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A Characterization of PSU11(q)

A. Iranmanesh and B. Khosravi

Abstract. Order components of a finite simple group were introduced in [4]. It was proved that some

non-abelian simple groups are uniquely determined by their order components. As the main result of

this paper, we show that groups PSU11(q) are also uniquely determined by their order components. As

corollaries of this result, the validity of a conjecture of J. G. Thompson and a conjecture of W. Shi and

J. Bi both on PSU11(q) are obtained.

1 Introduction

For an integer n, let π(n) be the set of prime divisors of n. If G is a finite group

then π(G) is defined to be π(|G|). The prime graph Γ(G) of a group G is a graph

whose vertex set is π(G), and two distinct primes p and q are linked by an edge if

and only if G contains an element of order pq. Let πi , i = 1, 2, . . . , t(Γ(G)) be the

connected components of Γ(G). For |G| even, π1 will be the connected component

containing 2. Then |G| can be expressed as a product of some positive integers mi , i =

1, 2, . . . , t(Γ(G)), with π(mi) = πi . The integers mi are called the order components

of G. The set of order components of G will be denoted by OC(G). If the order of

G is even, it is assumed that m1 is the even order component and m2, . . . , mt(Γ(G))

are the odd order components of G. The order components of non-abelian simple

groups having at least three prime graph components are obtained by G. Y. Chen [8,

Tables 1–3]. The order components of non-abelian simple groups with two order

components can be obtained according to [19, 25; see also 12, 13]. The following

groups are uniquely determined by their order components : G2(q) where q ≡ 0

(mod 3) [2], sporadic simple groups [3], Suzuki-Ree groups [6], E8(q) [7], PSL2(q)

[8], Ap where p and p − 2 are primes [10], PSL(3, q) [12, 13], PSL(5, q) [11], F4(q)

[14,17], C2(q) where q > 5 [15], PSU (3, q) for q > 5 [18] and PSU5(q) [16].

In this paper, we prove that the groups PSU11(q), for any prime power q, are also

uniquely determined by their order components, that is we have:

The Main Theorem Let G be a finite group, M = PSU11(q) with OC(G) = OC(M).

Then G ∼= M.

2 Preliminary Results

In order to prove the main theorem, we present some lemmas.
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Definition 2.1 ([9]) A finite group G is called a 2-Frobenius group if it has a normal

series G > K > H > 1, where K and G/H are Frobenius groups with kernels H and

K/H, respectively.

Lemma 2.2 ([25, Theorem A]) If G is a finite group with prime graph of more than

one component, then G is one of the following groups:

(a) a Frobenius or 2-Frobenius group;

(b) a simple group;

(c) an extension of a π1-group by a simple group ;

(d) an extension of a simple group by a π1-solvable group;

(e) an extension of a π1-group by a simple group by a π1-group.

Lemma 2.3 ([25, Lemma 3]) If G is a finite group with more than one prime graph

component and has a normal series 1 E H E K E G such that H and G/K are π1-groups

and K/H is simple, then H is a nilpotent group.

The next lemma follows from [1, Theorem 2]:

Lemma 2.4 Let G be a Frobenius group of even order and let H, K be Frobenius com-

plement and Frobenius kernel of G, respectively. Then t(Γ(G)) = 2, and the prime

graph components of G are π(H), π(K), and G has one of the following structures:

(a) 2 ∈ π(K) and all Sylow subgroups of H are cyclic.

(b) 2 ∈ π(H), K is an abelian group, H is a solvable group, the Sylow subgroups of odd

order of H are cyclic groups and the 2-Sylow subgroups of H are cyclic or generalized

quaternion groups.

(c) 2 ∈ π(H), K is an abelian group and there exists H0 ≤ H such that |H : H0| ≤ 2,

H0 = Z × SL(2, 5), (|Z|, 2.3.5) = 1 and the Sylow subgroups of Z are cyclic.

The next lemma follows from [1, Theorem 2] and Lemma 2.3

Lemma 2.5 Let G be a 2-Frobenius group of even order. Then t(Γ(G)) = 2 and G has

a normal series 1 E H E K E G such that

(a) π1 = π(G/K) ∪ π(H) and π(K/H) = π2;

(b) G/K and K/H are cyclic, |G/K| divides |Aut(K/H)|, (|G/K|, |K/H|) = 1 and

|G/K| < |K/H| ;

(c) H is nilpotent and G is a solvable group.

