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Abstract

Simulation of multiphase flow in fractured reservoirs still poses a challenge due to
the different timescales of fluid flow in fractures and matrix. Common approaches
to modeling fractures in reservoir simulators include the discrete fracture and
matrix (DFM) method, where the fractures are explicitly represented as lower-
dimensional elements in the computational mesh, and multicontinuum approaches
(e.g., dual-porosity and dual-permeability models) where the behavior of the
fractures and matrix are integrated and treated as distinct continua. The latter
requires models (bespoke “transfer functions”) that upscale the multiphase transfer
between fracture and matrix. There are several formulations for transfer functions
available in the literature, and they are often application dependent.

Here, we propose a unified framework for simulation of flow in fractured media.
The framework makes no distinction between dual-continuum and DFM meth-
ods, treating fractures and one or more matrix domains as flowing domains and
virtual domains. Transfer functions are reinterpreted as fluxes between cells of
different domains. This enables us to create an abstraction that encompasses both
methods and makes it easy to build hybridized models including different regions
with different matrix/fracture interaction concepts. We present a series of cases to
illustrate the main differences between both modeling approaches and the bene-
fit of a flexible implementation that enables the development of a fit-for-purpose
simulator for fractured reservoirs based on automatic differentiation.

11.1 Introduction

Modeling of fluid flow in fractured rocks is relevant for a variety of applications that
involve the use of the subsurface, such as recovery of oil and gas from hydrocarbon
reservoirs, enhanced geothermal systems, and geological storage of CO2.
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Enhanced oil recovery (EOR) techniques are typically used to economically
extract hydrocarbons from fractured reservoirs. These techniques often rely on
injection cycles of aqueous and gaseous fluids to exploit capillary and gravitational
forces to sweep oil and gas toward the production wells [7, 10, 37] (see Chapter 7
for EOR simulations using the MATLAB Reservoir Simulation Toolbox [MRST]).
The presence of fractures can lead to a series of undesired operational problems,
such as the early breakthrough of injected fluids, that can severely impact hydro-
carbon production and the economics of the project [45].

Geothermal energy is a clean and sustainable resource that is based on extracting
heat from the subsurface of the Earth. Conventional natural geothermal systems are
typically restricted to volcanic areas, which hinders the contribution of this form
of energy to the global energy portfolio. The quest for improving the contribu-
tion of this resource has led to the development of enhanced geothermal systems
(EGS) [6]. In EGS, hydraulic stimulation is used to engineer fracture-hosted per-
meability for extracting heat from low-permeability rocks outside volcanic areas.
The performance of EGS and the control of circulation efficiency relies heavily on
the modeling of fluid and heat flow in the fractured host rock [17].

Geological storage of CO2 consists of injecting CO2 in subsurface formations
and is regarded as a key technology to decrease the concentration of greenhouse
gases in the atmosphere and reduce its impact on the global climate. Fractured
reservoirs may offer significant potential for combining CO2 storage with enhanced
oil recovery [2] or for storage in fractured saline aquifers [34]. In these applications,
it is important to know how fast CO2 will travel in the fracture system, how fast
CO2 will enter the rock matrix, and how much CO2 will be trapped in the matrix
[34, 35].

All the abovementioned applications have in common the need for understand-
ing and quantifying fluid flow and transport in fractured formations. Although
laboratory experiments are important to obtain insights about the main physical
mechanisms, they fail to reproduce the space and timescales seen in natural sys-
tems. Hence, numerical simulations arise as key tools to not only understand the
behavior of fluid flow in fractured rocks but also provide quantitative estimates of
fluid storage and extraction potential.

In this chapter, we review the main techniques for simulating multiphase flow
in fractured reservoirs and introduce fractures: an MRST module to enable
flexible implementation and evaluation of techniques for simulation of fractured
reservoirs. The fractures module leverages the automatic differentiation frame-
work of MRST to provide a platform for quick development of fit-for-purpose
simulators for fractured reservoirs based on automatic differentiation (AD).

This chapter is organized as follows. In Section 11.2 we describe the challenges
found when modeling fluid flow in fractured reservoirs and explain the main
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modeling techniques. In Section 11.3 we describe the implementation of the
fractures module, focusing on the utilization of MRST’s AD framework to
achieve a flexible and extensible implementation. In Section 11.4 we present
some simple applications that outline how the package may be used to obtain
insight about fluid flow in fractured formations for different geo-energy-related
applications. Finally, in Section 11.5 we present the summary and conclusions of
this chapter.

11.2 Modeling and Simulation Techniques
for Fractured Reservoirs

The geological, physical, and mathematical modeling of flow in fractured reservoirs
is a challenging task. Figure 11.1 shows pictures of two outcrops featuring fracture
networks. In these illustrations we see that fractures are narrow zones of material
discontinuity in the underlying rock. Fractures are often thought of as surfaces but
exhibit a thickness at some spatial scale (here referred to as fracture aperture).
Their distribution can be sparse, with just a few fractures spread over a domain of
interest, or dense, with thousands of fractures located in a typical simulation grid-
block. Fractures can occur isolated or form large connected networks. In any case,
fractures typically dominate the flow behavior.

Fractures are usually invisible to seismic surveys and other geophysical tools
but are often too large to be studied in cores obtained from wells [13]. It is hence
impossible to obtain a mapping of a real 3D fracture network. Geological mod-
els of fracture systems therefore rely on statistical representations, which in turn
require the simulation of many realizations, making computationally effective tools
paramount.

Figure 11.1 Two examples of outcrops displaying fracture networks. (left) Frac-
ture network from the Bristol channel basin, UK, and (right) a fault outcrop in the
Araripe basin, northeast Brazil.
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Often fracture distributions follow scale-invariant power-law distributions which
preclude the definition of a characteristic length scale. Hence, effective upscaled
representations have to be applied cautiously. Fractures can be void and enhance
flow or be filled with sealing material preventing flow. They can be the only avail-
able pore space (e.g., in granite geothermal reservoirs) or act as main conduits,
whereas the matrix contains most of the volume (e.g., shale-gas reservoirs). The
density of fractures can vary substantially within a domain of interest as shown in
the picture of a fault damage zone to the right in Figure 11.1, where the fracture
density increases next to the fault core. Given these complexities, it is no surprise
that there are many different techniques available to simulate flow in fractured
porous rocks. None of them is a panacea. The ideal technique to model fluid flow in
a particular fractured reservoir should take into account the characterization of the
fracture system and the individual fractures (e.g., fracture connectivity and fracture
density), the amount of information available, and the goal of the simulation model
(a simplified model might suit if the goal is to obtain an order of magnitude estimate
of a certain engineering variable).

Techniques to simulate flow in fractured porous rocks are typically separated
into two large families of methods [5]. The first family includes methodologies
that explicitly represent the fractures as geometrical features. Pertaining to this
family are the discrete fracture and matrix (DFM) methods [12, 15, 18, 36] and
the embedded discrete fracture model (EDFM) [25]. The second family of methods
considers the fractures as a second continuum. Of particular importance are the
dual-porosity [4, 49] and dual-porosity dual-permeability [24] methods, together
with their extensions like the multiple interacting continua (MINC) [38], multirate
dual-porosity [16, 32], and multiple subregions [19, 22] methods.

Perhaps the most used variation of the DFM method is the one introduced in [21].
In this work, the authors propose representing each fracture explicitly as virtual
cells; that is, cells that are present in the final linear system but not explicitly present
in the geometrical mesh. This is done by considering fractures as lower-dimension
elements that match the faces (or edges, for 2D meshes) of the mesh elements. Each
face of the mesh that is marked as a fracture will hold additional degrees of freedom
to represent fields that are stored in the virtual fracture cell. Intersections between
multiple fractures are treated via the “star-delta” transformation that computes the
transmissibility between the different fracture cells without the need of explic-
itly accounting for a small element in the intersection. Though the DFM method
is useful for applications (e.g., upscaling of fracture properties), conforming the
computational mesh to a complex system of fractures can be challenging, time-
consuming or even computationally unfeasible.

