Canad. Math. Bull. Vol. 13 (4), 1970

ARE ONE-SIDED INVERSES TWO-SIDED INVERSES IN A MATRIX RING OVER A GROUP RING?

BY GERALD LOSEY

§1. Introduction. A ring R with identity element is n-finite(¹) if for any pair A, B of $n \times n$ matrices over R, $AB = I_n$ implies $BA = I_n$. In module theoretic terms, R is n-finite if and only if in a free R-module of rank n any generating set of n elements is free. If R is n-finite for all positive integers n then R is said to be strongly finite. It is known that all commutative rings, all Artinian rings and all Noetherian rings are strongly finite. These and many other interesting results appear in a paper of P. M. Cohn [1]. In that paper there is a conjecture, attributed to I. Kaplansky, that:

 (C_1) The group algebra of any group over any field is strongly finite. A proof of this conjecture for the field of complex numbers appears in [4].

In §2 of this paper an apparent generalization of this conjecture is considered, namely:

 (C_2) The group ring of any group over any commutative ring is strongly finite.

It is shown (Theorem 1) that, in fact, (C_1) and (C_2) are equivalent. A broader generalization, but one which seems to be easier to handle, is:

 (C_3) The group ring of any group over any strongly finite ring is strongly finite.

Denote by \mathscr{F} the class of all groups G having the property that the group ring RG is strongly finite for any strongly finite ring R. If $G \in \mathscr{F}$ we say that G is an \mathscr{F} -group. Then (C₃) is equivalent to the assertion: \mathscr{F} is the class of all groups. In §3 it is shown that the class \mathscr{F} is closed under taking subgroups and formation of (complete) direct products, that \mathscr{F} contains all finite groups, abelian groups, nilpotent groups and free groups and that any group which is locally or residually an \mathscr{F} -group is an \mathscr{F} -group.

All rings R appearing in this paper are assumed to have an identity element and any subring S of R is assumed to contain the identity element of R.

The following easily proved results will frequently be used in what follows:

(I) Any subring of an *n*-finite (strongly finite) ring is *n*-finite (strongly finite).

(II) A ring is n-finite (strongly finite) if and only if every finitely generated subring is n-finite (strongly finite).

Received by the editors January 20, 1970.

⁽¹⁾ The terminology is a modification of that in [3]. Also, R is *n*-finite if, in the terminology of [1], R does not have property γ_n .

(III) If $\{R_{\alpha}\}_{\alpha \in A}$ is a family of *n*-finite (strongly finite) rings then $\prod_{\alpha \in A} R_{\alpha}$, the complete direct product of the R_{α} , is *n*-finite (strongly finite).

(IV) If R is strongly finite then so is $(R)_n$, the ring of $n \times n$ matrices over R.

The group ring of the group G over the ring R is denoted by RG. If $\sigma: G \to H$ is a homomorphism of groups with kernel K then σ can be extended by linearity to a ring homomorphism $\overline{\varphi}: RG \to RH$ with kernel $I_G(K)$, the ideal of RG generated by the elements k-1 for all $k \in K$ (cf. [2]).

§2. The Equivalence of (C_1) and (C_2) . We first prove

LEMMA 1. Let R be a ring and $\{J_{\alpha}\}_{\alpha \in A}$ a family of ideals of R such that

(i) R/J_{α} is n-finite for all $\alpha \in A$,

(ii) $J = \bigcap_{\alpha \in A} J_{\alpha}$ is locally nilpotent.

Then R is a n-finite.

Proof. Let \hat{R} be the complete direct product of the rings R/J_{α} , $\alpha \in A$. By (III), §1, \hat{R} is *n*-finite. The canonical homomorphism $\varphi: R \to \hat{R}$ sending *r* onto $(r+J_{\alpha})_{\alpha \in A}$ has kernel *J*. Extend φ in the natural manner to a homomorphism $\tilde{\varphi}: (R)_n \to (\hat{R})_n$ of the corresponding matrix rings: $\tilde{\varphi}([a_{ij}]) = [\varphi(a_{ij})]$. The kernel of $\tilde{\varphi}$ is $(J)_n$. Since *J* is locally nilpotent so is $(J)_n$.

