, h)®, @) dh < E(9)(1 +<(9))", g € G(F). (8.4.2)

Note that

\ E(hwmmg,h)@,@)dh\ <21 +<(0) geaP),
H(F)

since the left-hand side is a matrix coefficient of a tempered representation.

Even though in general |B(€y (g, h)®, ®)| is not a matrix coefficient of the Weil representation,
we claim that it is dominated by a matrix coefficient of the Weil representation. In fact, by the
Cartan decomposition, we only need to prove this when g = a € Ag and h =05 € A'I;. Then

Buo e < [ jep s de
V(F)n+1

We may find a Schwartz function ®* so that |®| < ®* (pointwise). We have proved the claim
and hence the lemma. O

Step 2. Computing the integral over N(F).
We recall the following well-known lemma.

LEMMA 8.4.2 [Liul6, Lemma 3.18]. There is a unique measure dh on Hy(F)\H(F'), such that
for any f € S(V'), we have

o —-1.0
/V f(v)dv = /F X /H oy TR dh

where dv is the self-dual measure on V and d)\ is the self-dual measure on F'.

For the rest of this section, when we use the notation d to denote a measure on Hy(F)\H (F),
we always mean the measure defined in this lemma.
We need the following integration formula.

LEMMA 8.4.3. Let f € S(V). Then [, f(v)¢(kqy(v,v)) dv is absolutely integrable as a function
of k. Moreover,

/F < /V f(UW(HQV(U,v))dv)w(—)\m) dr = /H o F(h™Y) dh. (8.4.3)
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Proof. The integral [, f(v)y(kqy(v,v))dv equals

() 0)

where @ is the Siegel-Weil section of IndSt2(F) xv|-|® at s = s9p = n. Then by the decomposition

0= 200,

the order of magnitude of [i, f(v)1(kqy (v,v))dv is [£|7"~ when |x| is large. The integrability
then follows.
By Lemma 8.4.2,

/V F)b(rqy (v,0)) dv = /F X ( /H e f(h_lvg,)dh)w(—)\’m) ax’.

Since f is Schwartz, [ Hy (F)\H(F) f(h~Y,) dh is integrable as a function of A and is continuous

on F'*. The lemma then follows from the Fourier inversion formula. O

Thanks to Lemma 8.4.1, we may change the order of integrations in (8.4.1). We integrate
over N(F) first. By definition,

B(Q¢(ngv h)q)v (1)) = / ng(g)(po(hil(vl + !Tlv’n-i-l)’ sy hil(vn + .’L’n’l)n+1))q>0(’l)1, R 7vn)

Vn+1
X 1/1(291(11/(7)17 vn-l—l) + - QynQV(Unv 'Un-l—l) + (H + ytx)QV('Un-l—lv vn-i—l))
X (I)n—i-l(hilvn—&-l)q)n—s—l(vn—i-l) dvy - - dvn—i—l‘

Here n = n(z,y,k) and = = (z1,...,2,) € F™", y = (y1,...,yn) € F", k € F. It follows from
Lemma 8.4.3 that

/ / » Qy(ng, h)®(v1, ..., Un, Vng1)P(V15 - - o, Uny Ung 1 )Y (= AR) dvy - - - dvy, dvgyy di
FJyn

/ / ()0 (h " (o1 + 21h 109+ (v + 200 B or, )
A (FNH(F) Jve

x 1 (2y1qy (v, B 70R) + - 20y (vn, K THOR) + (g1 + - Tnyn) A)
X @1 (K R 10R) @y (W10 doy -+ - doy, dl. (8.4.4)

The integral on the right-hand side is absolutely convergent. In fact, the integrand is bounded
by
C12°vy,. .., v0)Pprr (109,

where C' is a constant which is independent of x and .
By definition,

B(ww)\ (n(:n, Y, 0)§)¢7 ¢) = /F" Wapy (§)¢(l1 +z1,..., l, + :L'n)qs(lla cee aln)

where g € a:).
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We claim that
/ / / | [1B(woy (0, g, 0)5) b, &) o - - - dvn I da dy (8.4.5)
F2n JHN\(F)\H(F) JV™

is convergent, where * stands for the integrand of the right-hand side of (8.4.4). Indeed, this
integral is bounded by the convergent integral

Cx/ / @01, .+ Uny Ong1) Prgr (R0 dwy - - - dvy, dB
(FN\H(F) JV™

x / Blar(n(.y,007)6, 8)| dar dy,
FQTL

where C' is some constant.
Thanks to the convergence of (8.4.5), we can change the order of the integration of x,y € F"™
and h' € Hy(F)\H(F). We end up with

/ B(y(ng, h)®, B)Blan, (n1(9))6, &) dn
N(F)

equals the following integral:

/ ) /2 / / QO YO0 (R (v + 2 1Y), T (w2 T RY)
Hy\(F)\H(F) JF?n n n

X CI)O(’Ul, .. Un
X ¢(2y1QV(v1, WHR) 4 - 4 20y (0, B710R) + (2191 + - 0yn) V)
Xwy, (L(g))o(l + 1, .l F2n) (- L) (= Ay (e 4+ 20) — -+ = Ayn(@n + 21,))

X @1 (B R ) @pr (W100) dly - dly dvy -+ - dvoy dyy -+ - dyp dy -+ - dapdh/. (8.4.6)

Step 3. Simplifying the three inner integrals of (8.4.6).
We need the following integration formula.