The EDFM method solves the meshing issue by embedding fractures within the
simulation grid blocks. The method is implemented in the MRST module hfm and
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is discussed in Chapter 9. In the EDFM approach, the fractures do not need to
match edges/faces of the computational grid and the meshing of the fractures is
completely independent from the matrix. This enables, for instance, the utilization
of Cartesian or corner-point grids with arbitrary systems of fractures. In EDFM, the
conservation equations are solved for fracture and matrix separately, and matrix–
fracture transfer is modeled as source terms in this equation. The transmissibility
between fracture and matrix cells is calculated by considering the potential differ-
ence between the centroids of these cells and the cross-sectional area of the fracture
cell within the grid block. The EDFM has been applied successfully to complex
fracture patterns. A currently known limitation of this approach is its inability to
simulate rocks with anisotropic matrix permeability. Moreover, the preprocessing
step that computes fracture–matrix and fracture–fracture intersections is computa-
tionally intensive.

The second family of methods, the multicontinuum methods, are popular in the
reservoir simulation community due to their computational efficiency. They are
based on representing the fracture system as a separate continuum in addition to
rock matrix instead of representing each individual fracture. The communication
between fracture system and rock matrix system is modeled by mass transfer func-
tions that aim to capture the dynamics of the fluid exchange between fractures
and the matrix. Representing the transfer between fractures and the matrix through
simple differential equations based on continuum quantities is a very challenging
task: though the first transfer functions were developed in the 1960s [49], the devel-
opment of transfer functions that correctly capture the physics of flux exchange
between different continua is still an active field of research.

The first transfer functions were based on scaling the pressure potential differ-
ence between fracture and matrix, which makes them simple to implement in any
conventional reservoir simulator. However, a known problem with this formulation
is that it fails to capture the early-time transfer behavior during imbibition into the
matrix. To solve this problem, several authors have attempted to develop transfer
functions that carry more physical knowledge about the fracture–matrix system
[29, 33, 34, 42, 47, 48].

Despite these challenges, multicontinuum methods address the main limi-
tation of methods that represent fractures explicitly: They do not require the
representation of all fractures at the reservoir scale and hence increase the com-
putational efficiency. Most important, the exact location of the fractures in the
subsurface is generally not known: there are no effective methods to obtain such
information.

In summary, both families of techniques have their realm in the modeling of
fluid flow in fractured reservoirs. Often, we find that some combination of these
techniques forms a powerful tool to evaluate fluid flow in fractured reservoirs
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[30, 31, 50]. For instance, a typical workflow involves generating stochastic
realizations of fracture networks, running fluid flow simulations with these fractures
explicitly on a smaller spatial scale, upscaling the effective properties of the
fracture system (such as permeability of the fracture network and the fracture–
matrix transfer), and finally using these effective models as precomputed proxies
for simulation of flow at the field scale with a multicontinuum method.

In the next subsections we will take a deeper look into the mathematical and
computational details of multicontinuum and explicit fracture models. We will
focus our attention on dual-porosity models and DFM models, because these are
the most widely used models for flow simulation in fractured reservoirs. However,
we emphasize that the computational package described in this chapter allows for
quick implementation of other important techniques such as the MINC and EDFM
models.

11.2.1 Governing Equations

Before we start introducing the different methods for simulation of flow in fractured
reservoirs, it is useful to specify the physical model we consider in this chapter.
For a comprehensive presentation of the conservation equations that govern flow
in porous media, we refer to [27]. We consider immiscible flow of three phases,
aqueous, oleic, and gaseous, represented by the subscripts w, o, and g, respectively.
The mass conservation equations for this system are given by

∂φραSα

∂t
+ ∇ · (ρα �vα) = ραqα, (11.1)

where α ∈ {w,o,g}, φ is the rock porosity, ρα is the specific mass of phase α, Sα is
the saturation of phase α, qα are volumetric sources/sinks of phase α due to wells
and/or boundary conditions, and �vα is the Darcy velocity of phase α. We will often
assume that the fluids are compressible, and we may normalize the density of phase
α by its density at standard conditions: ρα = ρstd

α bα (pα), where bα is the shrinkage
factor. The Darcy velocity of phase α is given by

�vα = −Kλα (∇pα − ρα �g) , (11.2)

whereK is the permeability tensor, λα and pα are the mobility and pressure of phase
α, and �g is the gravity acceleration vector. Mobility is defined as the ratio between
the relative permeability to phase α and the viscosity of phase α: λα = krα/μα.

After inserting Darcy’s law (11.2) into the mass conservation equations (11.1),
the model consists of three equations for six unknowns (Sw, So, Sg, pw, po, pg).
The remaining three equations to close the system are the restriction that saturations
should sum up to one (Sw + So + Sg = 1) and two capillary pressure models.
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Capillary pressure is usually assumed to be a saturation-dependent function that
establishes a relationship between the phase pressures. We consider in this work
that pw and po are related via a capillary pressure function that only depends on
water saturation: po = pw + pcow (Sw). Further, the pressures po and pg relate
through a capillary pressure function that only depends on gas saturation: pg =
po + pcog

(
Sg

)
. The underlying concept assumes that there is a clear hierarchy

in wetting behavior, with water being the most and gas the least wetting fluid,
and that the interface structure between oil and water is as if the gas was oil.
Similarly, it assumes that the interface structure between oil and gas is identical to a
situation where all water was oil. Power-law models like the Brooks–Corey model
are usually assumed for krα and pc; see the MRST textbook [27, section 8.1].

11.2.2 Multicontinuum Models

In the multicontinuum approach, the fracture network is represented as a continuum
that is superposed to the rock matrix. The continua interact by a transfer term τ

that models the mass exchange between them. We focus here on a widely used
formulation of multicontinuum models: the dual-porosity model. This formulation
assumes the existence of two continua, one for fractures and one for matrix, usually
called the “flowing” and “stagnant” domains. Hence, (11.1) is extended by a set of
conservation equations for the rock matrix:

∂

∂t
(φmραmSαm) = τα. (11.3)

In the remainder of this chapter, we use subscripts m and f to denote matrix and
fracture continua, respectively. The transfer-rate term τα models the rate of mass
exchange of phase α between fracture and matrix per unit bulk volume. Note that,
to ensure conservation of mass, we need to add an equivalent sink term −τα to the
right-hand side of the flowing domain equations (11.1).

Several formulations for τα have been suggested in the past decades. The first
model was introduced in [49] for a single compressible phase. The multiphase
extension presented in [24] consists of scaling the fracture–matrix pressure poten-
tial by a transmissibility between the continua:

τα = σραkmλα

(
pαf − pαm

)
, (11.4)

where km is a representative value of the matrix permeability and σ is the shape fac-
tor, which has units of [1/L2] and represents the matrix-block geometry. The shape
factor encompasses the matrix-block area open for fluid exchange and the distance
between the point in the matrix block where the matrix pressure is represented.
There are several formulations for the shape factor; some of them are presented in
Table 11.1.
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Table 11.1 Summary of shape factors implemented in the fractures module.
Shape factor classes are placed under the transfer-functions directory. For
further details on the module folder structure, see Subsection 11.3.3.