Lemma 2.6 ([5, Lemma 8]) Let G be a finite group with t(Γ(G)) ≥ 2 and let N be a

normal subgroup of G. If N is a πi−group for some prime graph component of G and

m1, m2, . . . , mr are some order components of G but not a πi-number, then m1m2 . . . mr

is a divisor of |N| − 1.

Lemma 2.7 ([4, Lemma 1.4]) Suppose G and M are two finite groups satisfying

t(Γ(M)) ≥ 2, N(G) = N(M), where N(G) = {n | G has a conjugacy class of size n},

and Z(G) = 1. Then |G| = |M|.
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The next lemma follows from [4, Lemma 1.5].

Lemma 2.8 Let G1 and G2 be finite groups satisfying |G1| = |G2| and N(G1) =

N(G2). Then t(Γ(G1)) = t(Γ(G2)) and OC(G1) = OC(G2).

Lemma 2.9 Let G be a finite group and let M be a non-abelian simple group with

t(Γ(M)) = 2 satisfying OC(G) = OC(M). Let |M| = m1m2, OC(M) = {m1, m2},

and π(mi) = πi for i = 1 or 2. Then |G| = m1m2 and one of the following holds:

(a) G is a Frobenius or a 2-Frobenius group;

(b) G has a normal series 1 E H E K E G such that G/K is a π1-group, H is a nilpo-

tent π1-group, and K/H is a non-abelian simple group. Moreover, OC(K/H) =

{m ′

1, m ′

2, . . . , m ′

s , m2}, |K/H| = m ′

1m ′

2 · · ·m ′

s m2 and m ′

1m ′

2 · · ·m ′

s

∣

∣m1, where

π(m ′

j) = π j(K/H), 1 ≤ j ≤ s. Also, |G/K|
∣

∣|Out(K/H)|.

Proof The first part of the lemma follows from the above lemmas. Since t(Γ(G)) ≥
2, we have t(Γ(G/H)) ≥ 2. Otherwise, t(Γ(G/H)) = 1, hence t(Γ(G)) = 1, which

is a contradiction, since H is a π1-group. Moreover, we have Z(G/H) = 1. For

any xH ∈ G/H and xH 6∈ K/H, xH induces an automorphism of K/H and this

automorphism is trivial if and only if xH ∈ Z(G/H). Therefore, G/K ≤ Out(K/H)

and since Z(G/H) = 1, it follows that |G/K|
∣

∣|Out(K/H)|.

Lemma 2.10 Let M = PSU11(q) . Suppose D(q) =
q11+1

k(q+1)
, where k = (11, q + 1).

(a) If p ∈ π(M), then |Sp| ≤ q55 where Sp ∈ Sylp(M);

(b) If p ∈ π1(M) and pα
∣

∣ |M|, then pα − 1 ≡ 0 (mod D(q)) if and only if pα
= q22

or q44;

(c) If p ∈ π1(M) and pα
∣

∣ |M|, then pα + 1 ≡ 0 (mod D(q)) if and only if pα
= q11,

q33 or q55.

Proof

(a) We know that

|M| =q55(q + 1)10(q − 1)5(q2 − q + 1)3(q2 + 1)2(q4 − q3 + q2 − q + 1)2

× (q2 + q + 1)(1 − q + q2 − q3 + q4 − q5 + q6)(q4 + 1)(q6 − q3 + 1)

× (q4 + q3 + q2 + q + 1) ×
(q11 + 1)

k(q + 1)
.

By easy calculations we determine the greatest common divisors of any two factors

of |M|. For example, (q − 1, q + 1)
∣

∣2, (q + 1, q2 − q + 1)
∣

∣3, (q + 1, q2 + 1)
∣

∣2,

(q + 1, q4 −q3 + q2 −q + 1)
∣

∣5, (q + 1, q6 −q5 + q4 −q3 + q2 −q + 1)
∣

∣7, (q + 1, q4 + 1)
∣

∣2,

(q + 1, q6 − q3 + 1)
∣

∣3 and q + 1 is coprime with respect to other factors of |M|.