LEMMA 8.4.4. Let f be a Schwartz function on V" and ¢ a Schwartz function on F™. Let v° € V
with gy (v°,v%) = X and {v°}* be its orthogonal complement. Then

/ / V(2y1qv (v1,0°) + - 20nqy (Vn, 0°) = 2y1la A — -+ — 2yl )
n n Fn
X f(vr,. . svn)p(1, ... 1) dly -+~ dly dvy - - - dvy dyy - - - dyp,

equals

12X\ / F(0° +wy, . 10 +wn) oIy, ... 1) dly - - - dly, dwy - - - dwy,
{UO}J_)n n

Proof. Let fand $ be the Fourier transform of f and ¢ respectively (with respect to ). Then
the first integral in the lemma equals

f(2y1'l)0, ceey 2ynv0)$(2y1)\7 R 72%)\) dyl te dyn
Fn

The lemma then follows from the fact that the Fourier transform preserves the inner product of
Schwartz functions. O
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Applying this lemma, we see that

Inner three integrals of (8.4.6)
=[2)|]” "/ / / QO YOO (R " wy + 10 4+ 210Y), ..o, RN T (wy + 1l + 2,0Y))

x B0 (wn + L], w - L o) g, ((9) G+ a1, )b L)
x dwy -+ -dwpdly---dl, dzy -+ - dxy,

This integral is absolutely convergent. We then make change of variables x; — x; — l;. Then
Inner three integrals of (8.4.6)
= [2A]” "/ / / QO YOO (R T (wy + 210%), . AT T (w4 2n0d)

X ®O(W =1 (wy + 110Y), ..., W= (wy + 1,0]))
X wy, (L(9))P(x1, - 2n)d(ls - lp) dly -+ - dly dwy - - - dwy, day - - - dey,.

We define a local analogue of (8.3.3), i.e
PO o(v1,...,v,) = / <I>O(vl + :Blvg, B $nv?\)¢($1, ey Tp) dxy e dXy,.
Then ¢° % ¢ € S(V{") and

(7,7 ) (8% % 6) = (20, (g, ha)2°) * (wy, (9)0),  § € Go(F), hy € HA(F),

where ¢ is the image of g in Go(F).
We conclude that

(8:4.6) = I2A|_n/ B2 (g, W) ® # wy, (9)9, Uy () @ + )
HA(F)\H(F)

X @1 (W R 1)@ q (W—100) 1. (8.4.7)

Step 4. Computing (8.4.1) using (8.4.7).

Recall that we have fixed a measure on H(F') and Hy(F), respectively. Let dh’ be the quotient
measure on Hy(F)\H(F) and ¢ a constant so that ¢ - dh’ = dh/ where dh’ is the measure on
H)\(F)\H(F) defined in Lemma 8.4.2. Then we get

4D =co 24" | . || BRI DBl )¢ o)BO% 0. 11D o, (516, 200 )

Go
X Bt (W T10R) @y (W 10R) dg dhdl.

We make a change of variable h — h'~'h and get

(8.4.1) = c- 22" / /H o B (W) f, 7)) )B(o(9)e, )B (20 (g, h)

X B % wy, (9)¢, (1) * §)
X ®py1(h70R) @y (W ~108) dg dh dh’.
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The group H) embeds in H x H diagonally. This integral is absolutely convergent.
We further split the integration over h as hyh where hy € Hy and h € Hy\H. Then

(8.4.1) =c-|2A|™ /(H \H)2/H ; B(w(hah) f,m(1') f)B(o(9)e, ¢)

x B(Qy(g, ha ) (Q% ()@ % 8), (A, (W)® % )Py 1 (B 08) By 1 (W~ 10Y) dg dhy db dh.

We summarize the above computation into the following lemma.

LEMMA 8.4.5. Suppose ® = ®° @ ®,, .1 where ®° € S(V") and ®,,,1 € S(V). Then

[ BT DBng. b, 8B, (19)0, B(o(9). ) ddn dg
Go(F) JN(F) JH(F)

—c. -n . O 0 s 0(W\D % &
—epa [ [ (] B 00B@u G @008 +5), (0500)845) do

x B(hah) f, 7 (B) ) i1 (h 0@y 1 (W —100) dhy dh .