Reference Shape factor (σ ) Class name

Warren and Root (1963) [49] 60/L2, L = Lx = Ly = Lz WarrenRootShapeFactor

Kazemi et al. (1976) [24] 4

(
1

L2
x
+ 1

L2
y
+ 1

L2
z

)
KazemiShapeFactor

Coats (1989) [8] 24/L2, L = Lx = Ly = Lz CoatsShapeFactor

Lim and Aziz (1995) [28] π2

k̄m

(
kmx

L2
x
+ kmy

L2
y
+ kmz

L2
z

)
,

k̄m = (kmxkmykmz)
1/3

LimAzizShapeFactor

The transfer function given by (11.4), with some minor modifications, is used in
the majority of the academic and commercial simulators that solve dual-porosity
systems. One of the modifications of this transfer function was suggested in [43] to
capture gravity-drainage effects. The modified transfer function takes the following
form:

τo = σρokmλo

[(
pof − pom

)− 1
2

(
ρo − ρg

)
g
(
he

gf − he
gm

)
Lz

]
,

τg = σρgkmλg

[(
pgf − pgm

)+ 1
2

(
ρo − ρg

)
g
(
he

gf − he
gm

)
Lz

]
,

(11.5)

with

he
gf = Sgf − Sgr

1 − Sor − Sgr

, he
gm = Sgm − Sgr

1 − Sor − Sgr

, (11.6)

where Lz is the matrix-block height. With this correction, the gravity potential is
split between wetting and nonwetting phases. This particular formulation of the
transfer function with the gravity-transfer correction is implemented in the widely
used commercial reservoir simulators Eclipse [41] and IMEX [9].

The family of transfer functions defined by (11.4) and (11.5) assumes that the
matrix–fracture transfer is the same across all of the matrix-block faces. To obtain
a more accurate representation of the transfer physics, it was suggested in [39] that
the transfer across each face is treated independently, and the total transfer is given
by the sum over all matrix-block faces:

τα = 1

LxLyLz

∑
i

τ i
α, (11.7)

where Lx , Ly , and Lz are the block dimensions and τ i
α stands for the transfer of

phase α across face i. The face transfer is written as

τ i
α = −σ iραk

i
mλi

α

(
�i

αf −�s
αm

)
, (11.8)
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where �i
αf stands for the potential of phase α at the fracture side of face i, �s

αm is
the potential at the center of the matrix block, and σ i is the shape factor associated
with face i. In theory, the separation of the transfer across each face enables the
treatment of block anisotropy and the representation of gravity drainage. However,
in a later study, the authors acknowledge that the computation of the transfer across
each face of the matrix block does not fully solve the transfer-function modeling
problem [26]. They recommend that simulations of fully-resolved matrix blocks
are carried out to calibrate the transfer model.

A fundamentally different approach is based on the “divide and conquer” con-
cept: Each transfer mechanism is modeled separately and the total transfer between
the continua is obtained by the sum of the transfers of the individual mechanisms.
Modeling each transfer mechanism separately has been done since the work of [39],
but the different models to capture the different physical transfer mechanisms were
combined in the same transfer for the first time in [29]. The exponential model of
[3] has been regularly used to model the transfer due to spontaneous imbibition and
gravity drainage separately [11, 23]. It leads to a transfer function that is linear with
respect to the saturation in the matrix:

τα = βφm

(
S∗

αm − Sαm

)
, (11.9)

where β is the transfer-rate coefficient that models the speed of the transfer process
and S∗

αm stands for the maximum saturation of phase α that the matrix block can
hold. For gravity drainage, S∗

αm is determined by the capillarity–gravity equilib-
rium, whereas S∗

αm = 1 − Sor for spontaneous imbibition (or S∗
αm = 1 − Sgr ,

depending on the phases present in the system).
There are several expressions to obtain β for imbibition and drainage processes;

unfortunately, most of them have limitations. For spontaneous imbibition, the most
accurate expression suggested in [42] is based on the analytical solution for spon-
taneous imbibition in a matrix block and captures reasonably well the general
trend of experimental data available in the literature. However, it underestimates
the early-time imbibition behavior that scales with the square root of time. In
[33], the authors suggested a way to combine the analytical solution for imbibi-
tion having the appropriate

√
t scaling in early time with the late-time solution

of Schmid and Geiger [42]. The drawback of this solution is that it includes an
explicit dependency on time, which makes it challenging to implement in simula-
tors. For gravity drainage, the formulation suggested in [11] is focused on oil and
gas systems and relies on fitting parameters based on high-resolution numerical
simulations. This approach was improved in [34], where the authors revisited the
methodology for estimating β based on the timescales of fluid flow and developed
a model that is more accurate and does not require fitting to fully-resolved block
simulations.
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Figure 11.2 Schematic: geometrical and numerical domains for a 2D fracture
intersection.

In summary, there are numerous ways to model the matrix–fracture transfer
in dual-porosity simulators. The presented list is not exhaustive and we refer to
[1, 40] for comprehensive reviews. All formulations have their weaknesses and
strong points, and they are usually developed to suit a particular application and
physical setting. This is one of the main motivations behind the development of
this MRST-based framework: providing the modeler with a toolbox that enables
the development of a fit-for-purpose simulator for fractured reservoirs.

11.2.3 Discrete Fracture and Matrix Model

The DFM model is the most fundamental approach to model fluid flow in a frac-
tured porous media, because it represents the discontinuities explicitly. The repre-
sentation of fractures as volumetric entities in the geometrical mesh would require
prohibitively fine meshes. Hence, to reduce computational time, the use of lower-
dimensional entities for fractures (1D lines in a 2D model and 2D surfaces in a 3D
model) was introduced by [21]. We focus on 2D fracture geometries in this section.

In DFM, the fractures need to be matched to the edges (or faces) of the computa-
tional grid. Although the fractures are not volumetric elements in the grid, they still
retain their actual aperture af through a property assigned to the edges associated
with the fracture system (see Figure 11.2). The degrees of freedom associated with
the fractures are added to the final system of equations as virtual cells with a pore
volume of Vf = af Af , where Af is the surface area of the fracture. The area Af

reduces to the length of the fracture edge in 2D.
The two-point flux approximation involves approximating the flux across each

face using fields that live in the two cells connected by the face. The flux of phase
α across the face is written as
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vαij =
(
T −1

i,j + T −1
j,i

)−1
λα

(
pαi − pαj

) ≡ Tijλα

(
pαi − pαj

)
, (11.10)

where Ti,j is the one-side transmissibility of cell i associated to the face that con-
nects cells i and j and Tj,i is the one-side transmissibility of cell j associated
to the face that connects cells j and i. The face transmissibility between cells i

and j is denoted by Tij and is calculated as the harmonic average between the
one-side transmissibilities. (For more details on the derivation of the two-point flux
approximation, please refer to the MRST textbook [27].)

Now, to reflect the additional degrees of freedom that live in the virtual cells
representing the fractures, the list of cell connections and the associated transmis-
sibilities need to be updated. Each existing connection between matrix cells i and
j that are separated by a fracture edge of index k needs to be replaced by two new
matrix–fracture connections Tik and Tjk. The transmissibilities between fracture
and matrix are calculated as

Tik =
(
T −1

i,j + T −1
k,i

)−1
. (11.11)

The one-side transmissibility between fracture and matrix is computed as

Tk,i = 2Akkk

ak

, (11.12)

where kk is the fracture edge permeability.
Equation (11.11) defines the transmissibility between the fracture edges and

the matrix cells separated by them. To complete the construction of the DFM
formulation, we need to define the transmissibility between the fracture edges. The
transmissibility between two fracture edges is computed based on the number of
fracture edges that are connected to the node that separates these edges. We write
the transmissibility between fracture segment k and l as

T
f

kl =
T

f

k T
f

l∑n
i=1 T

f

i

, T
f

i = 2aiki

Ai

, (11.13)

where n is the number of fracture edges connected to the intersection node and T
f

i

is the fracture–fracture one-side transmissibility.
This formulation avoids creating virtual cells with small volume at the intersec-

tion nodes. It is called star-delta transformation and was first introduced in [21].
Note that in the case of n = 2 segments the transmissibility collapses to a stan-
dard fracture–fracture cell connection. Therefore, we can treat all fracture–fracture
connections in the same way without any special treatment to intersection nodes.
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In 3D, intersections between fracture planes are lines, and there might be
flow along these lines. This requires treatment of lower-dimensional flowing
domains within the computational grid. We refer to [44] for a formal treatment
of the interaction between domains of different dimensions.

