
JFP 17 (3): 353–386, 2007. c© 2007 Cambridge University Press

doi:10.1017/S0956796806006174 First published online 4 January 2007 Printed in the United Kingdom

353

An object-oriented calculus
with term constraints

GÁBOR M. SURÁNYI

Budapest University of Technology and Economics, H–1117 Budapest, Hungary

(e-mail: gabor.suranyi@db.bme.hu)

Abstract

Safety has become a fundamental requirement in all aspects of computer systems. Object-

oriented calculi, such as Castagna’s λ&-calculus and its variants (Castagna, 1997) ensure type

safety in environments based on the distinguished object-oriented paradigm. Although for

safety reasons object invariance and operation specifications are getting widely employed in all

stages of the engineering process, they are not supported by these calculi. In this paper, a new

calculus is presented which supports term (value) constraints besides the key object-oriented

mechanisms (class types, inheritance, overloading with multiple dispatch and late binding).

We also show how a type with constraints may realise a role, another useful object-oriented

modelling element. The soundness of the type system and the confluence of the notion of

reduction of the calculus are considered. The contribution also discusses computability issues

partially arising from the use of first-order logic to formalise the constraints.

1 Introduction

1.1 Object-Oriented Constraint Specifications

Safety-aware design and implementation are no longer the privilege of mission-

critical computer software. Methodologies ensuring the development of correct pro-

grams and methods proving program correctness are generally employed, especially

when computer networks are involved.

Although object-orientation had turned out to be powerful to capture real-world

scenarios, it was realised that the paradigm needs to be extended to deal with

constraints describing object invariants and/or pre- and postconditions of message

processing (OCL, 2003). This feature is in turn a great aid in pursuing the avoidance

of design flaws and the elimination of implementation errors. Earlier, users in general

used not to be particularly aware of hidden attributes of software including defects,

but nowadays secureness, whose existence and absence are both inherently hidden

properties, is a prerequisite to customer satisfaction. Therefore, computer engineers

ought to use any technique which helps to reach this objective.

1.2 State-Based Roles

Roles (sometimes also referred to as dynamic or virtual classes) are nowadays

widely-used modelling elements of object-oriented analysis and design (UML, 2003;

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

354 G. M. Surányi

Li, 2004). They are especially fundamental in systems with long lifespan, such as

databases (Rundensteiner, 1992; Papazoglou & Krämer, 1997).

The fact that an object instance plays a role is often expressed by the existence of a

‘dynamic object’ or a ‘role object’, which is created and destroyed as needed (Gottlob

et al., 1996; Li, 2004). This approach, however, has a drawback: whether an object

takes on a role or not is often not independent of the object state (field values

and links to other objects). As a consequence, when a new role is introduced, all

non-observer operations have to be revised. Ultimately, this forbids great dynamism

in the number of roles.

Most works dealing with roles and types mention that these notions are close to

each other. In fact, the notion of type used in functional programming can cover

roles as well (Ghelli, 2002). If a role type is state based, i.e. it describes constraints

on the value domain, the typing relation can substitute role objects. This is beneficial

as role membership can automatically be maintained by the system and new role

types do not affect existing methods.

1.3 Overview of the area of functional calculi

The fundamental purpose of type systems is to prevent the occurrence of errors

during the execution of programs (Cardelli, 2004) merely by analysing their code.

Hence, these systems can act as a tool to prove partial correctness also w.r.t. security

requirements and state-based roles. Formal type systems are designed for various

forms of the λ-calculus which nowadays incorporate constructs to handle the object-

oriented phenomena such as inheritance, late binding, polymorphism etc. These

issues were initially tackled by introducing the subtyping relation and record types

(Wand, 1987; Cardelli, 1988). Later, higher-order calculi such as F≤ (Curien &

Ghelli, 1992) were invented to describe type-preserving functions and bounded

polymorphism. A foundation for objects with explicitly designated roles is given

in Ghelli (2002). Consequently, object-oriented calculi provide all apparatus for type

checking w.r.t. the essential object-oriented features.

Unfortunately, there is currently no type system which is capable of ensuring

error-free operation w.r.t. additional value constraints set forth by object invariance,

operation and arbitrary state-based role specifications. In the current paper, we

thus propose a new calculus which gives a typed foundation to the basic features

of object-oriented programming (i.e. classes, inheritance, overloading with multiple

dispatch1 and late binding) along with value constraints. We have chosen λ&-

calculus (Castagna, 1997) as the basis of our work, because variants of λ&

incorporate all vital object-oriented features including type-preserving functions,

bounded polymorphism as well as multiple dispatch, and similar techniques may be

applied to our results to gain a full-fledged object-oriented calculus. We call our

calculus λ&�, where � stands for constraints.

1 Multiple dispatch means that method selection is based on taking into account types of all arguments,
not only the type of the receiver of the message.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 355

Besides type systems, there are several other approaches to proving correctness

of algorithms. Most of them are direct descendants of the method proposed by

Hoare in his famous article (Hoare, 1969), and enriched with object-oriented

features (Poetzsch-Heffter & Müller, 1998; de Boer, 1999). For this reason they

are able to express constraints on objects and operations. However, a significant

disadvantage of these techniques is that they do not really distinguish between

classes and types (i.e. a collection of required properties) since they concentrate

on concrete object-oriented languages with fixed type interpretations. This limits

the applicability of the results to certain object-oriented systems. On the contrary,

λ&� is adaptable to any object-oriented modelling environment including ones with

higher-order features. We plan to base the type and role system of our deductive

object-oriented database (Kardkovács & Surányi, 2004) on λ&�.
The rest of the paper is organised as follows. The next section introduces the

notational conventions of the contribution and the syntactical elements of the

calculus including types, terms, the subtyping relation and the type system. Section 3

deals with various properties of the calculus. Practical aspects of the calculus

such as computability, expressive power and specification-independent semantics are

considered in Section 4. Although small examples are scattered around the paper

to illustrate the new concepts, in a separate section a real-life scenario shows our

calculus in action. Section 6 gives outlook and concludes the paper. The proofs of

the theorems are presented in Appendix A. Appendix B shows how the notion of

role presented in Ghelli (2002) translates into λ&�.

2 Syntax of the λ&�-calculus

To begin with, we formally define the calculus. We make use of the following

notation throughout the paper:

• Γ is a type environment,

• A, B denote atomic types,

• R, S , T denote sorts (see later),

• U, V , W , X, Y denote (pre-)types,

• Θ, Φ, Ψ denote formula sets,

• M, N denote terms,

• I , J denote sets of indices and

• i, j, k, l, n are indices,

• x, y, z are variables.

These letters may also occur with indices. Moreover, we have the following symbols:

• � signifies type entailment,

• � is the logical derivability symbol,

• = (�=) is the symbol of (in)equality in our logical language as well as in the

meta-language, and

• ≡ (�≡) denotes syntactic (in)equality.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

356 G. M. Surányi

In this paper, ∧ is frequently used as a unary symbol which creates a single

formula from the elements of the formula set by joining them with the ordinary ∧
connective. However, the symbols ¬, ∨ and ⇒ retain their traditional use: they are

respectively the logical negation and the binary logical connectives of disjunction

and implication. ∀ and ∃ are, as usual, quantifiers, but the variables to quantify may

be omitted if they apply to all open variables of the formula. At last, ⊆ and ∅ are

the common symbols of the subset relation and the empty set.

2.1 Sorts and pre-types

λ&-calculus distinguishes pre-types and types: overloaded function pre-types (and

any further pre-type based on them) which do not fulfil special consistency criteria

are not considered as types. We also make this distinction (see Section 2.3) to allow

the consistent application of reduction rules (that will be introduced in Section 3.1).

However, according to our goal we need to introduce constraints. That is PreTypes

of our calculus are:

V ::= xA/Θ | (xV→yV)/Θ | {(x1
V→y1

V)/Θ1, . . . , (xnV→ynV)/Θn}/Θ,

where Θ is a set of first-order well-formed formulae, the constraints. The last

construction is the notation for types of overloaded functions with n branches. A

pre-type without its outermost constraint set is called a sort. (This corresponds to the

left side of the outermost / symbol in the pre-type.) Note that in this terminology,

atomic types are actually not types, only sorts. We have retained their original

terminology, however, to be coherent with other calculi.

Well-formed formulae of the constraint sets are built from atomic formulae with

the standard logical connectives and quantifiers. Each free variable of a constraint

formula must appear as a lower-left index of an atomic type or a function pre-type

in the sort to which the formula belongs. As suggested and will be introduced

later in the type system, each of these variables refers to the part of the pre-type

expression which it marks. As a consequence, these index variables must all be

different within each sort. To ease reading, we will omit the lower-left indices if they

are not referenced or the constraint set is designated only by a symbol.

The actual set of predicate and function symbols can be freely chosen and are

usually determined by the application domain, i.e. by the pre-types. (But for technical

reasons, function symbols except constants may be disallowed, see Section 4.1.4.) A

few predicate symbols, namely for each atomic type a unary symbol must be defined,

however. Their semantics are that the parameter is of that type (i.e. an element of

the domain of that type) and they serve the purpose of separating the theories of

the atomic types, as explained later.

Two special operations are interpreted on constraint sets:

1. Θ̇ is the set of free variables in Θ.

2. Θ̂ is a set of open, atomic formulae of the form

type(x),

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 357

〈A,B〉 ∈ R
A/Θ≤B/Θ

VM [taut]

U≤V V≤W

U≤W
[trans]

� ∀ ∧ (Θ̂ ∪ Θ) ⇒ Φ

S/Θ≤S/Φ
VM [�]

U2≤U1 V1≤V2

(U1→V1)/Θ≤(U2→V2)/Θ
VM [→]

I ⊆ J ∀i∈I (Ui→Vi)/Φi≤(Xi→Yi)/Θi

{(Uj→Vj)/Φj}j∈J/Θ≤{(Xi→Yi)/Θi}i∈I/Θ
VM [{}]

Fig. 1. Subtyping rules.

where x ∈ Θ̇ and type is the unary predicate symbol for the atomic type

indexed by x in S/Θ.