So if pα
∣

∣ |M| and p ∈ π1, then one of the following occurs: pα is a divisor of q55,

2834527(q+1)10, 213523(q−1)5, 311(q2−q+1)3, 216(q2 +1)2, 510(q4−q3 +q2−q+1)2,
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35(q2 + q + 1), 710(1 − q + q2 − q3 + q4 − q5 + q6), 217(q4 + 1), 313(q6 − q3 + 1) or

55(q4 + q3 + q2 + q + 1). Therefore, (a) follows.

(b) Now let there exist p ∈ π1(M), pα
∣

∣|M| and pα − 1 ≡ 0 (mod D(q)). It is

obvious that pα > D(q).

For q ≤ 32 numerical calculations show that there is no pα such that (b) holds.

Hence let q > 32. We consider the following possible cases:

(1) If pα | 2834527(q + 1)10, then we consider the following subcases:

(1.1) Let p 6= 2, 3, 5, 7 and pα
∣

∣(q + 1)10 and pα − 1 ≡ 0 (mod D(q)). Then

pα − 1 = sD(q) for some s > 0. But (q + 1)10/20 < D(q), which implies

that pα
= (q + 1)10/t , where st ≤ 20. Now numerical calculation shows

that these equations have no solution and hence there can not exist any p,

α such that the above relations holds.

(1.2) If p = 2, then 2α|28(q + 1)10. Since 28(q + 1)10/4000 < D(q) for q > 32,

we have 28(q+1)10/t−1 = sD(q), where st ≤ 4000. Now by using mathe-

matical software (for example Maple), we can check all of these equations

and see that there exists no α such that (b) holds.

(1.3) If p = 3, 5 or 7, then we get a contradiction similar to subcase (1.2).

(2) If pα
∣

∣213523(q − 1)5, then pα divides 213(q − 1)5, 52(q − 1)5 or, 3(q − 1)5. But

in each case pα < D(q) which implies that pα − 1 6≡ 0 (mod D(q)).

(3) If pα
∣

∣311(q2 − q + 1)3, 216(q2 + 1)2, 510(q4 − q3 + q2 − q + 1)2, 35(q2 + q + 1),

710(1−q+q2−q3+q4−q5+q6), 217(q4+1), 313(q6−q3+1) or, 55(q4+q3+q2+q+1),

then in each case pα < D(q) which implies that pα − 1 6≡ 0 (mod D(q)).

(4) If pα
∣

∣q55, then we consider two subcases, namely k = 1, k = 11. Since the proofs

are similar we state only the case k = 1.

We can see easily that q = pn for some n > 0. First we prove that if pβ
∣

∣q11 and

pβ + 1 ≡ 0 (mod D(q)), then pβ
= q11. We have

pβ + 1 = s.D(q) = s.
q11 + 1

q + 1
= s(q10 − · · · + q2 − q + 1),

and 1 ≤ s ≤ q + 1. Also since q
∣

∣ pβ we have q
∣

∣s − 1 which implies that q ≤ s − 1.

Therefore, q + 1 = s and hence pβ
= q11.

Now we prove that if pα
∣

∣q22 and pα − 1 ≡ 0 (mod D(q)), then pα
= q22. If we

assume that pα ≤ q11 and pα + 1 = s · D(q), then s < q + 1. Since q
∣

∣ pα we have

q
∣

∣s + 1 and hence q ≤ s + 1. Thus s = q or s = q − 1. But easy calculation shows

that pα − 1 6= s · D(q), which is a contradiction. Therefore, pα > q11 and hence

pα
= q11 pm for some m > 0. Now we have

pα − 1 = q11 pm − 1 = pm(q11 + 1) − pm − 1.

Therefore, D(q)
∣

∣ pm + 1 which implies that pm
= q11, by the above statement and

hence pα
= q22. If pα > q22 and pα|q55, then by a similar method we conclude that

pα
= q44.
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(c) Similar to part (b), we conclude that pα must be equal to q11, q33 or q55 and the

proof is complete.

Remark For convenience let X = {q11, q33, q55} and Y = {q22, q44}.

Lemma 2.11 Let G be a finite group, M = PSU11(q) with OC(G) = OC(M). Then

G is neither a Frobenius group nor a 2-Frobenius group.

Proof G is not a Frobenius group otherwise by Lemma 2.4, OC(G) = {|H|, |K|}
where K and H are the Frobenius kernel and the Frobenius complement of G, respec-

tively. Since |H|
∣

∣ (|K|−1), we have |H| < |K|. So |H| =
q11+1

(q+1)(11,q+1)
, |K| = |G|/|H|.