11.3 Implementation in MRST

The different techniques to simulate flow in fractured reservoirs presented in the
previous section appear very different and a general formulation unifying all of
them may seem out of reach. Multicontinuum techniques are usually formulated as
different continua that interact with the flowing continuum via source terms. On the
other hand, DFM methods introduce virtual cells that live in the edges and interact
with the geometrical mesh via transmissibilities that quantify the matrix–fracture
fluid exchange.

However, the methods actually have more in common than meets the eye. Both
families of methods involve a series of common steps:

1. The definition of one or more regions (sets of edges and/or cells in the physical
grid) with virtual cells that represent additional continua;

2. The definition of connections between the grid cells and the virtual cells;
3. The definition of rock and fluid properties for the virtual cells (e.g., relative

permeabilities, porosity, permeability, capillary pressure).
4. The definition of a flux model that defines how the flux of each phase between

the cells is calculated.

In the following subsections, we show that these steps can all be naturally accom-
modated considering the finite-volume method with the two-point flux approxi-
mation in the general framework of MRST. We will present the computational
background behind the fractures module, which provides a framework for quick
implementation of models for flow simulation in fractured reservoirs.

11.3.1 Multicontinuum and Discrete Fracture and Matrix Models

The finite-volume method involves the integration of the mass-conservation equa-
tions (11.1) in a grid volume:

∂

∂t

∫
�e

φραSα dV +
∮

∂�e

ρα �qα · �dS =
∫

�e

ραIα dV, (11.14)

where �e is the domain of a cell element. The mass-conservation equation is obvi-
ously valid for any cell element in the domain, geometrical or virtual (we call a
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Figure 11.3 Schematic of flowing domain with one explicit fracture and a dual-
porosity region. Left figure shows the geometrical domain and the new virtual
cells with the new virtual connections. Right figure shows the final connection list,
including the original connections, the DFM connections, and the dual-porosity
connections. Note that some of the original connections need to be removed due
to the explicit fracture that “breaks” the connection between the cells at both sides
of the fracture.

geometrical cell a cell that belongs to the geometrical grid). The first term is the
mass accumulation term and depends on the pore volume of �e. For geometrical
cells and for dual-porosity virtual cells, the pore volume is simply the porosity of
the continuum at that point in space times the cell volume. For a DFM virtual cell,
we need to use the aperture of the fracture segment to calculate the pore volume
(see definition for fracture segment pore volume in Subsection 11.2.3).

The second term of (11.14) accounts for the mass flow rate of phase α across
the faces of element �e. Note that these faces can be faces in the geometrical grid
(between geometrical cells), virtual faces that connect geometrical and virtual cells,
and virtual faces that connect virtual cells. We refer to all of them as connections.
Figure 11.3 shows a schematic of the connections for a simple Cartesian grid with
a dual-porosity region and one explicit fracture. Again we need to treat the fluxes
differently depending on the nature of the connection. For connections between
geometrical cells, the flux is the normal flux across the corresponding cell inter-
faces in the grid. For connection that involve DFM virtual cells, the flux is calcu-
lated based on the pressure difference and the fracture–matrix and fracture–fracture
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transmissibilities as shown in Subsection 11.2.3. For connections between dual-
porosity virtual cells and geometrical cells, the flux is defined by the transfer func-
tions τα. Note that transfer functions have units of kilograms per second, and though
they are commonly formulated as source terms in equations for fracture and matrix
continua, they can be alternatively seen as fluxes across virtual faces that connect
geometrical and virtual cells.

The discrete divergence operator in MRST, discussed in subsection 4.4.2 of
the MRST textbook [27], is a linear mapping from faces to cells that ensures
that mass is conserved across all faces. That is, this operator ensures that the
mass we take out from one cell (geometrical or virtual) enters the neighbor cell
(geometrical or virtual). Note that this is equivalent to adding the source terms
τα and −τα to the matrix and fractures in the dual-porosity model.

In short, the implementation of a unified framework that encompasses different
methods for fracture representation in the same model requires updating the geo-
metrical grid with new cells (each cell group having different models to compute
pore volume depending on the selected fracture representation) and the grid con-
nection list (represented by G.cells.neighbors in the grid structure in MRST)
with new connections, where each connection has a different model for the phase
fluxes. Luckily, MRST offers a code structure that enables a very flexible imple-
mentation of the main functions and variables required to implement the conserva-
tion equations for flow in fractured porous media.

The important point to note is that the current structure of the AD models of
MRST is based on state functions and enables us to redefine the phase fluxes and
pore volumes for the virtual cells and connections. A state function is an abstraction
of a function of one or more state variables that can be evaluated in the domain
or part of it. The importance of state functions is that they enable us to separate
the logic on how these functions are computed from the logic of the governing
equations. State functions have dependencies, which can be state variables such as
pressure or saturation or other state functions. The state of the system is updated
via a call to the member function evaluateOnDomain of the StateFunction

class. When this function is called for a particular state function, the whole chain of
dependencies of this state function is recursively updated via calls of this member
function. For instance, the phase pressures are defined via a state function that
depends on the state variable pressure and the state function capillary pressure.
The latter depends on the state variable saturation. Note that, when the phase pres-
sures are computed, we do not need to know exactly how the capillary pressure
was computed. This logic belongs to the capillary pressure state-function class.
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By detaching the logic of the different state functions, MRST creates a powerful
framework for flexible model concept implementation. For a comprehensive pre-
sentation of the state functions concept, we refer to Chapter 5.

The following code snippet helps to understand how this concept is applied in
our unified framework. It was extracted from the equations file for immiscible
two-phase flow in MRST (equationsOilWater.m). Building a physical model
in MRST involves evaluating state functions on the domain:

[b, pv] = model.getProps(state, 'ShrinkageFactors', 'PoreVolume');
[b0, pv0] = model.getProps(state0, 'ShrinkageFactors', 'PoreVolume');
[phaseFlux, flags] = model.getProps(state, 'PhaseFlux', 'PhaseUpwindFlag');
[pressures, mob, rho] = model.getProps(state, 'PhasePressures', 'Mobility',

'Density');

and using these to construct the residual of each conservation equation:

[bW, bO] = deal(b{:});
[bW0, bO0] = deal(b0{:});
[vW, vO] = deal(phaseFlux{:});
[upcw, upco] = deal(flags{:});

% Accumulation term for water and oil phase
water = (1/dt).*( pv.*bW.*sW - pv0.*bW0.*sW0 );
oil = (1/dt).*( pv.*bO.*sO - pv0.*bO0.*sO0 );
eqs = {water, oil};

% Fluxes across faces (connections)
eqs{1} = eqs{1} + s.Div(s.faceUpstr(upcw, bW).*vW);
eqs{2} = eqs{2} + s.Div(s.faceUpstr(upco, bO).*vO);

We can see that the mass conservation equations defined by (11.1) are imple-
mented and the AD residuals are stored in the water and oil variables. Note
that there is no information on how the phase fluxes, pore volume, and other state
functions are calculated inside the equations file. We simply need to make sure that
we redefine these state functions in an external class. Note also that the new vW

and vO variables will now have as many entries as connections in our augmented
domain. Therefore, operators like s.Div need also to be augmented by the new
connections that are introduced.

In order to implement the concepts just described in MRST, we develop a class
called FracturedDomainManager that acts as a wrapper around the standard
AD models of MRST. The class has no attributes and provides a method called
addFracturedDomain(model,...) that includes the information about the
fractured domains in the physical model. Note that we send in a model to
this method and receive back the same model with extra information. With this
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structure, we can easily “stack” several virtual domains, all with different models
for the phase flux. For instance, to define a model like the one shown in Figure 11.3,
we write:

%% Adding DFM domain
model = manager.addFracturedDomain(model,'dfm',edges_dfm,rock_dfm,fluid_dfm);

%% Adding dual-porosity domain
transfer_model = KazemiMultiphaseTransferFunction(...