Example 1

Assuming int is the atomic type of integer numbers, xint/{x>0} is the type of

positive integers with the usual greater than relation. Provided that Θ = {x>0}, the

following equalities hold: Θ̇ = {x} and Θ̂ = {int(x)}.

Example 2

Now let us consider a (curried) function which adds an integer to a set. This function

then may have the type

(xset/∅→(int/∅→ zset/∅)/∅)/{size(z)>size(x) ∨ size(z)=size(x)},

where size is a symbol of a function returning the size of a collection. Alternatively,

(xset/∅→(int/∅→ zset/∅)/∅)/{∀xl∀zl (size(x, xl) ∧ size(z, zl)) ⇒ (zl>xl ∨ zl=xl)},

or

(xset/∅→(int/∅→ zset/∅)/∅)/{∃xl∃zl (size(x, xl) ∧ size(z, zl)) ∧ (zl>xl ∨ zl=xl)},

may type the function, if size is a symbol of a binary predicate which is true if and

only if the size of the first argument equals to the second argument.

2.2 Subtyping

Assuming there exists a partial order R on atomic types (i.e. 〈A,B〉 ∈ R means

the atomic type A is a subtype of the atomic type B), the subtyping relation (≤) is

defined for pre-types by the rules depicted in Fig. 1.

There are three points to comment on regarding these rules. First, in all cases

marked with VM a special condition must hold between the pre-types compared

in the consequent. VM is a symmetric binary relation; its formal definition is given

below.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

358 G. M. Surányi

Definition 1 (Variable Match of pre-types)

• VM(xA/Θ, xB/Φ) is always true,

• VM((U1→V1)/Θ, (U2→V2)/Φ) holds if VM(U1, U2) and VM(V1, V2),

• VM({(Ui→Vi)/Φi}i∈I/Φ, {(Xi→Yi)/Θi}i∈I/Θ) holds if for all i∈I

VM((Ui→Vi)/Φi, (Xi→Yi)/Θi).

A standard technique of logic called substitution of free variables permits replacing

variables with other variables in pre-types as long as the replacing variable does not

previously exist in the formula set. This means that the notation VM rather imposes

syntactic conditions on its arguments and therefore appears as a side-condition.

Second, rule [�] is responsible for reflexivity, and expresses the trivial expectation

that a (pre-)type enforcing ‘stricter’ rules is a subtype of another. As first-order logic

is sound and complete, everything deducible is true and conversely. To be able to

deduce true formulae, however, proper axioms which formalise the properties of

predicates and functions used for formula construction are needed. Axioms as well

as the formulae to prove make use of the unary predicate symbols to specify the

domains from which the variables take their values. In rule [�] the formula set with

a hat specifies the domains of variables.

Third, the rest of the rules are straightforward extensions of the traditional ones

but rule [{}] is noteworthy. Actually, the similar rule of λ& is defined as

∀i∈I ∃j∈J (Uj→Vj)≤(Xi→Yi)

{Uj→Vj}j∈J≤{Xi→Yi}i∈I ,
[{}λ&]

i.e. an overloaded function (pre-)type is subtype of another overloaded function

(pre-)type if there is an element in the former which is subtype of the latter. In

contrast to this, if we disregard the constraint sets, rule [{}] requires that the

(pre-)types of each branch of the overloaded function (pre-)type on the right side

have a separate branch with subtype on the left. It is, however, not a significant

restriction in our opinion as only rather sophisticated and rare scenarios involving

manipulation of arguments of an overloaded function (pre-)type exploit the flexibility

offered by the more general rule. We opted for this less general rule as in this

way definitions of VM and subtyping can be decoupled, which results in clearer

presentation. There is no theoretical hurdle which would prevent combining the two

definitions.

Example 3

One intuitively expects that the pre-types xint/{x>0} and yint/{y>0} are equivalent

(i.e. subtypes of each other). In fact, this is easily provable with the rule [�]. Clearly,

similar equivalence holds between any two pre-types which differ only in their

variables.

Example 4

Based on the subtyping rules, if all integers are real numbers, i.e. 〈int, real〉 ∈ R, it

is provable that positive integers are positive real numbers, i.e.

xint/{x>0}≤ yreal/{y>0}

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 359

holds.

Since 〈int, real〉 ∈ R holds, with rule [taut] one gains

xint/{x>0}≤ xreal/{x>0}.

The latter relationship is equivalent to

xint/{x>0}≤ yreal/{y>0}

as only x is substituted with y on the right side.

2.3 Types

As mentioned before, consistency criteria are enforced on types. We do not impose

any new requirement compared to λ&-calculus, i.e. types in λ&� are defined by

induction on the shape of the pre-type as follows.

Definition 2 (Types)

1. A/Θ ∈ Types,

2. if V1, V2 ∈ Types then (V1→V2)/Θ ∈ Types,

3. {(Ui→Vi)/Θi}i∈I/Θ ∈ Types if for all i, j ∈ I

(a) (Ui→Vi)/Θi ∈ Types and

(b) Ui≤Uj ⇒ Vi≤Vj and

(c) for every U maximal element in the set of common lower bounds of Ui and

Uj , there exists a unique h ∈ I such that Uh is contained by the equivalence

class of U.

Point 3b is the formalisation of the object-oriented notion called function (here:

branch) specialisation. Point 3c ensures that an unambiguous most specific branch

to select always exists.

Example 5

It may be helpful to illustrate the necessity of the last condition. Let

oldsmobile/∅≤car/∅,

oldsmobile/∅≤oldtimer/∅
and

{car/∅ → y1
real/{y1�0},

oldtimer/∅ → y2
real/{y2�0}}/Θ

be the pre-type of an overloaded function to calculate the tax payable by the owners

of various types of vehicles each year (where � denotes the usual greater than or

equal to relation). Then it is not clear which branch applies to an oldsmobile/∅.

Formally, the above pre-type is not accepted as a type because it does not meet the

last condition of types.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

360 G. M. Surányi

Γ � x : Γ(x) [tautx]

Γ � c : xT/{x=c} [tautc]

Γ � ε : {}/∅ [tautε]

Γ � M : U≤V

Γ � M : V
[subsumption]

Γ, (x : U) � M : V

Γ � λxU.M : (U→V)/∅ [→ intro]

Γ � M : (U→V)/Θ Γ � N : U

Γ � M·N : V
[→ elim]

Γ � M : {(Ui→Vi)/Θi}i∈I/Θ Γ � N : Uj

Γ � M•N : Vj

[{} elim]

Γ � M : W≤{Ui}i�n−1/Θ Γ � N : Un

Γ � (M&{Ui}i�n/Θ∪ΦnN) : {Ui}i�n/Θ∪Φn

∀j∀k Φ̇j∩Φ̇k = ∅ Ul ≡ (Vl→Sl/Φl)/Θl [{} intro]

Fig. 2. Type system rules.

2.4 Terms

λ&�-calculus has exactly the same terms as λ&. This means that we have the

following Terms:

M ::= x | c | λxV.M | M·M | ε | M&VM | M•M

where c denotes generic constants and V ∈ Types. The first part of the terms

is well-known from typed λ-calculus. The last three terms are the constant for

the empty overloaded function, overloaded function construction and overloaded

function application respectively. The symbol & in overloaded functions, as in λ&,

has to be annotated by a type. Just as in λ&, it assures the soundness of the calculus

since it is not affected by term reduction; see Section 3.1.

2.5 Type System

In Fig. 2 we precisely define the typing relation, which is denoted by the symbol : .

The notation Γ � M : V≤U is used as a shorthand for the conjunction Γ � M : V

and V≤U.

As the type system is a crucial part of the calculus and in consequence of

improvements substantially differs from the one of λ&, we pay special attention

to its explanation. The first important property is that the type system does not

specify unique typing (w.r.t. equivalence classes) for terms but rather employs rule

[subsumption]. This fact also affects the rules dealing with overloaded functions;

apart from the constraint sets they have simpler forms than in λ&-calculus.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 361

The rest of the changes are due to the introduction of constraints. Rule [tautc]

makes constants fully usable as terms by specifying that they are equal to the

corresponding constants in the logical language.

There are modifications in the function introduction rules, too. Obviously, when

typing a λ-abstraction the type (not only the sort) of the input variable has to be

recorded in the type environment. The type of the abstraction is straightforward

up to the constraint set, which is empty. The constraint set could describe the

connection between the parameters and the result of the function (see Example 2).

By the restriction, this feature is deliberately excluded from the current version of

the calculus, as conditions which must hold when functions are invoked and the

results are delivered (unrelated pre- and postconditions) can adequately be expressed

in this way as well.

Typing an overloaded function works in a similar way. To outermost constraint set

could keep track of all constraints among all elements of the overloaded function

type, however, currently only the constraints on elements of the return types of

the member function types are recorded there as this suffices to represent object

invariants (see Section 4.3.1). Obviously, variables have to unambiguously identify

parts of the overloaded function. This is ensured by the intersection condition on

the dotted formula sets.

3 Semantics of the λ&�-calculus

3.1 Operational Semantics

We define substitutions on the terms before giving the operational semantics of λ&�
by the reduction relation.

Definition 3 (Term substitution)

The term M[x:=N] is defined by induction as follows.