Let A, $B \in (R)_n$ and assume $AB = I_n$. Set $D = I_n - BA$. Then $AD = A - ABA = A - I_n A = 0$ and so $D^2 = (I_n - BA)D = D - BAD = D$. Thus $D^m = D$ for all positive integers m. Now $\tilde{\varphi}(A)\tilde{\varphi}(B) = \tilde{\varphi}(AB) = \tilde{\varphi}(I_n) = I_n$ and so $\tilde{\varphi}(B)\tilde{\varphi}(A) = I_n$ since \hat{R} is *n*-finite. Hence, $\tilde{\varphi}(D) = \tilde{\varphi}(I_n - BA) = 0$ and $D \in (J)_n$. Since $(J)_n$ is locally nilpotent, $D^m = 0$ for sufficiently large m. Therefore D = 0 and $BA = I_n$.

REMARK. Hypothesis (ii) could be replaced by the weaker condition (ii'): $J = \bigcap_{\alpha \in A} J_{\alpha}$ is locally residually nilpotent.

The equivalence of conjecture (C_1) and (C_2) follows from

THEOREM 1. Let G be a group. Then RG is n-finite for every commutative ring R if and only if kG is n-finite for every field k.

Proof. Assume kG is *n*-finite for all fields k. If R is an integral domain with field of quotients k then RG is a subring of kG and, thus, RG is *n*-finite.

Now let *R* be any commutative ring, $\{P_{\alpha}\}_{\alpha \in A}$ the family of prime ideals of *R* and $\mathcal{N} = \bigcap_{\alpha \in A} P_{\alpha}$ the nil radical of *R* (cf. [6, p. 151]). Since \mathcal{N} is nil and *R* is commutative, \mathcal{N} is locally nilpotent. Let $J_{\alpha} = P_{\alpha}G$, $\alpha \in A$. Then J_{α} is an ideal of *RG* and $RG/J_{\alpha} = RG/P_{\alpha}G \cong (R/P_{\alpha})G$. Since R/P_{α} is an integral domain, RG/J_{α} is *n*-finite. Moreover, $J = \bigcap_{\alpha \in A} J_{\alpha} = \bigcap_{\alpha \in A} P_{\alpha}G = \mathcal{N}G$. Since \mathcal{N} is locally nilpotent so is $\mathcal{N}G$. The family of ideals $\{J_{\alpha}\}_{\alpha \in A}$ thus satisfies hypothesis of Lemma 1. Therefore *RG* is *n*-finite.

The opposite implication is obvious.

476

GROUP RING

§3. \mathscr{F} -groups. A group G is an \mathscr{F} -group if RG is strongly finite for all strongly finite rings R. It is easily seen that $(RG)_n \cong (R)_n G$. It thus follows that G is an \mathscr{F} -group if and only if RG is 1-finite for all strongly finite rings R. It is clear that the identity group {1} is an \mathscr{F} -group, any group isomorphic to an \mathscr{F} -group is an \mathscr{F} -group and any subgroup of an \mathscr{F} -group is an \mathscr{F} -group. Since any finite set of elements of RG involve only finitely many elements of G it follows that G is an \mathscr{F} -group if and only if every finitely generated subgroup of G is an \mathscr{F} -group. In other words, G is an \mathscr{F} -group if and only if it is locally an \mathscr{F} -group.

LEMMA 1. Let G_1, G_2, \ldots, G_k be \mathscr{F} -groups. Then $G_1 \times G_2 \times \cdots \times G_k$ is an \mathscr{F} -group.

Proof. It suffices to prove the result for k=2; the lemma then follows by induction on k. Let G, H be \mathscr{F} -groups and R a strongly finite ring. Then RG is strongly finite and, hence, (RG)H is strongly finite. The mapping $\varphi: (RG)H \to R(G \times H)$ defined by

$$\sum_{h\in H} \left(\sum_{g\in G} r(g,h)g \right) h \to \sum_{(g,h)\in G\times H} r(g,h)(g,h)$$

is easily verified to be a ring isomorphism. Thus $R(G \times H)$ is strongly finite and, therefore, $G \times H$ is an \mathcal{F} -group.