WarrenRootShapeFactor([10,10,10]));
model = manager.addFracturedDomain(model, 'multi_continuum', region_dp,...

rock_dp, fluid_dp, 'transfer_model', transfer_model);

where edges_dfm and region_dp are lists of edges and cells of the geometrical
grid. Note that we need to inform the method which concept of virtual domain
we are adding, because this defines the way we create the connections and the
phase fluxes. If the domain is of type multi_continuum, we need to provide
a transfer model that calculates fluxes between virtual and geometrical cells
for each phase. We can have a glimpse at how such transfer models look.
The following code snippet is adapted from the method transfer of the class
KazemiMultiphaseTransferFunction:

function v = transfer(obj, model, state, domain_id)
[p, s, flag, mob, rho] = ... % Get state variables

model.getProps(state, 'PhasePressures', ...
'Saturation', 'PhaseUpwindFlag', 'Mobility', 'Density');

% Get domain object
dom = model.G.FracturedDomains.domains{domain_id};
% Calculate shape factor
sigma = obj.shape_factor_model.calculate_shape_factor(dom.rock);
vb = model.G.cells.volumes(dom.region);
% Compute fluxes (transfer)
pf = {}; pm = {}; % fracture and matrix pressures
for i = 1:length(p)

% Pressures in fracture and matrix
pf{i} = p{i}(dom.connections(:,1));
pm{i} = p{i}(dom.connections(:,2));
% Fluxes
fmob = model.operators.faceUpstr(flag{i}, mob{i});
fmob = fmob(dom.global_connection_ids);
v{i} = vb.*fmob.*sigma.*(pf{i}-pm{i});

end
end

Note how state functions help us to easily compute the pressure gradient and the
upwind properties to define the transfer function. The method getProps is defined
for any subclass of the PhysicalModel class. This method enables us to get state
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variables and their corresponding AD-computed derivatives, given the string that
defines the state variable name. We then get the corresponding domain structure
given by the domain_id identifier. This step is required, because the framework
allows the user to define simulation models having an arbitrary number of different
domains with different transfer functions. For this particular transfer function, a
shape factor computation is required. The calculation of the shape factor based
on the matrix-block geometry is carried out in the calculate_shape_factor

member function of the ShapeFactor class. Note that no particular definition of
shape factor model is assumed here, which enables the user to explore different
shape factor concepts with any transfer function. Finally, we iterate through the
pressure cell arrays and compute the phase fluxes based on the pressure gradients
of each fluid phase. Note that the pressures are restricted to the cells that define the
virtual connections, as previously defined in the call to the addFracturedDomain
method.

In order to understand how we compute the phase fluxes for the different types
of connections, we can have a look at the evaluateOnDomain method of the state
function FracturedDomainPhaseFlux:

function v = evaluateOnDomain(prop, model, state)
[mob, kgrad] = prop.getEvaluatedDependencies(state, 'FaceMobility',

'PermeabilityPotentialGradient');
% Standard flux evaluation
v = cellfun(@(x,y)-x.*y, mob, kgrad, 'UniformOutput', false);

% Compute fluxes between multi-continuum domains
for j = 1:length(model.G.FracturedDomains.domains)

dom = model.G.FracturedDomains.domains{j};
if(strcmp(dom.type,'multi_continuum'))

ids = dom.global_connection_ids;
vf = dom.transfer_model.transfer(model, state, j);
for i = 1:numel(mob)

v{i}(ids) = vf{i};
end

end
end

Like any standard state function, FracturedDomainPhaseFlux provides a
method called evaluateOnDomain that implements the logic of evaluation of
the state function on the domain given a certain system state. This class is a
specialization of the PhaseFlux state function that treats the flux between cells
differently depending on the cell type. Geometrical connections (i.e., those defined
by standard transmissibilities) are calculated as v = -mob.*kgrad. This happens
in a call to the MATLAB function cellfun, which evaluates a function handle on
each element of a cell array. Here, the function @(x,y)-x.*y is evaluated for all
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of the entries of the mob and kgrad cell arrays, which have as many entries as fluid
phases. Hence, after this call, the cell array v contains the phase fluxes for the
fluid phases. An additional loop is required to compute the fluxes of connections
between multicontinuum domains. In this case the phase flux is computed via an
arbitrary transfer model defined in run time by the user. The transfer method of
this transfer model is called to compute the flux for these connections. A similar
treatment is made in FracturedDomainPoreVolume, in which the cell pore
volume is computed differently depending on the cell type. Hence, the definition
of these state functions is at the core of the fractures module, because it enables
us to treat the flow and pore volume associated to any type of connection or cell
by changing the appropriate state functions without modifying the functions that
define the conservation equations.

This concludes our description of the framework for simulation of flow in frac-
tured reservoirs with different model concepts. At this stage we note that though
this chapter focuses on dual-porosity and DFM models, any other model for simu-
lation in fractured reservoirs, such as EDFM or MINC, fits in this framework. We
briefly discuss some of these models in the next subsection.

11.3.2 A Brief Note on Other Methods

The framework described in the previous section is general and can be extended
to accommodate other models for simulation of fractured reservoirs. In the
multicontinuum family, a natural extension of the dual-porosity model is dual-
porosity dual-permeability models. These models are useful when the perme-
ability contrast between fractures and matrix is lower and there is significant
viscous flow across the matrix continuum. The implementation of a dual-porosity
dual-permeability model in the framework would require extending the con-
nection list to include connections between multicontinuum virtual cells and
updating the FracturedDomainPhaseFlux class (or the transmissibility in
model.operators) to treat the flux between the matrix cells.

Another subfamily of methods in the multicontinuum approach involves dis-
cretizing the matrix blocks to better represent the fluid transfer between fracture
and matrix. One popular formulation of such methods is the MINC model, which
consists of discretizing the cubic matrix blocks in shells to better describe the
imbibition front inside the matrix during waterflooding in fractured reservoirs.
With some minor modifications, this method could be easily implemented in the
framework: One needs to stack several multicontinuum domains and set their cell
lists as the virtual cells instead of the geometrical cells. Then, the shape factors
and the pore volume of the virtual domains have to be changed to represent the
shell structure.
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By default, any new domain considers connection between its cells and the
physical region in which it is defined (geometrical cells). It is possible,
however, to define connection between virtual domains using the optional
argument cell_connection_list of FracturedDomainManager. This is
useful to implement models that consider discretization of matrix blocks, such
as MINC and subdomain methods.

The implementation of other methods that represent the fractures explicitly is
also straightforward in the framework presented in this chapter. Generally speaking,
the implementation of EDFM requires the computation of intersections between
fracture cells and between fracture and matrix cells. These intersections define the
connection lists that are implemented in the class FracturedDomainManager.
Additionally, EDFM approximates the transmissibility between these cells, just
like we define transmissibilities between fracture and matrix connections in DFM
(see Figure 11.2). Hence, the implementation of EDFM in the fractures module
would follow very closely the structure of the DFM code.

11.3.3 Description of the fractures Module

The fractures module is a standard MRST module with the following directory
structure:

fractures
examples

dfm-and-dual-porosity
multirate-transfer
pressure-buildup
validation-dfm

manager
state-functions
FracturedDomainManager.m

transfer-functions
shape-factors
KazemiMultiphaseTransferFunction.m
SaturationDifferenceTransferFunction.m

utils

The examples folder contains the scripts to run the simulations that will be
described in Section 11.4. The utils folder contains helper functions that are used
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throughout the module’s code. The manager folder has a subfolder contain-
ing the state functions that are defined for the fractured domains and the script
FracturedDomainManager.m, which contains a class of the same name and is
considered the “brain” of the fractures module. In this class we implement the
logic of domain superposition that is described in Section 11.3 of this chapter. This
class is able to take a general physical model as an input and superpose multiple
domains to the geometrical grid by defining the method addFracturedDomain.