• x[x:=N] = N

• y[x:=N] = y if y �≡ x

• ε[x:=N] = ε

• (λx.M ′)[x:=N] = λx.M ′

• (λy.M ′)[x:=N] = λy.(M ′[x:=N]) if y is not free in N

• (P&UQ)[x:=N] = ((P [x:=N])&U(Q[x:=N]))

• (P · Q)[x:=N] = (P [x:=N]) · (Q[x:=N])

• (P • Q)[x:=N] = (P [x:=N]) • (Q[x:=N])

Definition 4 (Reduction)

The one-step reduction relation (�) is defined by the following rules and can be

applied to terms in any context (where contexts are defined in the standard way).

(Non-overloaded) function application

λxV.M · N �M[x:=N] (β)

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

362 G. M. Surányi

Overloaded function application If N is closed and irreducible, let

U ∈ {U ′|Γ � N : U ′ ∧ ∀VΓ � N : V ⇒ U ′≤V }

and

Uj = min
i

{Ui|U≤Ui}

then

(M1&
{(Ui→Vi)/Θi}i=1,...,n/ΘM2) • N �

{
M1 • N, for j<n

M2 · N, for j=n
(β&)

The reduction relation (�∗) is the reflexive and transitive closure of �. Symbol �β&

denotes a single reduction step performed via rule (β&).

The intuitive, operational meaning of rule (β&) is easily understood when looking

at the simple case, i.e. when there are as many branches as arrows in the overloaded

type. In this case, under the assumptions in the rule:

(ε&{(U1→V1)/Θ1}/Φ1M1&
{(Ui→Vi)/Θi}i=1,2/Φ2 . . .&{(Ui→Vi)/Θi}i=1,...,n/ΘMn) • N �∗

�∗Mj · N.

However, in general, the number of branches of the overloaded function may differ

from the number of arrows in the overloaded type. This is because an overloaded

function could begin with an application or with a variable, accounting for an

initial segment of the overloaded type, and because of the subtyping relation used

in rule [{} intro].

Clearly, the argument of an overloaded function must not be open or reducible

since the system would not be confluent then (the type of an open or reducible

argument can be different in different phases of the computation). In contrast to

λ&, the reason for the sophistication of rule (β&) is that the most specific branch

(existence of which is guaranteed by type condition 3c, see Definition 2) is to be

selected.

Example 6 (cont.)

After defining the reduction relation, we can demonstrate with the following scenario

what consequences it would have to omit type annotations at the & symbols. To this

end, let us assume that they would not be enforced. This implies that rule (β&) could

only be based on the current deducible types of the overloaded function members.

In order to avoid clogging the formulae, now car, oldtimer and oldsmobile denote

types not just sorts and nnreal is the type of non-negative real numbers. Let the

symbols ctax and ttax denote functions that have been used to calculate the annual

tax for simple cars and any oldtimer respectively. After a reform in taxation the

term

ε &

ctax &

λx(oldtimer→nnreal)/∅.0 &

(λx(oldsmobile→nnreal)/∅.x) ·ttax

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 363

could be the overloaded function to calculate the tax for any vehicle. It expresses

that now oldtimers are tax free. The term would be well-typed and have the type

{ (car→nnreal)/∅,
(oldtimer→nnreal)/∅,
(oldsmobile→nnreal)/∅ }/Θ.

The actual outermost constraint set has no influence on the outcome of this

reasoning, therefore it is only designated by a symbol throughout this example.

By β-reducing the last member of the overloaded function the above term would

become

ε & ctax & λx(oldtimer→nnreal)/∅.0 & ttax.

This would have the pre-type

{ (car→real)/∅,
(oldtimer→nnreal)/∅,
(oldtimer→nnreal)/∅ }/Θ′

which is not a valid type because of condition 3c of Definition 2. Realising this, one

would look for another pre-type which

• is in fact a type,

• is a subtype of the former pre-type so that rule [subsumption] entails for the

term the same type as before the reduction,

• has 3 branches so that rule (β&) then results in the selection of the same

non-overloaded function as before the β-reduction.

There is no such pre-type according to condition 3c of Definition 2 and rules [{}]
and [→] in this case, however, as there is no greater type than car or oldtimer. That

is, a well-typed overloaded function without type annotations at the & symbols

could be reduced to an term which is ill typed.

Note that even a more liberal subtyping rule for overloaded function types, which

is similar to [{}λ&], would not eliminate the problem. Then an overloaded function

type would have to be found which

• consists of three function types for rule (β&) for the same reason as above,

• contains function types which

— are subtypes of the branches of the above pre-type (according to the

subtyping rule for overloaded function types),

— are supertypes of the types of the corresponding branches of the reduced

term (so that non-overloaded function application would select them with

appropriate arguments).

That is, either

{ (car→real)/∅,
(oldtimer→nnreal)/∅,
(oldsmobile→nnreal)/∅ }/Θ′′

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

364 G. M. Surányi

or

{ (car→real)/∅,
(oldsmobile→nnreal)/∅,

(oldtimer→nnreal)/∅ }/Θ′′′

could type the reduced term, but if the overloaded function were applied to an

oldtimer, for example, they would be reduced to different terms (0 and ttax,

respectively). That is, the calculus would not be confluent.

3.2 Properties of the reduction relation

A calculus must possess both soundness and confluence properties to be useful.2 In

this section the relevant theorems of λ&�-calculus are enumerated; the proofs can

be found in Sections A.1 and A.2.

Theorem 1 (Soundness aka subject reduction)

If Γ � M : V and M �∗ N then Γ � N : V .

Theorem 2 (Confluence of the notion of reduction)

The notion of reduction of λ&�-calculus, which consists of rules (β) and (β&), is

confluent. That is, for all M, M1, M2 whenever M �∗ M1 and M �∗ M2, there exists

M3 such that M1 �
∗ M3 and M2 �

∗ M3.

4 Practical aspects of λ&�-calculus

Now we have a new formalism and the question naturally arises how it can be

used to design and build more robust object-oriented algorithms and systems. This

section is devoted to answer this.

4.1 Computability issues

4.1.1 Concerning the subtyping relation

Subtyping plays a central role in the object-oriented paradigm. It is therefore

important to be able to decide for each pair of types whether one is a subtype of

the other. Unfortunately, the subtyping relation in its current form does not really

support this as because of rules [trans], [�] there can be multiple options how

to proceed with the decision. As usual, it can be proved, however, that a proper

equivalent subtyping relation exists.

2 One may consider strong normalisation an important property, too. However, plain λ&� is not strongly
normalising for the same reason as plain λ& (Castagna, 1997). Simple solutions based on a term
ranking technique which can be applied to both calculi to eliminate this flaw are also presented in
Castagna (1997).

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 365

Theorem 3

U≤V if and only if U � V where � is defined by the rules of ≤ but replacing

[trans] with

S/Θ≤S/Φ S/Φ≤T/Φ

S/Θ≤T/Φ
S �≡ T and Θ �= Φ [trans′]

and [�] with

� ∀ ∧ (Θ̂ ∪ Θ) ⇒ Φ

S/Θ≤S/Φ
Θ �= Φ [�′]

Section A.3 contains the corresponding proof.

4.1.2 About pre-types and types

Definition 2 is based on a maximal element of the common lower bounds of

two (already known) types, denoted by Ui and Uj in part 3c of the definition.

The computability of such an element is not straightforward in the presence of

constraints. However, provided that Ui ≡ Ri/Θi, Uj ≡ Rj/Θj and VM(Ui,Uj), after

computing the sort part of the desired element, S , one has just to unify Θi and Θj ,

and find the element whose type is equivalent to S/Θi∪Θj .

Types are not required to be consistent concerning their constraint set, i.e. the

set may be unsatisfiable. This means, there can be types which cannot type any

term. This is impractical as such types indicate modelling error and consume system

resources without any advantage. So do functions which take terms of inconsistent

types as input. Lastly, condition 3c of Definition 2 may need an inconsistent branch

(a function which is never invoked because no argument can satisfy the constraints

specified for the input of the function) in an overloaded function pre-type.

Example 7

The pre-type

{ (x1
real/{x1>0}→real/∅)/∅,

(x2
real/{0>x2}→real/∅)/∅ }/∅

is not considered as a type. The reason is that because of condition 3c of Definition 2,

there must be a branch which accept values of type xreal/{x>0} ∪ {0>x} but no

branch typed

(x3
real/{x3>0, 0>x3}→V)/Θ

is present in the overloaded function pre-type. Note that according to the usual

interpretation of relation >, no real number can be greater than 0 and less than 0

at the same time, i.e. the required branch is inconsistent.

To avoid the aforementioned situations, consistency may be enforced on all types,

and condition 3c in the definition of types can be weakened so that it does not

require an inconsistent branch. The modified definition is presented next.

Definition 5 (Types with consistency)

1. if ∃∧(Θ̂ ∪ Θ) then A/Θ ∈ Types,

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

366 G. M. Surányi

Γ �∗ x : Γ(x) [tautx]

Γ �∗ c : xT/{x=c} [tautc]

Γ �∗ ε : {}/∅ [tautε]

Γ �∗ M : W≤{Ui}i�n−1/Θ Γ �∗ N : W ′≤Un

Γ �∗ (M&{Ui}i�n/Θ∪ΦnN) : {Ui}i�n/Θ∪Φn

∀j∀k Φ̇j∩Φ̇k = ∅ Ul ≡ (Vl→Sl/Φl)/Θl [{} intro∗]

Γ, (x : S/Θ) �∗ M : V

Γ �∗ λxS/Θ.M : (S/Θ→V)/∅ [→ intro]

Γ �∗ M : (U→V)/Θ Γ �∗ N : W≤U

Γ �∗ M·N : V
[→ elim∗]

Γ �∗ M : {(Ui→Vi)/Θi}i∈I/Θ Γ �∗ N : U

Γ �∗ M•N : Vj

Uj = mini∈I{Ui|U≤Ui} [{} elim∗]

Fig. 3. Rules of the type algorithm.