THEOREM 2. Let $\{N_{\alpha}\}_{\alpha \in A}$ be a family of normal subgroups of G such that, for each $\alpha \in A$, G/N_{α} is an \mathscr{F} -group. Let $N = \bigcap_{\alpha \in A} N_{\alpha}$. Then G/N is an \mathscr{F} -group.

Proof. By passing to quotients if necessary, we may assume $N = \{1\}$. Let $N_1, \ldots, N_k \in \{N_\alpha\}$. The mapping $G \to G/N_1 \times \cdots \times G/N_k$ given by $g \to (gN_1, \ldots, gN_k)$ is a homomorphism of G into the \mathscr{F} -group $G/N_1 \times \cdots \times G/N_k$ with kernel $\bigcap_{i=1}^k N_i$. Thus $G/\bigcap_{i=1}^k N_i$ is isomorphic to a subgroup of an \mathscr{F} -group and is itself an \mathscr{F} -group. Hence we may assume that the set $\{N_\alpha\}$ is closed under finite intersections. Consequently, given finitely many elements $x_1, x_2, \ldots, x_n \in G$ there exists $N_\beta \in \{N_\alpha\}$ such that $x_i \notin N_\beta$, $i = 1, 2, \ldots, n$.

Let *R* be a strongly finite ring. Then $R(G/N_{\alpha}) \cong RG/I_G(N_{\alpha})$ is strongly finite for each $\alpha \in A$. Let \hat{R} denote the complete direct product of the rings $RG/I_G(N_{\alpha})$, $\alpha \in A$. Then \hat{R} is strongly finite. Let $\alpha : RG \to \hat{R}$ be the canonical homomorphism. The kernel of α is $J = \bigcap_{\alpha \in A} I_G(N_{\alpha})$. Suppose $r \in J$, $r \neq 0$. Then $r = \sum_{i=1}^{n} r(g_i)g_i$ where the g_i , $i=1, 2, \ldots, n$, are distinct elements of *G* and $r(g_i) \neq 0$, $i=1, 2, \ldots n$. Let N_{β} be such that $g_i g_j^{-1} \notin N_{\beta}$, $i, j=1, 2, \ldots, n, i \neq j$. Then $g_i N_{\beta} \neq g_j N_{\beta}$ if $i \neq j$. Thus the element $\bar{r} = \sum_{i=1}^{n} r(g_i)g_i N_{\beta} \neq 0$ in $R(G/N_{\beta})$ and so its image $\sum_{i=1}^{n} r(g_i)g_i + I_G(N_{\beta})$ under the natural isomorphism of $R(G/N_{\beta})$ onto $RG/I_G(N_{\beta})$ is not zero, that is, $r = \sum_{i=1}^{n} r(g_i)g_i \notin I_G(N_{\beta})$, a contradiction. Hence J = (0) and $\alpha : RG \to \hat{R}$ is one-one. Since RG is isomorphic to a subring of the strongly finite ring \hat{R} , RG is itself strongly finite and, therefore, *G* is an \mathcal{F} -group.

For any group property \mathscr{E} , a group G is said to be residually an \mathscr{E} -group if there 5-c.m.b.

1970]

exists a family $\{N_{\alpha}\}$ of normal subgroups of G such that, for each α , G/N_{α} is an \mathscr{E} -group and $\bigcap_{\alpha} N_{\alpha} = \{1\}$. Thus an equivalent form of Theorem 2 is

THEOREM 2'. A group G is an \mathcal{F} -group if and only if it is residually an \mathcal{F} -group.

COROLLARY. If $\{G_{\alpha}\}_{\alpha \in A}$ is a family of \mathscr{F} -groups then the complete direct product $\hat{G} = \prod_{\alpha \in A} G_{\alpha}$ is an \mathscr{F} -group.

Proof. For each $\alpha \in A$, set $N_{\alpha} = \{(g_{\beta})_{\beta \in A} \mid g_{\alpha} = 1\}$. Then $\hat{G}/N_{\alpha} \cong G_{\alpha}$ and $\bigcap_{\alpha} N_{\alpha} = \{1\}$. By Theorem 2, \hat{G} is an \mathscr{F} -group.

THEOREM 3. Let G be a group and H a subgroup of G of finite index. If H is an \mathcal{F} -group then G is an \mathcal{F} -group.