The transfer-functions folder contains a subfolder with the shape factors
from Table 11.1 and two classes implementing dual-porosity transfer functions that
cover most of the models presented in Section 11.2: the ones that are based on a
pressure potential with a gravity correction term (11.5) and the ones that are based
on a saturation difference scaled by a transfer-rate coefficient (11.9).

At the present stage, the code only implements the DFM method and dual-
porosity models with the aforementioned transfer functions and shape factors.
However, as explained in Subsection 11.3.2, the implementation of other approaches
for flow simulation in fractured reservoirs can be incorporated with little effort in
the fractures module.

11.4 Applications

In this section, we present example cases that outline the main features of the
fractures module. The examples aim to show the reader how to setup simulation
models to simulate fluid flow in fractured reservoirs. Each of the following sub-
section corresponds to one folder inside the examples folder in the accompanying
code. Table 11.2 shows a brief description of each example case and the reference
to the corresponding folders.

Table 11.2 Description of the examples available in the fractures module.
Folders are placed in the fractures/examples folder.

Subsection Folder name Description

11.4.1 validation-dfm Validation of the DFM implementation
against [21]

11.4.2 pressure-buildup Analysis of pressure buildup during fluid
injection in a fractured aquifer

11.4.3
dfm-and-dual-

porosity Simulation model with combined DFM and
dual-porosity regions

11.4.4 multirate-transfer A multirate-transfer dual-porosity simula-
tion example
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Figure 11.4 Left: Comparison of water saturation profiles after 0.0, 0.1, 0.3, and
0.5 pore volumes injected obtained with the present implementation in MRST.
Right: Cumulative oil produced against pore volume water injected yield with
present work compared to data extracted from [21].

11.4.1 Validation of the DFM Implementation

We validate the DFM implementation using a 2D model introduced in [21]. This
model consists of a 1 m × 1 m domain with three fractures and one intersection
(see Figure 11.4). The permeability and the porosity of the matrix are km = 1 md
and φm = 0.2, respectively. The fracture aperture is set to af = 0.1 mm, yielding
a fracture permeability of kf = a2

f /12 = 844.37 D. The matrix and fractures are
initially fully saturated with oil. The viscosities of water and oil are μw = 1 cP
and μo = 0.45 cP. Water is injected in the lower-left corner with an injection rate
of q = 0.01 pore volume per day. The producer well is located in the opposite,
upper-right corner and is operated at a fixed pressure of 0 Pa. Linear relative per-
meabilities and no capillary pressure are assumed for both the fractures and the
matrix. To set up this model, we first identify the fracture edges and then apply the
addFracturedDomain method with domain type 'dfm':

%% Defining fractures
[xf, yf] = deal( G.faces.centroids(:,1),G.faces.centroids(:,2));
frac1 = find(abs(yf-0.2) <= 1e-5 & xf <= 0.6);
frac2 = find(abs(xf-0.3) <= 1e-5 & yf <= 0.4);
frac3 = find(abs(xf-0.7) <= 1e-5 & yf <= 0.7 & yf >= 0.3);
frac_edges = [frac1; frac2; frac3];

%% Fractured domain manager
manager = FracturedDomainManager();
model = manager.addFracturedDomain(model, 'dfm', frac_edges,...

rock_fracture, fluid_fracture);
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We discretized the model using a Cartesian grid with dimensions of 40 × 40
grid cells. This approximately corresponds to the spatial resolution of the fine
grid used in [21]. We ran the simulation for a total time of 200 days using a
timestep of dt = 1 day. Figure 11.4 shows the water saturation profiles after
0.0, 0.1, 0.3, and 0.5 pore volumes injected. By analyzing the cumulative oil
production, shown in Figure 11.4, we see that we obtain a nearly identical result
compared to the reference solution taken from [21]. This validation benchmark
gives us confidence that our implementation in MRST is consistent and can be
applied for simulation of flow through explicitly represented fractures using the
DFM method.

11.4.2 Pressure Buildup in Fractured Aquifers
during CO2 Storage Operations

One of the key points of attention during CO2 storage operations is the control of
the pressure buildup during the lifetime of the project. As CO2 is injected in an
underground formation, the imbalance between mass increase and pressure diffu-
sion might lead to overpressurization of the formation, which could in turn lead to
a series of serious operational problems, such as fault reactivation and fracturing
of the caprock. During the design of storage operations, the injection rate must be
designed in such a way that the maximum pressure in the caprock never exceeds
the caprock’s fracture pressure. Numerical simulations (and analytical solutions)
may be used to achieve this goal.

Whereas fractures are deemed to pose a challenge to storage operations due to
the fast-traveling CO2 plume, the presence of a fracture system in an aquifer might
boost the injection rates due to the increased permeability provided by the fracture
system. In this exercise, we use MRST and the dual-porosity model to evaluate
the gain in injectivity provided by fractures and obtain a better insight on the
key controls on CO2 injection rates in fractured and unfractured formations. This
example is inspired by the work of [46], in which the authors use similar numerical
and analytical models to evaluate the storage potential of large saline aquifers.

Model Setup. We consider an aquifer with size 10 km × 10 km × 100 m, at a
depth of 2 km, with a pressure of Ptop = 20 MPa at the top of the formation.
We assume that rock and fluid properties are constant and uniform throughout
the model domain. We discretize the domain using 50 × 50 × 10 grid blocks.
For simplicity, we consider a single-phase model with a well at the center of the
aquifer that operates at a constant injection rate for a maximum injection time
of 30 years. The aquifer is initially saturated with water having constant density
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of ρ = 103 kg/m3, constant viscosity of μ = 1 cP, and compressibility of c =
0.1 GPa−1. The pressure is initially hydrostatic and we assume the aquifer is con-
fined (no-flow boundary conditions).

Note that in this example we disregard two-phase flow effects that might be
important for the pressure evolution in the aquifer. However, considering a single-
phase model for the pressure buildup typically leads to a conservative estimate,
because CO2 has a compressibility that is orders of magnitude higher than that of
brine. Similarly, whereas most of the target formations for storage projects are not
confined aquifers, assuming a confined formation leads to higher and faster pressure
buildup and hence to a conservative design.

We compare the pressure buildup in two cases: one fractured and one unfractured
version of the aquifer. The unfractured aquifer is modeled as a conventional
single-porosity model, whereas its fractured version is modeled as a dual-porosity
model using the multi_continuum domain type of the FracturedDomain

Manager. Both models have the same total pore volume and the same matrix per-
meability (km = 10 md). For the unfractured model, we assume a matrix porosity of
φm = 0.2, and for the fractured model we assume a matrix porosity of φm = 0.19
and a fracture porosity of φf = 0.01. We consider three permeability contrasts
between fracture and matrix for the fractured model: kf = 10km, kf = 102km, and
kf = 103km. We assume the standard Kazemi et al. [24] transfer function (11.4)
and shape factor (see Table 11.1) for the matrix–fracture transfer, with a constant
fracture spacing of Lx = Ly = 100 m and Lz = 10 m. We consider a fracture
pressure of Pf rac = 30 MPa for the caprock for all cases. The setup of the fractured
continuum in this case reads:

%% Fractured domain manager
manager = FracturedDomainManager();
t_model = KazemiMultiphaseTransferFunction( KazemiShapeFactor([100,100,10]));
region = 1:G.cells.num;
model = manager.addFracturedDomain(model, 'multi_continuum', region,...

rock_matrix, fluid_matrix, t_model);

Results. We first analyze the pressure buildup for the fractured and unfractured
models for a constant injection rate of qi = 1.6 × 10−2 MtCO2/year. Figure 11.5
shows the pressure buildup in the aquifer for the unfractured model and the frac-
tured model with kf = 10km at t = 10 years and t = 30 years. We note that
this injection rate leads to a pressure buildup in the well regions that reaches the
fracture pressure of the caprock in the unfractured model. For the fractured model,
we see that the pressure diffuses throughout the domain more quickly and this
alleviates the pressure increase in the well region. Note that at the end of the
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Figure 11.5 Pressure buildup in fractured model (left) and unfractured model
(right) after 10 years and after 30 years of fluid injection. The fluid pressure
increases uniformly in both matrix and fracture systems in the fractured model
but stays below the fracture pressure of the caprock. In the unfractured model,
the fluid pressure builds up at the well region such that fracture pressure of the
caprock is reached after 30 years of injection.