2. if V1≡T/Θ, V2 ∈ Types and ∃∧(Θ̂ ∪ Θ) and ∃∧(Θ̂′ ∪ Θ) then (V1→V2)/Θ
′ ∈

Types,

3. {(Ui→Vi)/Θi}i∈I/Θ ∈ Types if ∃∧(Θ̂ ∪ Θ) and for all i, j ∈ I

(a) (Ui→Vi)/Θi ∈ Types and

(b) Ui≤Uj ⇒ Vi≤Vj and

(c) for every U maximal element in the set of common lower bounds of

Ui ≡ Ti/Φi and Uj ≡ Tj/Φj , where VM(Ui,Uj),

¬∃∧(Φ̂i ∪ Φi ∪ Φ̂j ∪ Φj)

or there exists a unique h ∈ I such that Uh is contained by the equivalence

class of U.

Although the use of Definition 5 instead of Definition 2 may seem straightforward,

it contributes to the computability issue discussed in Section 4.1.4.

4.1.3 Type algorithm

Our type system does not directly specify a type (checking) algorithm as besides the

other rules, rule [subsumption] can always be applied. To overcome this, a slightly

modified version of the type system can be used. It is depicted in Fig. 3, where

the modified rules are marked with asterisks. The following theorem declares the

relationship of the type system and the type algorithm. The proof is presented in

Section A.4.

Theorem 4 (Minimum typing)

If Γ �∗ M : V then

V ∈ {U|Γ � M : U and ∀W Γ � M : W ⇒ U≤W }.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 367

4.1.4 Decidable Formulae and expressive power

It is well-known that in general several problems are undecidable in first-order

logic (Börger et al., 1997). This fact affects our results as well since we rely on

derivability, which is generally undecidable, too. Therefore we have to select a

decidable subclass of the problem.

There are several ways to restrict the constraint language to gain a decidable

system. For instance, linear arithmetic logic and Presburger arithmetic logic are

known to be decidable. However, a general-purpose application such as a deductive

object-oriented data model (Kardkovács & Surányi, 2004) is not restricted to

arithmetic constraints and may need further function and predicate symbols. The

book (Börger et al., 1997) presents a classification of first-order formulae based

on quantifier prefixes and the cardinality of predicate and function symbols. It

also exhaustively enumerates the maximal decidable and minimal undecidable cases

w.r.t. this classification.

Since the domain to model can be arbitrary, the sum of the number of function

and predicate symbols may not be limited, must be infinite. Furthermore, taking into

consideration that rule [tautc] requires equality, only three of the decidable classes

may be suitable for us.

Bernays-Schönfinkel-Ramsey class: In the prefix form, existential quantifiers must

precede universal ones and no function symbols except constants are allowed in

the language.

Gurevich class: The prefix form of the formulae contains only existential quantifiers.

Function and predicate symbols of any arity may occur.

Shelah class: The prefix form of the formulae contains a single universal quantifier

and at most one unary function symbol. The number of existential quantifiers in

the prefix and the number of predicate symbols are not limited.

Condition 3c of Definition 5 rules out the two latter classes in general because

the prefix form of that formula may contain more than one universal quantifier.

The Bernays-Schönfinkel-Ramsey class limits the expressive power of our calculus

in terms of constraints, however: in the prefix form of the constraints, no existential

quantifier is allowed within universally quantified subformulae. In comparison with

OMG’s OCL (OCL, 2003) this is still less restrictive, as in OCL ‘quantifiers’ iterate

over elements of collections only.

Moreover, if type consistency is important, no function symbols except constants

may be used in λ&�. This does not affect the expressive power of the calculus, since

each n-ary function symbol can be represented by an n+1-ary predicate symbol with

appropriate semantics provided that the extra parameter is a placeholder for the

return value of the function (see Example 2).

If the original definition of types (Definition 2) is considered, i.e. type consistency is

not enforced, formulae of the Gurevich and Shelah classes can be used in constraints,

too. Then taking into consideration the aforementioned alternative representation of

functions as predicates, at most a single universal quantifier may occur in the prefix

form of the formulae, but the universal quantifier may be surrounded (i.e. preceded

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

368 G. M. Surányi

and succeeded) by any number of existential quantifiers. Conversely, if such formulae

are needed, type consistency cannot be enforced in general.

4.2 Separating specifications from the semantics

Definition 4 requires that constraints be checked when evaluating a term by means

of rule (β&). This means that program behaviour depends on the preconditions

declared in the constraint set of a function. This may be a problem if constraints are

regarded as specifications; however, it is a feature if constraints describe state-based

roles. λ&�-calculus as it is so far defined prefers the latter. Here we show how the

calculus can be altered to fully decouple specifications from the semantics.

Definition 6 (Types for specifications)

In addition to the ones enumerated earlier (Definition 2 or 5), two extra conditions

must be satisfied by overloaded function types:

3. {(Si/Φi→Vi)/Θi}i∈I/Θ ∈ Types if for all i, j ∈ I

(d) i = j or Si �= Sj ,

(e) Si/∅≤Sj/∅ ⇒ Si/Φi≤Sj/Φj .

Definition 7 (Reduction for specifications)

In the reduction and one-step reduction relations overloaded function application is

replaced with the following.

If N is closed and irreducible, let

U ∈ {U ′≡R′/∅|Γ � N : U ′ ∧ ∀VΓ � N : T/∅ ⇒ U ′≤T/∅}

and

Uj = min
i

{Ui≡Ri/Φi|U≤Ri/∅}

then

(M1&
{(Ui→Vi)/Θi}i=1,...,n/ΘM2) • N �′

{
M1 • N, for j<n

M2 · N, for j=n
(β′

&)

The new one-step reduction relation and its reflexive and transitive closure are

denoted by � and �∗, respectively. Symbols �β and �β′
&

stand for the one-step

reduction performed by rules (β) and (β′
&), respectively.

When constraints are used only as specifications, firstly, branches of an overloaded

function type expect arguments of different sorts. This is the key difference between

uses of constraints for specifications and for roles. Secondly, branch selection in

overloaded function application is based only on the sort of the argument and the

expected sorts of the arguments of each branch. The actually selected branch is

still unambiguous (even if only the sorts are considered) because in the overloaded

function type sorts of the input arguments are all different in accordance with

point 3d of Definition 6. Thirdly, so that sort-based branch selection suffices,

condition 3e of the same definition ensures constraint set subsumption of the input

arguments if the sorts are comparable.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 369

Example 8

Let treatment denote the function which calculates the needed medicine to cure

a particular illness. The dose usually varies with the state of the person, but the

medicine recommended most likely depends upon whether the patient is pregnant.

On these assumptions treatment may have the type

{(person/∅→medicine)/∅, (xperson/{pregnant(x)}→medicine)/∅}/∅

where person is the sort of persons, medicine is the type for medicines and pregnant is

a unary predicate symbol, the semantics of which is whether the person is pregnant.

In this case, branches of treatment have their own specifications. Indeed, the second

requires that the argument be a pregnant person. However, we cannot treat the

whole overloaded function type as a specification. The prescribed medicine should

depend on the person’s pregnancy. In this case, rule (β′
&) should not be able to be

used for branch selection. It cannot be because the above pre-type is not a type in

accordance with Definition 6. From the modelling point of view, here the constraint

describes a role, the role of persons’ pregnancy.

The situation is similar if woman is an additional sort for women, if and

R(woman, person) holds, i.e. all women are persons, and treatment has the pre-type

{(person/∅→medicine)/∅, (xwoman/{pregnant(x)}→medicine)/∅}/∅.

Because of point 3e of Definition 6 this pre-type cannot be a type either. The

rationale behind it is that if a non-pregnant woman is the argument, the wrong

branch would be selected by rule (β′
&).

Then the user can try to correct the model and use the constraint only as

specifications. By replacing person with the sort man (of course man and woman are

incomparable), they gain the type

{(man/∅→medicine)/∅, (xwoman/{pregnant(x)}→medicine)/∅}/∅.

Here sort-based branch selection, i.e. rule (β′
&) works. This syntactic step delivers

semantically incorrect result only if the argument is a non-pregnant woman.

However, that case is tackled by the typing rules (which remained the same!)

since such a term cannot be typed (rule [{} elim] cannot be applied) before the

β′
&-reduction is executed.

The modified calculus too bears sound and confluence properties; the proofs of

the following theorems are presented in Sections A.5 and A.6.

Theorem 5 (Soundness for specifications)

Defining types by Definition 6, if Γ � M : V and M �∗ N then Γ � N : V .

Theorem 6 (Confluence of the notion of reduction for specifications)

The notion of reduction of the modified λ&�-calculus, which consists of rules (β)

and (β′
&), is confluent. That is, for all M, M1, M2 whenever M �∗ M1 and M �∗ M2,

there exists M3 such that M1 �∗ M3 and M2 �∗ M3.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

370 G. M. Surányi

〈〈�1 : T1/Θ1; . . . ; �n : Tn/Θn; Θ〉〉 = {(L1→T1/Θ1)/∅, . . . , (Ln→Tn/Θn)/∅}/
⋃

1�i�n

Θi ∪ Θ

only lower-left indices of atomic types in T1, . . . , Tn may be the free variables in Θ

〈�1 = M1; . . . ; �n = Mn〉 = (ε & λxL1.M1 & . . . & λxLn.Mn)

x does not occur or is not free in M1, . . .Mn

M.�i = M • �i

Fig. 4. Encoding record types, records and field selection in λ&�.