There exists a prime p such that pα
∣

∣3(q − 1)5. If P is a p-Sylow subgroup of K, then

since K is nilpotent, P ⊳ G and hence D(q)
∣

∣ |P| − 1 by Lemma 2.6, which implies

that pα ∈ Y by Lemma 2.10(b). Then 3(q − 1)5 ≥ q22 which is a contradiction.

Therefore, G is not a Frobenius group.

Let G be a 2-Frobenius group. By Lemma 2.5, there is a normal series 1EHEKEG

such that |K/H| =
q11+1

(q+1)(11,q+1)
< 28(q + 1)10 and |G/K| < |K/H|. Thus there exists

a prime p such that p
∣

∣28(q + 1)10 and p
∣

∣ |H|. If P is a p-Sylow subgroup of H, since

H is nilpotent, P must be a normal subgroup of K with P ⊆ H and |K| =
q11+1

k(q+1)
|H|.

Therefore, q11+1

k(q+1)

∣

∣(|P| − 1) by Lemma 2.6 and hence q22
∣

∣ |P|, which is impossible

since |P| ≤ 28(q + 1)10. Therefore, G is not a 2-Frobenius group.

Lemma 2.12 Let G be a finite group. If the order components of G are the same as

those of M = PSU11(q), then G has a normal series 1 E H E K E G such that H and

G/K are π1-groups and K/H is a simple group. Moreover, the odd order component of

M is equal to one of those of K/H, and in particular, t(Γ(K/H)) ≥ 2.

Proof The first part of the Lemma follows from the above lemmas since the prime

graph of M has two components. For primes p and q, if K/H has an element of

order pq, then G has one. Hence, by the definition of prime graph component, the

odd order component of G must be an odd order component of K/H.

3 Proof of the Main Theorem

By Lemma 2.12, G has a normal series 1 E H E K E G such that H and G/K are

π1-groups, K/H is a non-abelian simple group, t(Γ(K/H)) ≥ 2 and the odd order

component of M is an odd order component of K/H. We now proceed the proof of

the main theorem in the following steps:

Step 1 If K/H ∼= An where n = p, p + 1, p + 2 and p ≥ 5 is a prime number. Then

we have two cases:

Case 1.1: k = 1. In this case p or p − 2 is equal to q11+1

q+1
. If p =

q11+1

q+1
, then

p − 1 = q(q − 1)(q4 + q3 + q2 + q + 1)(q4 − q3 + q2 − q + 1) and

(1) p − 2 = q10 − q9 + q8 − q7 + q6 − q5 + q4 − q3 + q2 − q − 1.
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But easy calculation shows that (p − 2, |G|)
∣

∣35 × 52 × 7 × 43 and hence p − 2
∣

∣35 ×
52 × 7× 43. So p = 3, 5, 7, . . . . But D(2) = 683, D(3) = 44287, D(4) = 838861 and

hence equation (1) is not satisfied in each case. If p − 2 = q10 − q9 + · · ·− q + 1, then

we proceed similarly for p − 4 since p > 5.

Case 1.2: k = 11. Then p or p − 2 is equal to q11+1

11(q+1)
and p − 2 or p − 4 must be

equal to q10
−q9+···−q−21

11
, respectively. Now we proceed similarly to the last case and

get a contradiction.

Step 2 If K/H is a sporadic simple group, then D(q) must be equal to 5, 7, 11, 13,

17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 67, 71, which has no solution, since D(2) = 683.

Therefore, K/H is a simple group of Lie type.

Step 3 If K/H ∼= E6(q ′), then D(q) = (q ′6 + q ′3 + 1)/(3, q ′ − 1) and hence q ′9 ∈ Y ,

which implies that q ′9
= q22 or q44. But q ′36

> q55 which is a contradiction, by

Lemma 2.10(a).

Step 4 If K/H ∼= 2E6(q ′), then D(q) = (q ′6 −q ′3 + 1)/(3, q ′ + 1) and hence q ′9 ∈ X,

which implies that q ′9
= q11, q33 or q55. If q ′9

= q33 or q55 then q ′36
> q55 which is a

contradiction. If q ′9
= q11 then the equations (q ′3 + 1)(3, q ′ + 1) = (q + 1)(11, q + 1),

and q ′9
= q11 have no common solution in Z, which is a contradiction.