injection period, after 30 years, the pressure in the fractured model is still much
lower than the fracture pressure in the caprock. We also notice that the pressure
fields in fracture and matrix look quite similar in the fractured model. Indeed, due
to the low compressibility of the resident fluid, the pressure fields in the fracture
system and matrix equilibrate at a relatively fast timescale. For formations with
lower permeability, we can expect a larger transient pressure diffusion time. This
setting usually requires more complex transfer functions, because it is well known
that the standard Kazemi et al. [24] transfer functions underestimate the early-time
transfer, an effect that might lead to a high discrepancy when the transient diffusion
period is long.
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Figure 11.6 Scaling the increase in maximum injection rate with increase in
permeability contrast between fracture an matrix. First point (leftmost) is the
unfractured simulation case. The other three data points correspond to the cases
with kf /km = 10, kf /km = 100, and kf /km = 1 000.

Figure 11.6 shows the maximum injection rates for the unfractured and fractured
cases with kf = 10km, kf = 102km, kf = 103km. We observe a factor two increase
when comparing the maximum injection rates in the unfractured and fractured
models with kf = 10km. In principle, one could think that a further increase in the
fracture permeability would lead to a significant further increase in the maximum
injection rate. This does not happen for this model as evidenced by Figure 11.6.

In fact, when we increase the permeability contrast to a factor of kf /km = 102,
we observe an increase in the maximum injection rate of only factor ≈2.4, and the
cases with kf = 102km and kf = 103km show essentially the same maximum injec-
tion rate. This is not surprising, as seen in the pressure fields in Figure 11.5, because
the pressure profiles in the fractured model with kf = 102km are already uniform
throughout the domain. In other words, there is no further room for improvement
in pressure diffusivity for this particular choice of rock and fluid properties. This
application example – though perhaps simplistic – shows that fractures often pro-
vide an injectivity boost and allow a pressure relief in injection operations, which
may be advantageous to prevent the fracturing of the caprock.

11.4.3 A Model with Explicit Fractures and Dual Porosity

In this section, we present an example that shows how to combine DFM and
dual-porosity concepts in the same model. The model we create is inspired by the
fault model described by [20] and considered in Karimi-Fard et al. [21] for flow
simulation using DFM. A fault typically consists of a low-permeability fault core
and a system of fractures surrounding the fault core, called the fault damage zone.
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Figure 11.7 Schematic of the virtual domains for the present simulation model.
Blue rectangles show the dual-porosity region, which are separated by a region
with explicitly defined fractures using the DFM model.

The fault core is often an extensively fractured region, and a fault may be sealing
or not sealing depending on the connectivity of this fracture network. A variety of
possible scenarios arise due to the uncertainty about the connectivity of fracture
systems in the subsurface. The evaluation of different possible scenarios is of
utmost importance to understand fluid flow in a reservoir that has the presence of a
large-scale fault.

Model Setup. In our illustrative model, we consider a square 2D domain of size
1 000 m × 1 000 m, with a fault crossing the entire domain in the middle of the
x axis (see Figure 11.7). We assume that the fault core (x = 500 m to x = 560 m)
has no matrix permeability (km = 0) but has a system of conductive fractures that
establish a hydraulic connection between the left and right parts of the domain. We
consider all grid edges located in the fault core region as fracture edges with an
aperture af = 0.1 mm, which corresponds to a permeability of kf ≈ 844 D. The
domains are initially saturated with the nonwetting phase. We inject the wetting
phase via a well that operates at constant injection rate of qi = 10−4 m3/s and is
placed at the bottom-left corner of the flowing domain. Fluids are produced via a
well that operates at constant bottom-hole pressure of 500 psia and is placed at the
top-right corner of the flowing domain.

In fractured reservoir simulation, we often assume that the fracture permeabil-
ity is related to its aperture via the so-called cubic law: kf = a2

f /12. Although
this is a useful concept to initialize the permeability of a single fracture, it
assumes that the fractures are flat surfaces, a somewhat unrealistic assumption.
However, we can interpret this aperture as a hydraulic aperture, equivalent to
an aperture of a flat-surface fracture that matches the permeability of a fracture
with a rough surface.
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Around the fault core, we consider two regions with a system of natural fractures
and nonzero permeability in the matrix that will be modeled with the dual-continua
approach. This is the fault damage zone. The left dual-porosity region is located
between x = 400 and x = 500 and the right region is located between x = 560
and x = 650. For these regions, we assume an upscaled fracture permeability of
kf = 100 md. The matrix of the dual-porosity regions has the same properties of
the flowing domain outside the fault zone, km = 1 md.

Fluid transfer in the dual-porosity region is driven by the capillary contrast
between fracture and matrix. We assume a simple Corey-type model for the
capillary pressure of the matrix in this zone: pcow (Sw) = po − pw = PeS

−0.5
w ,

with an entry pressure Pe = 100 kPa. We consider the Kazemi et al. [24] transfer
function with a constant and uniform fracture spacing of Lx = Ly = Lz = 10 m.
The setup of the configuration is as follows. We first define the dual-porosity region
cells and the edges that define the DFM fractures:

%% Dual-porosity cells, fault core cells and DFM edges
xc = G.cells.centroids(:,1);
xf = G.faces.centroids(:,1);
yf = G.faces.centroids(:,2));
dual_porosity_cells = find(((xc >= 400) & (xc <= 500)) | ...

((xc >= 560) & (xc <= 650)));
fault_core_cells = find(xc>=500 & xc<=550);
dfm_edges = find((xf >= 490) & (xf <= 570) & (yf < y_size) & (yf > 0));

We then instantiate the FracturedDomainManager class and add the two frac-
tured domains to the model:

%% Fractured domain manager and transfer model
manager = FracturedDomainManager();
t_model = KazemiMultiphaseTransferFunction(KazemiShapeFactor([10, 10, 10]));

% Dual-porosity domain
model = manager.addFracturedDomain(model, 'multi_continuum',...

dual_porosity_cells, dual_porosity_matrix_rock,...
dual_porosity_matrix_fluid,...
'transfer_model', t_model);

% DFM domain
model = manager.addFracturedDomain(model, 'DFM', dfm_edges,...

dfm_fracture_rock, dfm_fracture_fluid);

where dual_porosity_matrix_rock and dual_porosity_matrix_fluid

are the rock and fluid models for the dual-porosity region and dfm_fracture_rock
and dfm_fracture_fluid are the rock and fluid models for the DFM
region.
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Figure 11.8 Water saturation profiles after 1 500 days, 2 500 days, and 6 000 days
of simulation. Top row shows the water saturation at the flowing domain, which
consists of the matrix of the single-porosity region, the fractures of the dual-
porosity region, and the DFM fractures. Bottom row shows the water saturation at
the stagnant domain, which consists of the matrix of the dual-porosity region.

Results. Figure 11.8 shows the saturation fields after 1 500, 2 500, and 6 000
days of injection. We observe the water saturation spreading radially from the
injection well after 1 500 days. Note that at this stage the water front has just
reached the dual-porosity zone, and we observe some water in the matrix of the
left part of the fault damage zone. After 2 500 days, the water has crossed the
fault core via the high-conductivity fractures and has reached the right half of
the domain. In this region, we also observe transfer to the matrix. Finally, after
6 000 days, we see the water starting to break through in the producer well. The
high permeability of the damage zone creates an elongated water saturation profile
in the dual-porosity region. We note that, whereas it is not possible to see any water
saturating the fault core region due to the zero permeability of the matrix, the high-
conductivity fractures located on the edges of the geometrical mesh in this part of
the domain successfully establish hydraulic connection between the left and the
right part of the model.
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Figure 11.9 Fracture network mapped in Bristol Channel and the corresponding
matrix-block size distribution. The histogram shows the heterogeneity of the
fracture network in terms of matrix-block sizes. The transfer from the bigger
matrix-blocks will occur at a slower rate compared to the fluid transfer from
smaller matrix blocks.