4.3 Object-Oriented Features

λ&� is claimed to be an object-oriented calculus, however, there has been no mention

of object constructs in the paper. Now we show how the rudimentary object-oriented

notions are represented in λ&�.

4.3.1 Objects and Classes

To begin with, let {Ki} (i∈I) be a set of atomic types and let us assume that its

elements are isolated, i.e. no subtype relationship holds between each other and

between them and other atomic types. Moreover, Li ≡ Ki/∅ and let us introduce

for each Li a constant �i : Li. It is now possible to encode record types, records and

field selection, respectively, as depicted in Fig. 4.3

In words, a record is mapped to an overloaded function and labels (�i’s) are

used to select the branches (here: fields). So that these constructs do not interfere

with ordinary overloaded functions, Ki’s must be isolated. Labels are discarded after

selection since x does not occur or is not free in Mi’s. Record types also represent

constraints among elements of the record via the constraint set Θ, which is mapped

to the appropriate constraint set of the overloaded function type.

The state of an object (also called instance of a class) is stored in a record. A

class type is an atomic type (A) that is associated with a unique representation type

(VA), which is a record type, the type of the object state. Whenever a class type,

A is a subtype of another, B, its representation type, VA must be a subtype of the

representation type of the other, VB . Operations correspond to overloaded functions

of λ&�. If the name of the operation is unique, the overloaded function has a sole

branch. Otherwise all methods with the same name are collected in an overloaded

function.

Although this way of object representation resembles the one of λ&, it also deals

with object invariants. Their semantically correct use is achieved via the specially

constructed typing rule [{} intro].

3 Because they are all clear from the context, from this point on we deliberately omit the type annotations
at the & symbols in order to keep the expressions simple.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 371

4.3.2 Messages with constraints

Messages are, as in λ&, the overloaded functions themselves with appropriate

arguments. But here, unrelated pre- and post-conditions of message processing

(function calls) can be enforced by means of constraints on the parameters and

the return value. Indeed, if constraints on multiple parameters are present, the

participating parameters have to be passed as a single record for this purpose.

λ&�, currently, does not support constraints on multiple input parameters of

curried functions. This is a straight consequence of our definition of PreTypes

(see Section 2.1), which requires that all open variables of a constraint set be

indices in their corresponding sorts. A more sophisticated definition, however, raises

problems concerning reasoning over constraints, soundness, etc. as demonstrated in

the following example. We are going to address these issues in the future.

Example 9

Let us consider the curried function

f ≡ λxint/∅.λy yint/{0>y>x}.y

where the type of y uses as well the (open) variable x. Here the second parameter

of f must be negative but greater than the first one. The proper type of f would be

(xint/{0>x}→(yint/{0>y}→int/Θ)/Θ′)/{0>y>x}

where some of the constraint sets are denoted by symbols (Θ and Θ′) only. Note

that here x should implicitly get a constraint set derived from the constraints on y.

The calculation of such a set is not a straightforward task.

However, verifying the constraints of the first argument of f is inevitable, otherwise

e.g. (f · 2) · 3 could have a type but after a β-reduction, it would become

(λy yint/{0>y>2}.y) · 3,

which cannot be typed any longer as rule [→ elim] can not be applied. That is, the

calculus would not be sound. Moreover, it is in general non-trivial to calculate the

new constraint set of y in f after the first β-reduction, since the argument (which is

in this case part of the constraint as well!) could be an arbitrary expression.

4.3.3 Inheritance, overloading, overriding and late binding

The other object-oriented features of λ&-calculus are left intact by our extension,

i.e. they work in exactly the same way in λ&�-calculus. These features include

• overloading with multiple dispatch, which is a core element of the λ&-system,

• inheritance, which is given by subtyping and the branch selection rule for

overloaded functions,

• overriding, which is ensured by condition 3b in the definition of overloaded

function types,

• late binding, which is provided by reduction rule (β&) or (β′
&).

This section showed that our extension of λ& with term constraints integrates

smoothly into the framework set up by Castagna to model object-oriented languages

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

372 G. M. Surányi

Object
id: int

log(Token):bool

log(IToken):bool inv: access⊆user.rights

inv: id>0

*

*

1 user

1
ouser

Token

IToken

access:set

impersonate(User):Token

impersonate(User):Token

inv: ¬empty(name)

inv: user.id �=ouser.id

pre: imp∈access

User
name:string
rights:set

pre: imp∈ouser.rights

Fig. 5. Class diagram of an access control subsystem.

and systems. The reader interested in such higher-level constructs is referred to

Castagna (1997).

5 An illustrative example

The application of calculi tends to be indirect, i.e. they are usually deeply hidden in

compilers of programming languages, various checkers etc. It is therefore difficult to

present a simple but practical example of how a calculus can be used. The solution

we opted for is that we take a real-life scenario, model it in an object-oriented way

but operate on low-level functional primitives, which can be derived from the model

in the way introduced in Section 4.3.

Let us consider the object model of an access control subsystem. We conceive the

access control as a two-step process: first users of the system authenticate themselves

to gain certain access rights to any object and receive a token, then with appropriate

tokens they are authorised to carry out actions on objects. One of the benefits of

token usage is that it inherently supports impersonation.

Figure 5 depicts an excerpt of the class diagram of this scenario. The diagram uses

the notations of OMG’s UML (UML, 2003) and OCL (OCL, 2003) and presumes

that the classifiers bool, int, set and string are predefined. To enable uniform object

management, we define (à la Java) the class Object as the root of all classes.

Although the name of the attributes, operations and association roles should be

self-describing, we give a brief explanation of them:

access: rights the user obtained in a particular token;

id: object identifier;

impersonate: creates a new token on behalf of another user;

log: audits object access, returns true if successful;

name: user name;

ouser: user who impersonates another;

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 373

Table 1. Representation types

Class Representation Type

Object 〈〈id : iint/{i>0} ; ∅〉〉
User 〈〈id : iint/{i>0}; name : nstring/{¬empty(n)}; rights : set/∅ ; ∅〉〉
Token 〈〈id : iint/{i>0}; access : aset/∅

; user : 〈〈id : uint/{u>0}; name : nstring/{¬empty(n)}; rights : rset/∅; ∅〉〉
; {a⊆r}〉〉

IToken 〈〈id : iint/{i>0}; access : aset/∅
; user : 〈〈id : uint/{u>0}; name : nstring/{¬empty(n)}; rights : rset/∅; ∅〉〉
; ouser : 〈〈id : oint/{o>0}; name : mstring/{¬empty(m)}; rights : set/∅; ∅〉〉

; {u�=o ∧ a⊆r}〉〉

Table 2. Representation types encoded in λ&�

Class Representation Type in λ&�

Object {(id→ iint/{i>0})/∅} /{i>0}
User {(id→ iint/{i>0})/∅, (name→ nstring/{¬empty(n)})/∅

, (rights→set/∅)/∅} /{i>0,¬empty(n)}
Token {(id→ iint/{i>0})/∅, (access→ aset/∅)/∅, (user→

{(id→ uint/{u>0})/∅, (name→ nstring/{¬empty(n)})/∅, (rights→ rset/∅)/∅}
/{u>0,¬empty(n)})/∅} /{i>0, u>0,¬empty(n), a⊆r}

IToken {(id→ iint/{i>0})/∅, (access→ aset/∅)/∅, (user→
{(id→ uint/{u>0})/∅, (name→ nstring/{¬empty(n)})/∅, (rights→ rset/∅)/∅}
/{u>0,¬empty(n)})/∅, (ouser→
{(id→ oint/{o>0})/∅, (name→ mstring/{¬empty(m)})/∅, (rights→set/∅)/∅}
/{o>0,¬empty(m)})/∅} /{i>0, u>0, o>0, u�=o,¬empty(n),¬empty(m), a⊆r}

rights: access rights a user can have in tokens;

user: user whose name is logged whenever an object is accessed with the token.

According to Section 4.3.1, attributes of the classes are collected in record types,

which are the representation types of the classes. The representation types used in

the access control subsystem are enumerated in Table 1. They are mapped to the

λ&�-types listed in Table 2 by the encoding rule described in the same section. In

the tables a handy notation is applied for the first time: the special terms �i and the

types Li are denoted by the same strings since �i and Li may not occur at the same

place in λ&�-expressions. Furthermore, we sacrifice our notation for readability as

new letters denote variables. We continue with this practice in this chapter. The

extra spaces in the rows serve the same purpose.

It is easy to recognise the salient feature of the class representation in λ&�, i.e. the

specification and the enforcement of object invariants. The encoded invariants were

earlier indicated in the class diagram: identifiers are positive, user names are not

empty, a token’s access rights are a subset of the user’s access rights and self-

impersonation is not allowed.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

374 G. M. Surányi

We now turn to the operations of the classes. The operation log is declared to

be overloaded because when impersonation is in effect, the real user has to be

recorded as well. Since recursive impersonation must preserve the original user’s

identity, impersonate demonstrates another object-oriented concept, overriding. In

accordance with Section 4.3.1, both operations are modelled as overloaded functions

in λ&�, and late binding is realised by the reduction rule (β&) as it can be executed

with an irreducible argument only. Then the types of operations log and impersonate

straightforwardly follow from the class diagram and are respectively:

{(Token → bool/∅)/∅, (IToken → bool/∅)/∅}/∅

and

{ (

{ (id→ i1int/{i1>0})/∅, (access→ aset/{imp∈a})/∅, (user→User)/∅ }
/ {i1>0, . . . , imp∈a}

→ (User → Token)/∅)/∅ ,

(

{ (id→ i2int/{i2>0})/∅, (access→set/∅)/∅, (user→User)/∅,
(ouser→

{ (id→ oint/ . . .)/∅, (name→ mstring/ . . .)/∅, (rights→ cset/{imp∈c})/∅ }
/{o>0,¬empty(m), imp∈c})/∅ }

/ {i2>0, o>0,¬empty(m), . . . , imp∈c}
→ (User → Token)/∅)/∅ }

/∅

where bold class names stand for the representation types of the designated classes

(with appropriately substituted variables) and trivial parts of the type expressions

are replaced with ellipses. Note that we modelled impersonate as a curried function

and that the operations’ return type is not an IToken because whenever self-

impersonation is attempted, a primary (i.e. not an impersonation) token is returned.