Step 5 If K/H ∼= Ar(q ′), then we distinguish the following 6 cases:

Case 5.1: K/H ∼= Ap ′
−1(q ′) where (p ′, q ′) 6= (3, 2), (3, 4). Then q ′p ′

− 1 ≡

0(mod D(q)) from which by Lemma 2.10(b) we have q ′p ′

∈ Y . This implies that

q ′p ′

= q22 or q44. Now if p ′ > 5, then
q ′ p

′(p
′
−1)

2
> q55, which is impossible by

Lemma 2.10(a). If p ′
= 3 and q ′3

= q22, then

(q11 − 1)(q + 1)(11, q + 1) = (q ′ − 1)(3, q ′ − 1), q ′3
= q22.

But these equations have no common solution in Z, and hence this case is also im-

possible. If p ′
= 3 and q ′3

= q44 or if p ′
= 5, then we get a contradiction similarly.

Case 5.2: K/H ∼= Ap ′(q ′) where (q ′ − 1)
∣

∣(p ′ + 1). Then q ′p ′

∈ Y , which implies

that q ′p ′

= q22 or q44. But if p ′ > 3, then q ′
p
′(p

′+1)

2 > q55, which is impossible. If

p ′
= 3, then q ′ − 1

∣

∣4, which implies that q ′ ≤ 5. But q22|q ′3 and q > 1 which is

impossible.

Case 5.3: K/H ∼= A1(q ′), where 4 | (q ′ + 1). If D(q) =
q ′
−1

2
, then q ′ ∈ Y , which

implies that q ′
= q22 or q44. But then 2 = (q11 − 1)(q + 1)(11, q + 1), and it is

impossible, since q > 1. If D(q) = q ′, then we consider two cases:

Case 5.3.a: If k = 1 then q ′
= (q11 +1)/(q+1) and since q ′+1

∣

∣ |K/H| = |A1(q ′)|,

we have q ′ + 1
∣

∣ |G|. But (q ′ + 1, |G|)
∣

∣218 × 35 × 19 × 43. Since |K/H|
∣

∣ |G| and

q ′ + 1
∣

∣218 ×35 ×19×43, the only possible case is q = 2 and K/H = A1(683). Hence

|G/K| · |H| = 23 × 32 × 11 × 19 × 31. Since |Out(A1(683))| = 1 and by Lemma

2.9(2), |G/K|
∣

∣ |Out(A1(683)| we conclude that |H| = 23 × 32 × 11 × 19 × 31.

Let P be the 3-Sylow subgroup of H. Since H is nilpotent, P ⊳ G and hence 683 =

D(2)
∣

∣(|P| − 1) = 8, by Lemma 2.6, which is a contradiction.
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Case 5.3.b: If D(q) = q ′ and k = 11, then q ′ + 1 = (q11 + 1)/(11(q + 1)) + 1 and

we get a contradiction similarly.

Case 5.4: K/H ∼= A1(q ′) where 4
∣

∣(q ′ − 1). Since the possibility D(q) = q ′ was

discussed in case 5.3, we assume that D(q) =
q ′+1

2
. Then q ′ ∈ X, which implies that

q ′
= q11, q33 or q55. Obviously q ′

= q11 implies that q = 1, therefore, q ′
= q33 or

q55. If q ′
= q33, then k(q22 − q11 + 1)(q + 1) = 2 which is impossible. If q ′

= q55,

then we proceed similarly.

Case 5.5: K/H ∼= A1(q ′) where 4
∣

∣q ′. If D(q) = q ′−1, then q ′ ∈ Y , which implies

that q ′
= q22 or q44. But for example if q ′

= q22, then 1 = (q11 − 1)(q + 1)(11, q + 1)

which is impossible. If D(q) = q ′ + 1, then q ′ ∈ X, which implies that q ′
= q11, q33

or q55. Now proceed similarly to Case 5.4.

Case 5.6: K/H ∼= A2(2) or K/H ∼= A2(4). Then D(q) must be equal to 3, 5, 7, 9

which is impossible, since D(q) > 683.