8.5 Proof of Theorem 8.1.1
By Lemma 8.3.1, we have

I FT 40 (Ou(f, @), 0,9)° = // ® i1 (™ 09) @yt (W10
(Hx(Ap)\H(AF))?

x ( / TR 8,7, (2 (1)) ) (hy) d@)
Hy\(F)\Hx(AFr)

“(/ U184 5. ()29) = )6 i)
HA(F)\H\(AF)

We fix a sufficiently large finite set of places S of F' so that if v &€ S, then the following
conditions hold:
(i) v is non-archimedean, 2 and A are in olfﬂ’v, the conductor of 9 is 05 ;

(ii) the group A is unramified with a hyperspecial maximal compact subgroup K4, = A(ofpy)
where A = G, Gy, H, Hy;

(iii) f, and ¢, are Kp, and Kg,, fixed respectively; moreover, they are normalized so that
B(fu, fv) = B(¢w, pu) = 1; in particular, m, and o, are both unramified;

(iv) @, is the characteristic function of V(op,)"*1, ¢, is the characteristic function of 0%y

(v) the volume of the hyperspecial maximal compact subgroup K4, is 1 under the chosen
measure on A(F,), where A = G, Gy, H, Hy.

LEMMA 8.5.1. Ifv & S, then ¢, = L,(n + 1,xv,)~!. Recall that dh, = c, - dhy o\ dh, where dh,
is the measure defined in Lemma 8.4.2.

Proof. We denote temporarily by f, the characteristic function of V(0x,). Recall from the proof
of Lemma 8.4.3 that

/ = [ o (L) (1)) s
Hy(Fy)\H(Fy) Fy B

where ®% is the Siegel-Weil section of IndSt2(F) x| |5 at s = 59 = n. It is well-known that
the right-hand side equals L,(n + 1, xy,) " .
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We note that since A € oy, the orbit Ay of v?\ is defined over op,. The group H(or,)
acts transitively on Vy(op,). Therefore, Hy(opy)\H(0py,) = Ax(0ry) is a bijection. Thus,
fo(h™ 1Y) = 1HA(0F,U)\H(0F,v)(h)' Therefore, under the quotient measure dhy ,,\ dhy, the left-hand
side equals one. The lemma then follows. O

LEMMA 8.5.2. We have

H Cy = Ls(n + 17XV)'
veES

Proof. 1t follows from Lemma 8.2.1 that [[, ¢, = 1. Then

1_‘[61,—1_[0_1 L5(n+1,xv). O

veS vgS

Conjecture 6.3.1, the Rallis’ inner product formula (for theta lifting from CTO to H)) and
Lemma 8.4.5 lead to

9 271 LS( T X @w( o))

‘STrHSéw(U)‘LS(l,T(‘ Ad)LS(l @dj( ) Ad)

A Ly, (é,axxw / / /
HO T2 GE(29) S Go(Fy) IN(F) JH(F)

ve

XB ( ( )fvvf’U) (Qwv(hvanvgv)q)vaq)’u)
X Bv (w¢A,u (nvgv)¢v7 ¢U)BU(UU (QU)QDM (Pv) dhv dnv dgw

where v is described as in Conjecture 6.3.1.

We then apply the Rallis inner product formula for the theta lifting from H to G. We conclude
that

F Ty, (&, )
s LS(3,m % 0,(0))
1571155, ()| LS (1,7, Ad)LS (1, Oy(0), Ad)
XA%.Li(é,axXVA)( L3(1, )
1= ¢2(25) \ITim CR(20) LS (n+ 1, xv)

/ / Bo(©, (1) (10g0)Eu £0) Bol@mn . (1090 s G0 Bo(00(00) 00 00) it g,
Go(Fy) JN(Fy)

| FT Oy (f, @), 0, 9)

—1
) L5(n+1,x0)"!

veES

where £ = @& € Oy(m). Note that |Sr|[Sg (g\ = 27*1\5’@“”)“5’0\ by Lemma 5.2.3.
Conjecture 2.3.1(3) then follows from Lemma 5.2. 2

8.6 A variant
So far we considered the case Sp(2n + 2) x Mp(2n). The case Mp(2n + 2) x Sp(2n) is similar.
We only mention the following theorem.

Let (V,qv) be a (2n+ 3)-dimensional orthogonal space and H = O(V'). Suppose that A € F'*
and there is an element v§ € V such that gy (v,v]) = X. Let V) be the orthogonal complement
of v§ and Hy = O(V)). Let 7 be an irreducible cuspidal tempered automorphic representation
of H(Ar) and ©y(7) its theta lift to Mp(2n + 2)(Ap) (with additive character ¢). Let o be
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an irreducible cuspidal tempered automorphic representation of Sp(2n)(Ar) and © (o) its theta
lift to Hy(Af).

THEOREM 8.6.1. Suppose that Oy (m) and ©y (o) are both cuspidal. If Conjecture 6.3.1 holds for
(m,04(0)), then Conjecture 2.3.1(3) holds for (©4(m),o) (with the additive character 1y ).

The proof of Theorem 8.6.1 is analogues to Theorem 8.1.1 and we leave the details to the
interested reader.
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