Most importantly, the underlined parts of the above type expression impose

special preconditions, i.e. additional constraints on the input parameters besides the

regular object invariants. In accordance with the class diagram, they require that

the caller have impersonate rights in its token. Indeed, this goal can alternatively be

reached by defining atomic types for each required set of rights and a partial order

on them. However, our approach is scalable as new access rights can be introduced

and used without further effort. As the types of operations log and impersonate fulfil

the requirements of Definition 6, they are really specifications and Reduction for

Specifications (Definition 7) is usable in this model.

Last but not least, let us consider a simple implementation of the operations

impersonation to see the type system at work. Let the following function be given,

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 375

and we want to verify that this can be an implementation of impersonation:

ε & λx{(id→ i1
int/{i1>0})/∅,(access→ aset/{imp∈a})/∅,(user→User)/∅}. (1)

λyUser. ite · (x • user • id =f y • id) · (2)

(ε & λzid.unique & λzaccess.∅ & λzuser.y) · (3)

(ε & λzid.unique & λzaccess.∅ & λzuser.y & λzouser.x • user) (4)

& impersonate for IToken (5)

Here the symbol =f denotes the binary function which tests if its arguments are the

same integers. Let us assume it has a type of

({(left→int/∅)/∅, (right→int/∅)/∅}/∅ → bool)/∅,

that is pairs are records with labels left and right. The term denoted by unique

represents an expression which generates (unique) positive integers to be used as

identifiers. It has a type of iint/{i>0}. The symbol ite stands for if-then-else, a

function which returns its second argument if the first argument is true and the

third argument otherwise. In this case, let it have the type

(bool → (Token → (Token → Token)/∅)/∅)/∅.

The string impersonate for IToken is another expression to realise the impersonation

from an IToken. As this branch is very similar to the other and if it were expanded,

it would not demonstrate any new idea, it is abbreviated to this form.

We start the type derivation from the innermost terms, i.e. in lines 3 and 4. Let the

type of x from line 1 be denoted by U. Moreover, via rule [�] we obtain U≤Token.

Line 3 is an overloaded function, its branches are easy to type. However, the branch

λzaccess.∅ is noteworthy. Here by rule [tautc],

(x : U), (y : User), (z : access) � ∅ : aset/{a=∅}.

Then using rule [→ intro]

(x : U), (y : User) � (λzaccess.∅) : (access→ aset/{a=∅})/∅.

All this implies via rule [{} intro] that line 3 has the type

{(id→ iint/{i>0})/∅, (access→ aset/{a=∅})/∅, (user→
{(id→ uint/{u>0})/∅, (name→ nstring/{¬empty(n)})/∅, (rights→ rset/∅)/∅}
/{u>0,¬empty(n)})/∅} /{i>0, u>0,¬empty(n), a=∅}.
It can in fact be typed as Token as well because the empty set is a subset of any set

and because of subtyping rules [�], [{}] and type system rule [subsumption].

Analogously, the term in line 4 is of type Token, too, although it has an additional

branch λzouser.x • user. From rules [subsumption] and [{} elim] it follows that

(x : U), (y : User), (z : ouser) � (x • user) : User.

Lastly, rule [→ intro] entails

(x : U), (y : User) � (λzouser.x • user) : (ouser→User)/∅.

Now we turn to the terms x • user • id and y • id. Their type is iint/{i>0}, its

calculation involves no new method. Again rules [�] and [subsumption] help so that

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

376 G. M. Surányi

in turn rule [→ elim] can be applied to the call of =f . The result is of bool then.

Arguments of bool and Token (twice) are accepted for the call of ite and we obtain

by using rule [→ elim] twice consecutively that ite with these arguments has the

type Token.

After all this the remaining steps are easy: we use rule [→ intro] twice for the

λ-abstractions and then rule [{} intro] twice for the overloaded function. The final

result is what we expected, i.e. the term may be an implementation of impersonation.

6 Conclusion and outlook

The goal of the paper was to reduce the gap emerging between latest object-

oriented modelling techniques and (partial) correctness proving systems. Because of

the ubiquitous demand for secure computing, one major tendency is the extensive

use of constraints in specifications. We tackled the problem by extending the λ&-

calculus with term constraints and gained a calculus supporting the basic object-

oriented features (class types, inheritance, overloading with multiple dispatch and

late binding) along with the precise specification of object invariants and unrelated

pre- and postconditions of messages. In addition, state-based role types, which are

useful object-oriented modelling elements, too, can be mapped to types with term

constraints as well. As λ&� inherently does not presuppose any particular primitive

type, operation or relation, it can form the basis for a flexible specification language

with higher-order features and decidable fragments.

Clearly, our system lacks several mechanisms known in object-oriented design

and implementation such as recursive types, abstract classes, information hiding,

upcast, imperative features, type constraints (type-preserving methods and bounded

polymorphism). Some of these can be encoded into λ&�-calculus without problems

and some of them require further effort, e.g. inventing higher-order variants of λ&�.
These are subjects of our future research. In this process the techniques applied to

λ& and described in Castagna (1997) can be very useful.

Some applications need a behaviour-based subtyping relation. We partially ad-

dressed this problem as λ&� can represent and deal with invariant properties only.

Considering history and liveness properties based on temporal logic is another

possible way of extension.

In imperative programming languages ensuring the proper use of resources is not

a straightforward task. Object-oriented design makes it easier but still not trivial.

Both the sort and the constraint part of our calculus can support this verification

process by incorporating the ideas of Boudol (1997) and Abadi & Leino (1998).

The work most similar to ours is, on one hand, Hofmann et al’s verification

method (Hofmann et al., 1996; Hofmann et al., 1998). It treats objects as abstract

data types and is able to prove if the functional implementation matches the specific-

ation part. Because of its perspective, however, object invariants cannot be specified

in the system. Furthermore, as the theoretical background is quite involved and the

way of description substantially differs from the ones of object-oriented models,

Hofmann et al.’s method is difficult to apply in practice. On the other hand, Ghelli

too gives a foundation for object roles Ghelli (2002). However, as already pointed out

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 377

in the Introduction, he deals only with roles explicitly indicated in the objects. λ&�
is more flexible as role membership can depend on any part of the object state, not

only on a role tag. (See Appendix B on how Ghelli’s roles can be translated into λ&�.)
Nowadays only a small percent of computer systems does not involve distributed

computation. While ad-hoc solutions are usually adequate to prove that a non-

distributed algorithm also terminates implying total correctness, proving that a

distributed object-oriented system possesses correct behaviour is a challenging

task. This includes the proper treatment of shared mutable objects. Fortunately,

Krishnaswami & Aldrich (2005) present a solution for standard type theory.

Therefore it can later be merged into higher-order variants of λ&�. Our future

endeavour is to examine other interactions of this field (Kobayashi & Yonezawa,

1994; Boudol, 1997; Igarashi & Kobayashi, 2004) with the λ&�-calculus.

Acknowledgements

I thank the anonymous referees for their helpful comments both on the contents

and the presentation of the paper.

A Proofs

We prove six theorems. We proceed by following the techniques for λ&-calculus

(Castagna, 1997) whenever it is possible.

A.1 Soundness of λ&�

The proof of soundness requires a lemma stating that by term substitution the type

may only decrease.

Lemma 1 (Substitution lemma)

Let Γ, (x : U) � M : V , Γ � N : U ′ and U ′≤U. Then Γ � M[x:=N] : V ′, where

V ′≤V .

Proof

The proposition is proven in the same way as in λ&, by induction on the structure

of M. The following cases differ from the ones in the original proof:

M ≡ M1 · M2 Rule [subsumption] must be applied to M2[x:=N] before rule [→
elim] to obtain the desired result.

M ≡ (M1&
VM2) Rule [subsumption] must be applied to M2[x:=N] before rule

[{} intro], but Γ � M[x:=N] : V holds.

M ≡ M1 • M2 where

Γ, (x : U) � M1 : {(Ui→Vi)/Θi}i∈I/Θ

With the chosen

Uh = min
i∈I

{Ui|U≤Ui},

Vi≤V (A 1)

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

378 G. M. Surányi

because of type condition 3b (see Definitions 2 and 5). The original method proves

that

Γ � M[x:=N] : V ′
k≤Vi (A 2)

with

V ′
k = min

j∈J
{U ′

j |U ′≤U ′
j}

where

Γ � M1[x:=N] : {(U ′
j→V ′

j)/Θ
′
j}j∈J/Θ

′

and by the induction hypothesis

{(U ′
j→V ′

j)/Θ
′
j}j∈J/Θ

′≤{(Ui→Vi)/Θi}i∈I/Θ

with I ⊆ J . Equations (A 1) and (A 2) imply the proposition in this case. �

Theorem 7 (Strict soundness)

If Γ � M : V and M �∗ N then Γ � N : V ′ where V ′≤V .

Proof

The proposition is inferred for �∗ if the same holds for �. The statement for � is

proven as in λ&, by induction on the structure of M. Two subcases differ from the

ones in the original proof, both are part of the case M ≡ M1 • M2.

M1 � M
′
1 For starting point the induction hypothesis gives the same subtyping rule

as branch M ≡ M1 • M2 of Lemma 1 needs, therefore formally the same proof

steps can be carried out.