Proof. Let $G = Hx_1 \cup Hx_2 \cup \cdots \cup Hx_n$ be a decomposition of G into distinct cosets of H. Let R be a strongly finite ring. Then RG is a free left RH-module having x_1, \ldots, x_n as a free basis. Thus

$$\operatorname{Hom}_{RH}(RG, RG) \cong (RH)_n$$

and, since *RH* is strongly finite, it follows from IV, §1, that $\operatorname{Hom}_{RH}(RG, RG)$ is strongly finite. For each $\alpha \in RG$ the mapping $\overline{\alpha} \colon RG \to RG$ defined by $(\beta)\overline{\alpha} = \beta\alpha$ is an *RH*-homomorphism of *RG* into itself (as a module). The mapping $\alpha \to \overline{\alpha}$ is easily verified to be a ring homomorphism of *RG* into $\operatorname{Hom}_{RH}(RG, RG)$. If $\overline{\alpha} = 0$ then $0 = (1)\overline{\alpha} = 1\alpha = \alpha$ and, hence, the homomorphism is one-one. Thus *RG* is isomorphic to a subring of a strongly finite ring and is itself strongly finite. Therefore *G* is an \mathscr{F} -group.

COROLLARY. Any finite group is an \mathcal{F} -group. Therefore all locally finite groups and all residually finite groups are \mathcal{F} -groups.

A result of K. Hirsch asserts that any finitely generated nilpotent group is residually finite (see [5, p. 80]). Consequently, we have

COROLLARY. Any nilpotent group, locally nilpotent group or residually nilpotent group is an \mathcal{F} -group.

Since abelian groups are nilpotent and free groups are residually nilpotent (see [5, p. 80]) this implies

COROLLARY. Any abelian group is an \mathcal{F} -group. Any free group is an \mathcal{F} -group. Thus, any locally free group or residually free group is an \mathcal{F} -group.

The most obvious next stage in the investigation is to examine whether or not solvable groups are \mathcal{F} -groups. We have made only the following short steps in this direction.

THEOREM 4. Let G be a group, N a normal subgroup and assume

(i) G/N is abelian,

(ii) N is finite.

478

Then G is an \mathcal{F} -group.

1970]

Proof. It is sufficient to assume G/N finitely generated. Then $G/N \cong G_1/N \times \cdots \times G_k/N$ where each factor G_i/N is cyclic. Each finite cyclic factor is an \mathscr{F} -group (by Theorem 3) and so the problem reduces to the special case: G/N infinite cyclic. Let xN be a generator of G/N. Then $y \to x^{-1}yx$ is an automorphism of N. Since N has a finite automorphism group, x^m centralizes N for some m > 0. Thus $N^* = \langle x^m, N \rangle = \langle x^m \rangle \times N$ is an \mathscr{F} -group and $[G: N^*] = m$. By Theorem 3, G is an \mathscr{F} -group.

REMARK. Theorem 4 remains true if (ii) is replaced by (ii'): N is an \mathcal{F} -group and has a periodic automorphism group.

COROLLARY. Let G be a group, N a normal subgroup and assume

(i) G/N is abelian,

(ii) N is finitely generated abelian.

Then G is an F-group.

Proof. It is not difficult to show that N has a family $\{H_{\alpha}\}$ of *characteristic* subgroups such that N/H_{α} is finite for each α and $\bigcap_{\alpha} H_{\alpha} = \{1\}$. The H_{α} are then normal in G and, by Theorem 4, G/H_{α} is an \mathscr{F} -group. By Theorem 2, G is an \mathscr{F} -group.

References

1. P. M. Cohn, Some remarks on the invariant basis property, Topology, 5 (1966), 215-228.

2. S. A. Jennings, The group ring of a class of infinite nilpotent groups, Canad. J. Math. 7 (1955), 169-187.

3. I. Kaplansky, Rings of operators, Benjamin, New York, 1969.

4. M. S. Montgomery, Left and ring inverses in group algebras, Bull. Amer. Math. Soc., 75 (1969), 539-540.

5. H. Neumann, Varieties of Groups, Springer-Verlag, New York, 1967.

6. O. Zariski and P. Samuel, Commutative Algebra, I, Van Nostrand, Princeton, 1958.

UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA 479