11.4.4 Multirate Transfer in Multicontinuum Model

The fundamental assumption of dual-porosity models is a uniform, well-connected
fracture network with a single set of matrix properties per grid cell. This was
named the sugar cube model in the paper that first introduced dual-porosity
models [49]. This assumption leads to one transfer-rate value for each grid cell.
However, geological outcrops show that in reality the properties of a fracture
network and its host rock are far from being uniform (see Figure 11.9). At the
scale of a simulation grid cell, one can find heterogeneity in several properties,
like the matrix-block sizes, matrix permeability, and matrix porosity. To capture
this heterogeneity, one can use the multirate-transfer model that makes use of a
distribution of transfer rates arising from sub-grid-scale heterogeneity [14, 32]. In
this example, we show how we can use our unified framework to set up multirate-
transfer models.
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Model Setup. We consider a 2D model with dimensions of 1 km × 1 km
discretised with 400 grid cells (each cell with size of 50 m × 50 m). For the flowing
domain we set an effective permeability of kf = 1D and an effective porosity of
φf = 0.01. The permeability and porosity for the stagnant domain (the matrix
domain) are km = 0.1 md and φm = 0.1, respectively. Taking the Klive fracture
network from the Bristol Channel as inspiration, we assume that on the subgrid
scale we can distinguish between five subdomains �i with five distinct transfer
rates βi (see Figure 11.10). In this illustrative example, the majority of the stagnant
domain volume will exchange fluid with the flowing domain at rates higher than
10−9 s−1, whereas the remaining resident fluid will be recovered at lower rates.
Note that here we select our transfer rates and the subdomain volume fractions in
an arbitrary way. In reality these two properties will be informed by statistical data
of the fracture network – e.g., matrix-block size distribution (see Figure 11.9)
– and other rock matrix properties like permeability, porosity, and capillary
pressure.

We can use a cell array to store the transfer model objects with different transfer
rates in order to set up the multirate-transfer model. We add five fractured domains
using the FracturedDomainManager class as follows:

%% Setting pore volume multiplier to account for subdomain volume fractions
sub_domains_fraction = [0.2; 0.35; 0.3; 0.1; 0.05];
for i=1:length(sub_domains_fraction)

mrtr_matrix_fluid{i}.pvMultR = @(p) p*0 + sub_domains_fraction(i);
end

%% Fractured domain manager
manager = FracturedDomainManager();

%% Transfer models
t_rates = [1e-8, 1e-9, 1e-10, 1e-11, 1e-12];
t_model = cell(length(sub_domains_fraction),1);
for i = 1:length(t_rates)
t_model{i} = SaturationDifferenceTransferFunction(t_rates(i));

end

for i=1:length(sub_domains_fraction)
model = manager.addFracturedDomain(model, 'multi_continuum', ...

mrtr_cells, mrtr_matrix_rock, mrtr_matrix_fluid{i}, ...
'transfer_model', t_model{i});

end

Note that to account for the correct pore volume of each subdomain, we are using
the pvMultR function handle of the fluid structure. This automatically scales the
pore volume of each subdomain to its correct size. Because we are setting the pore
volume multipliers to constant values, we need to define the function handle as
p*0+K, where K is the subdomain fraction. This is necessary because the pvMultR
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Figure 11.10 Partition of the stagnant domain �m into five subdomains �i with
five different rates β�i

associated with them.

field was originally designed to be a pressure-dependent pore volume multiplier.
We use a “saturation difference” transfer function [11, 29] that computes the flux
for the virtual connection depending on the difference between the saturation value
in the matrix and the maximum possible water saturation in the matrix (see (11.9)).

We model a two-phase system with water and oil. The viscosities of both phases
are μw = 1cP and μo = 1.5cP, respectively. We assume linear relative permeabil-
ities for all domains. We place an injector in the lower-left corner and a producer
in the upper-right corner connected to the flowing domain. The system is initially
100% saturated by oil and we inject water at a fixed rate of qi = 10−4 m3/s. The
production well operates at a constant bottom-hole pressure of 103 psia. No-flow
boundary conditions are assumed at the boundaries of the domain.

Results. We run the simulation with a timestep of dt = 0.5 year for a total time
of 50 years. For comparison, we also run five other simulations, each with the
standard dual-porosity model using a constant transfer rate. The pore volume of
each individual dual-porosity simulation is the same as the sum of the pore volumes
of the matrix domains in the multirate-transfer simulation. Figure 11.11 shows
the results of the simulations in terms of oil recovery factor and the water cut.
Comparing the single-rate dual-porosity models, we clearly see that lower transfer
rates result in a slower and thus lower total recovery of oil from the rock matrix.
Because less water is imbibing into the rock matrix and more water remains in
the fractured continuum, we see an earlier water breakthrough at the producer for
these models. Accordingly, the cases with higher transfer rates show later water
breakthrough times and higher oil recoveries. Using the multirate-transfer model
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Figure 11.11 Oil recovery factor and water cut for different rates compared with
the multirate case.

that accounts for all transfer rates proportional to the matrix volume, we see that the
oil recovery curve follows the curves of the higher rates at early time but deviates
from it at late times. At the time of deviation, the recovery of oil from the matrix
volume associated with higher rates is nearly completed, whereas the subdomains
with lower rates are still mainly saturated by oil. The overall recovery of oil is
therefore delayed and the water breakthrough expedited.

11.5 Summary and Conclusion

Simulation of multiphase fluid flow in fractured porous media is relevant to a
variety of subsurface applications ranging from geo-energy to water resources.
Fractures are ubiquitous in the subsurface and it is often important to represent them
in simulation models, because they may significantly affect fluid flow. However,
simulation of flow in fractured reservoirs still poses a challenge due to the different
spatial and temporal scales of fluid flow introduced by fractures.

There are different techniques for simulating flow in fractured reservoirs. These
techniques are typically separated into two families of methods: those that explicitly
represent the fractures and those that consider fractures as a different continuum.
Pertaining to the first family is the discrete fracture and matrix model and to the
second family is the dual-porosity model. The first model is typically used when:
(i) there is a need to represent fractures explicitly in the computational model
and (ii) we can afford to conform the computational grid to the fracture network.
The second model is typically used for larger reservoir models, where the explicit
representation of fractures would be unfeasible or uninteresting because the exact
location of each fracture is not known.
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Particularly for dual-porosity models, there is a wide range of models that
upscale the mass transfer between the fracture and matrix continua. Typical models
used in commercial reservoir simulators sometimes fail to describe the physics of
fluid transfer at certain timescales, and many alternative formulations have been
suggested in the literature to overcome such downsides. These formulations can be
significantly different, and it is important to develop a computational simulator that
is not necessarily tailored to one particular transfer model.

In this chapter, we presented a unified framework for simulation of fluid flow in
fractured reservoirs using MRST. The framework makes no distinction between the
different conceptual models for simulation of flow in fractured reservoirs. It treats
different regions of the geometrical grid (e.g., edges or cells) as locations for
virtual domains, which could be dual-continua or explicit fractures. The different
domains (the geometrical plus one or more virtual) interact with each other via
the definition of virtual connections and models that define the phase fluxes.
We leverage the newly introduced framework of state functions in MRST to
provide a flexible computational toolbox that enables users to implement their own
models.

Through a series of application examples we demonstrated how you can use
the presented code to solve a variety of problems relevant to geo-energy applica-
tions. Though most of the examples consider DFM and dual-porosity models,
the presented framework could be easily extended to include most fractured
reservoir simulation concepts introduced in the past decades (e.g., MINC and
EDFM models).
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