M �β&
M ′ If the selected function from the overloaded function is the last one, rule

[subsumption] is to be applied before rule [→ elim], and the result is V ′ ≡ V .

Otherwise rule [{} elim] with the selected branch delivers the same result. �

The soundness of λ&� simply follows from the preceding theorem via the rule

[subsumption].

A.2 Confluence of λ&�

Theorem 2 (Confluence)

For all M, M1, M2 whenever M �∗ M1 and M �∗ M2, there exists M3 such that

M1 �
∗ M3 and M2 �

∗ M3.

Proof

Since λ&� uses exactly the same notion of reduction (β ∪ β&) over the same terms

as λ&, the confluence of λ& implies this theorem. �

A.3 Decidable subtyping

To prove that � is equivalent to ≤ is not difficult, but a bit tedious. To reduce

work, we provide the proof of a few common situations in a generalised way in

advance.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 379

Lemma 2 (Constraint set independence)

Let Π be a proof for S/Θ≤T/Θ in �. Then there is a proof in � for S/Φ≤T/Φ

with arbitrary constraint set Φ.

Proof

Π does not end with rules [trans′], [�′] since they require different constraint sets.

That is, the last rule is one of [taut], [→] and [{}]. Then the same rule can be applied

with the constraint set Φ. �

Lemma 3 (Constraint set derivation)

Let Π be a proof for S/Θ≤S/Φ with Θ �= Φ in �. Then it consists of rule [�′] only.

Proof

The last step cannot be rule [trans′] as it requires different sorts. Similarly, it is not

rule [taut], [→] or [{}] because the constraint sets are not the same. �

Lemma 4 (Normal form of proofs)

Let Π be a proof for S/Θ≤T/Φ with S �≡ T and Θ �= Φ in �. Then rule [�′] with

constraint sets Θ and Φ can be applied on sort S . Furthermore, there is a proof in

� for S/Ψ≤T/Ψ with any constraint set Ψ.

Proof

Since the sorts as well as the constraint sets differ in Π the last rule is [trans′]:

S/Θ≤S/Φ S/Φ≤T/Φ

S/Θ≤T/Φ.

According to Lemma 3, S/Θ≤S/Φ implies the first proposition. The second propos-

ition directly follows from Lemma 2 by taking into consideration the subproof for

S/Φ≤T/Φ. �

Lemma 5 (Constraint set in a subtype)

If there are proofs for S/Θ≤T/Θ and T/Θ≤T/Φ in �, S/Θ≤S/Φ is also provable

in �.

Proof

Because of Lemma 3, the proof of T/Θ≤T/Φ is a rule [�′]. By the definition of the

formula set with hat, the truth of Θ̂ for the sort S always implies the truth of Θ̂ for

the sort T . That is, the same rule [�′] holds with sort S , too. �

Theorem 3

U≤V if and only if U � V .

Proof

The if part is trivial as at λ&. For the only if part we first note that the application

of [�] is the application of either rule [�′] or the rule

V≤V [refl]

That is, in this regard it is to show that rule [refl] is superfluous. That a type is

always subtype of itself is provable without any transitivity rule by induction on the

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

380 G. M. Surányi

type structure. For

atomic types it follows from the partial order property of R and rule [taut],

function types it follows from the induction hypothesis via rule [→],

overloaded function types it is implied by the induction hypothesis and by rule [{}]
with I=J .

We now prove that [trans′] suffices as a transitivity rule. We actually show that

for all other forms of the transitivity rule there is a proof without them. To this end,

let us assume that Π is a smallest proof in which another transitivity rule is needed.

There are several cases based on which sorts are the same in this rule.

1.

S/Θ≤S/Φ S/Φ≤S/Ψ

S/Θ≤S/Ψ

If Θ = Φ or Φ = Ψ, the rule can be omitted as one of the premises is the

conclusion. Otherwise, because of Lemma 3 both subproofs consist of rule [�′].

But rule [�′] is transitive because so is logical implication used in its definition.

That is, a rule [�′] can replace this transitivity rule.

2.

S/Θ≤T/Θ T/Θ≤T/Φ

S/Θ≤T/Φ
S �= T

Because of Lemma 2, there is a proof for S/Φ≤T/Φ in �. Moreover, Lemma 5

implies that there is a proof for S/Θ≤S/Φ. At last, rule [trans′] can connect

the proofs for S/Φ≤T/Φ and S/Θ≤S/Φ to obtain the same subtyping within

�.

3.

S/Θ≤T/Φ T/Φ≤S/Ψ

S/Θ≤S/Ψ
S �= T

There are several subcases.

Θ = Ψ: The rule to replace is just a reflexivity rule.

Θ = Φ, Θ �= Ψ: The subproof on the left side is a proof for S/Θ≤T/Θ. From

the subproof on the right side by Lemma 4 there is a proof for T/Θ≤T/Ψ.

Then Lemma 5 entails a proof for S/Θ≤S/Ψ.

Φ = Ψ, Θ �= Ψ: In a single step, Lemma 4 proves the existence of a proof for

the conclusion based on the subproof on the left side.

Θ �= Φ �= Ψ, Θ �= Ψ: Lemma 4 entails that there are proofs for S/Θ≤S/Φ

and S/Φ≤T/Φ (from the subproof on the left side) and for T/Φ≤T/Ψ

(from the subproof on the right side). The last two imply by Lemma 5 that

there is a proof for S/Φ≤S/Ψ. This along with S/Θ≤S/Φ reduces to case 1.

4.

R/Θ≤S/Φ S/Φ≤T/Ψ

R/Θ≤T/Ψ
R �= S S �= T R �= T

We have again subcases based on which constraint sets match.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 381

Θ = Φ = Ψ: In this branch the proof of transitivity elimination in λ& can be

re-used.

Θ = Φ �= Ψ: By Lemma 4 it follows from the subproof on the right side that

there are proofs for:

S/Θ≤S/Ψ, (A 3)

S/Ψ≤T/Ψ. (A 4)

Lemma 5 implies from the proof of equation (A 3) and the subproof on the

left side that there is a proof for:

R/Θ≤R/Ψ. (A 5)

Again from the subproof on the left side, it is known via Lemma 2 that

R/Ψ≤S/Ψ (A 6)

is provable. From the proofs of equations (A 4) and (A 6) one obtains a

proof for

R/Ψ≤T/Ψ

by the previous subcase. This and the proof of equation (A 5) are the input

for a replacement rule [trans′].

Θ �= Φ = Ψ: According to Lemma 4, from the subproof on the left side there

are proofs for

R/Φ≤S/Φ, (A 7)

R/Θ≤R/Φ. (A 8)

The first subcase of the case being considered ensures from the subproof on

the right side and the proof of equation (A 7) that a proof for

R/Φ≤T/Φ

exists. This can be combined with the proof of equation (A 8) via rule [trans′]

to give the proof sought.

Θ = Ψ �= Φ: This one is easy. Lemma 4 assures the existence of proofs for

R/Θ≤S/Θ,

S/Θ≤T/Θ.

Now we can turn to the transitivity elimination with identical constraint

sets.

Θ �= Φ �= Ψ, Θ �= Ψ: As usual, because of Lemma 4 used for the subproofs

R/Θ≤R/Φ, (A 9)

R/Φ≤S/Φ, (A 10)

R/Ψ≤S/Ψ, (A 11)

S/Φ≤S/Ψ, (A 12)

S/Ψ≤T/Ψ (A 13)

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

382 G. M. Surányi

are all provable. By applying Lemma 5 to the proofs of equations (A 10)

and (A 12) a proof for

R/Φ≤R/Ψ (A 14)

is obtained. Case 1 delivers a proof for

R/Θ≤R/Ψ (A 15)

using the proofs for equations (A 9) and (A 14). Based on the proofs of

equations (A 11) and (A 13) the subcase of transitivity elimination for λ&

ensures that a proof for

R/Ψ≤T/Ψ

exists. This and the proof for equation (A 15) are the input for a replacement

rule [trans′]. �

A.4 Type algorithm

The proof of the similar theorem for λ& is adaptable in a straightforward manner

as follows.

Lemma 6 (Algorithmic soundness)

If Γ �∗ M : V then Γ � M : V .

Proof

As in λ&, rules [→ elim∗], [{} intro∗] and [{} elim∗] are to be preceded by rule

[subsumption] and substituted by their counterpart labelled [→ elim], [{} intro] and

[{} elim] respectively. �

Lemma 7

If Γ � M : V then there exists a �-derivation of M : V from Γ where rule

[subsumption] is not used twice consecutively.

Proof

Since subtyping is transitive, such steps can be reduced to a single application of

rule [subsumption]. �

Lemma 8 (Algorithmic completeness)

Let Π be a proof for Γ � M : V . Then there exists U and Π′ such that U≤V ,

depth(Π′)≤depth(Π) and Π′ is a proof for Γ �∗ M : U.

Proof

Thanks to Lemma 7, a simple induction on the depth of Π with appropriate branches

for different term constructions suffices just as in λ&. �

Theorem 4 (Minimum typing)

If Γ �∗ M : V then

V ∈ {U|Γ � M : U and ∀W Γ � M : W ⇒ U≤W }.

Proof

This proposition is a simple corollary of the preceding lemmas, as in λ&. �

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 383

A.5 Soundness for specifications

The proof for the original λ&�-calculus can be carried over because of the following

lemma.

Lemma 9

Whenever M1 • M2 �β&
Na and M1 • M2 �β′

&
Nb so that both M1 and M2 are

considered in the reductions, then Γ � Na : Va,Nb : Vb and Vb≤Va.

Proof

From the definition of types and reductions (branches j and k are selected by rules

(β&) and (β′
&), respectively):

Γ � M1 : {(Ui→Vi)/Θi}i=1,...,n/Θ where Ui ≡ Ri/Φi and Ri’s are all different

Γ � M2 : U≡S/Φ where U is minimal

Uj = mini{Ui|U≤Ui} (A 16)

Uk = mini{Ui|S/∅≤Ri/∅} (A 17)

Theorem 3 ensures that Lemma 4 is valid for the relation ≤ as well. By that

lemma it follows then from equation (A 16) that S/∅≤Ri/∅ for all i’s which are

selected into the set in equation (A 16). That is, all these indices are present in the set

constructed in equation (A 17). Thus Rk≤Rj holds. By condition 3e of Definition 6,

this implies Uk≤Uj . From this and from type condition 3b via rule [{} elim] or rules

[subsumption] and [→ elim] one can infer that Vb ≡ Vk≤Va ≡ Vj . �

A.6 Confluence for specifications

Here we cannot cite the proof of confluence of λ&, but formally the same proof

steps can be carried out. Therefore we only list the supporting propositions.

Theorem 8 (The notion of reduction β′
& satisfies the diamond property)

For all M, M1 and M2, M �β′
&
M1 and M �β′

&
M2 imply that there exists M3 such

that M1 �β′
&
M3 and M2 �β′

&
M3. As a corollary β′

& is Church-Rosser.

Lemma 10

If N �∗
β′

&
N ′ then M[x:=N] �∗

β′
&
M[x:=N ′].

Lemma 11

If M �β′
&
M ′ then M[x:=N] �β′

&
M ′[x:=N].

Theorem 9 (Weak commutativity)

If M �β N1 and M �β′
&
N2 then there exists N3 such that N1 �∗

β′
&
N3 and N2 �∗

β N3.

As a corollary �∗
β′

&
commutes with �∗

β .

B Mapping Ghelli’s Roles into λ&�

In this section we show that the feature of roles of Ghelli’s kernel role calculus (Ghelli,

2002) has its equivalent in λ&�. More precisely, we present a transcription of the

role construct of Ghelli’s kernel calculus into λ&�.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

384 G. M. Surányi

To begin with, we recapitulate Ghelli’s object representation and member selection

formalism. An object is a construct of the form

〈r, [(ri, li) = ς(xi : A)bi]i∈I〉,

where r ∈ {ri}i∈I is the current role, ri is a role-tag, li is the name of a member, xi
is a self variable, A is its type and bi is the member term. As the member term can

make use of the self-variable, members (which are called methods in the calculus)

include both attribute values and operations. Method selection has the form of a.l,

where a is an object and l is a method name. The selected method is (ri, li), where

ri ≡ r and li ≡ l.

The translation begins with the insight that as λ&� models attribute values and

operations differently, they must be distinguished. It can be achieved, however, in a

pure syntactic way, by checking whether a bi refers to xi. If yes, the method is an

operation, if not, it is an attribute value. Furthermore, in accordance with the most

common object-oriented modelling techniques (see e.g. (UML, 2003)) λ&� does not

deal with operations assigned to objects directly but operations are parts of classes.

Precondition: We therefore assume instances of a class have exactly the same

operations.

Translating attribute values: Each attribute value becomes an overloaded function

which has a branch for each role. Moreover, the current role itself is represented

as an attribute value. That is

〈r, [(ri, li) = ς(xi : A)bi]i∈Iattributes
〉

becomes here

ε & λxrole.r & λxli1.(ε & λy yrole/{y=rj11}.bj11 & . . .) & . . . ,

where rj11, rj12, . . . are role-tags which occur in the object with the method name

li1. Then the attribute field selection

a.l corresponds to (a • l) • (a • role) in λ&�.

Translating operations: All operations with the same name form an overloaded

function in λ&�. This applies to operations of different roles as well. Thus

〈r, [(ri, li) = ς(xi : A)bi]i∈Ioperations
〉

becomes here

ε & λx
A/{role=rij}
i .bij & . . . for each different li

where as introduced above, A is the representation type of the class of the object

and role is one of its fields. Then the selection of a real method

a.l corresponds to l • a in λ&�.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

An object-oriented calculus with term constraints 385

Example 10

Ghelli’s role construct is illustrated by the following value (johnAsEmployee) in his

paper.

〈Emp, [(Pers, Name) = ς(x : A)”John”;

(Stud,Name) = ς(x : A)”John”; (Stud, IdCode) = ς(x : A)100 ;

(Emp,Name) = ς(x : A)”John”; (Emp, IdCode) = ς(x : A)”I1”]〉

Since johnAsEmployee consists of attribute values only, its representation in λ&� is

the term

ε & λxrole.Emp & λxName.(ε &

λy yrole/{role=Pers}.”John” & λy yrole/{role=Stud}.”John” & λy yrole/{role=Emp}.”John”

) & λxIdCode.(ε &

λy yrole/{role=Stud}.100 & λy yrole/{role=Emp}.”I1”

).

It is easy to show in general that the subtyping relation and definition of type are

compatible in Ghelli’s and our calculus and that the term transformation presented

above preserves term typability.

Besides the paradigmatic difference between the calculi (attribute value and

operation similarity vs. distinction), which implies that a single term of Ghelli’s

calculus may be equivalent to a tuple of λ&�-terms, there is another factor which

makes it difficult to formally and fully map Ghelli’s kernel role calculus into λ&�:
the member update facility. It is not present either in λ& or in λ&� but Castagna

deals with this phenomena in a more sophisticated variant of λ& (Castagna, 1997).

His result may be applied to λ&� as well. Nevertheless, the feature of role-tags can

clearly be represented in λ&�-calculus.

References

Abadi, M. & Leino, K. R. M. (1998) A logic of object-oriented programs. Tech. rept. 161.

Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, California 94301.

Börger, E., Grädel, E. & Gurevich, Y. (1997) The classical decision problem. 1st edn. Springer-

Verlag Telos.

Boudol, G. (1997) Typing the use of resources in a concurrent calculus. Pages 239–253

of: ASIAN’97. Lecture Notes in Computer Science, vol. 1345. London, United Kingdom:

Springer-Verlag.

Cardelli, L. (1988) A semantics of multiple inheritance. Information and Computation, 76(2/3),

138–164.

Cardelli, L. (2004) Type systems. Chap. 97 of: Tucker, Jr., Allen B. (ed), Computer science

handbook, 2nd edn. CRC Press.

Castagna, G. (1997) Object-oriented programming: A unified foundation. Progress in Theoretical

Computer Science. Boston: Birkhäuser.

Curien, P.-L. & Ghelli, G. (1992) Coherence of subsumption, minimum typing and type

checking in F≤. Mathematical structures in computer science, 2(1), 55–91.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

386 G. M. Surányi

de Boer, F. S. (1999) A WP-calculus for OO. Pages 135–149 of: Thomas, W. (ed), FOSSACS’99

(ETAPS’99). Lecture Notes in Computer Science, vol. 1578. London, United Kingdom:

Springer-Verlag.

Ghelli, G. (2002) Foundations for extensible objects with roles. Information and Computation,

175(1), 50–75.

Gottlob, G., Schrefl, M. & Röck, B. (1996) Extending object-oriented systems with roles.

ACM Transactions on Information Systems, 14(3), 268–296.

Hoare, C. A. R. (1969) An axiomatic basis for computer programming. Communications of

the ACM, 12(10), 576–580, 583.

Hofmann, M., Naraschewski, W., Steffen, M., & Stroup, T. (1996) Inheritance of proofs. Tech.

rept. IMMDVII-5/96. Universität Erlangen-Nürnberg.

Hofmann, M., Naraschewski, W., Steffen, M. & Stroup, T. (1998) Inheritance of proofs.

Theory and Practice of Object Systems, 4(1), 51–69.

Igarashi, A. & Kobayashi, N. (2004) A generic type system for the pi-calculus. Theoretical

Computer Science, 311(1–3), 121–163.

Kardkovács, Zs. T. & Surányi, G. M. (2004) An axiomatic model for deductive object-oriented

databases. Pages 325–336 of: Proceedings of the 5th international symposium of Hungarian

researchers on computational intelligence. Budapest Tech and Hungarian Fuzzy Association.

Kobayashi, N. & Yonezawa, A. (1994) Type-theoretic foundations for concurrent object-

oriented programing. Pages 31–45 of: OOPSLA’94. ACM Press.

Krishnaswami, N. & Aldrich, J. (2005) Permission-based ownership: Encapsulating state in

higher-order typed languages. Pages 96–106 of: PLDI’05. New York, NY, USA: ACM

Press.

Li, L. (2004) Extending the Java language with dynamic classification. Journal of object

technology, 3(7), 101–120.

OCL (2003) OCL2.0 — OMG final adopted specification. Object Management Group, Inc.

Papazoglou, M. P. & Krämer, B. J. (1997) A database model for object dynamics. The VLDB

Journal, 6(2), 73–96.

Poetzsch-Heffter, A. & Müller, P. (1998) Logical foundations for typed object-oriented

languages. Pages 404–423 of: Gries, David, & de Roever, Willem P. (eds), PROCOMET’98.

IFIP Conference Proceedings, vol. 125. Chapman & Hall, Ltd.

Rundensteiner, E. A. (1992) MultiV iew: A methodology for supporting multiple views in

object-oriented databases. Pages 187–198 of: Yuan, L.-Y. (ed.), Proceedings of the 18th

international conference on Very Large Data Bases. Morgan Kaufmann.

UML (2003) OMG unified modeling language specification, version 1.5. Object Management

Group, Inc.

Wand, M. (1987) Complete type inference for simple objects. Pages 37–44 of: Proceedings of

symposium on logic in computer science. The Computer Society of IEEE.

https://doi.org/10.1017/S0956796806006174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006174