Step 6 If K/H ∼= Br(q ′) or Cr(q ′) or Dr(q ′), by a similar method we get contradic-

tions. For example, suppose K/H ∼= Br(q ′), then we consider two cases:

Case 6.1: K/H ∼= Bm(q ′) where m = 2k ≥ 4 and q ′ is odd. Then q ′m ∈ X,

which implies that q ′m
= q11, q33 or q55. If m = 4 and q ′4 > q11 or if m > 4,

then q ′m2 ∣

∣ |K/H| and hence q ′m2

> q55, which is a contradiction. If q ′m
= q11 and

m = 4,i.e., q ′4
= q11, then 2 = (q + 1)(11, q + 1) which is a contradiction, since

q > 1.

Case 6.2: K/H ∼= Bp(3). Then 3p ∈ Y and therefore 3p
= q22 or q44 which is a

contradiction, since p is a prime number and can not be equal to 22 or 44.

Step 7 If K/H ∼= F4(q ′), then we consider 2 cases:

Case 7.1: If D(q) = q ′4 − q ′2 + 1, then q ′6 ∈ X, which implies that q ′6
= q11,

q33 or q55. If q ′6 > q11, then q ′24
> q55 which is a contradiction. If q ′6

= q11, then

q ′2 + 1 = (q + 1)(11, q + 1). But these equations have no common solution in Z.

Case 7.2: If D(q) = q ′4 + 1, then q ′4 ∈ X, which implies that q ′4
= q11, q33 or q55.

But then q ′24 > q55 which is impossible.

Step 8 If K/H ∼= E7(2) or E7(3) or 2E6(2) or 2F4(2) ′, then D(q) must be equal to

13, 17, 19, 73, 127, 757, 1093 which is impossible.

Step 9 If K/H ∼= G2(q ′), then we consider 3 cases:

Case 9.1: K/H ∼= G2(q ′) where 2 < q ′ ≡ 1 (mod 3). Then D(q) = q ′2 − q ′ + 1

and hence q ′3 ∈ X, which implies that q ′3
= q11, q33 or q55. If q ′3

= q11, then

q ′ + 1 = (q + 1)(11, q + 1). But these equations have no common solution in Z. If

q ′3
= qn where n = 33 or 55, then we get a contradiction similarly.

Case 9.2: K/H ∼= G2(q ′) where 2 < q ′ ≡ −1 (mod 3). Then D(q) = q ′2 +

q ′ + 1 and hence q ′3
= q22 or q44. Now we can proceed similarly to 9.1 and get

contradictions.

Case 9.3: K/H ∼= G2(q ′) where 3
∣

∣q ′. Then q ′2 ± q ′ + 1 = D(q) . This is similar to

cases 9.1 and 9.2.
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Step 10 If K/H ∼= 3D4(q ′), then D(q) = q ′4 − q ′2 + 1, and hence q ′6
= q11, q33

or q55. If q ′6 > q11, then q ′12 > q55 which is a contradiction by Lemma 2.10(a). If

q ′6
= q11, then q ′2 + 1 = (q + 1)(11, q + 1), which have no a common solution in Z.

Step 11 If K/H ∼= E8(q ′) or K/H ∼= 2G2(q ′) where q ′
= 32r+1, then we get a contra-

diction similarly. For example if K/H ∼= 2G2(q ′) then D(q) = q ′ ±
√

3q ′ + 1. Thus

q ′3 ∈ X and we get a contradiction similar to the last steps.

Step 12 If K/H ∼= 2F4(q ′) where q ′
= 22r+1 > 2, then D(q) = q ′2 ±

√

2q ′3 + q ′ ±
√

2q ′ + 1. Therefore, q ′6 + 1 ≡ 0 (mod D(q) ) and hence q ′6 ∈ X. Now we get a

contradiction similar to the last step.

Step 13 If K/H ∼= 2B2(q ′) where q ′
= 22t+1 > 2, then if D(q) = q ′−1 we get q ′ ∈ Y

and if D(q) = q ′ ±
√

2q ′ + 1, we get q ′2 + 1 ≡ 0 (mod D(q) ). Therefore, q ′2 ∈ X.

Now we proceed similar to the last steps and get contradictions.

Step 14 If K/H ∼= 2Dr(q ′), then we consider 6 cases:

Case 14.1: K/H ∼= 2Dr(q ′) where r = 2t ≥ 4. Then q ′r ∈ X. If r = 4 and

q ′4
= q11, then (2, q ′ + 1) = k(q + 1) which is impossible. Also in other cases if r > 4

or if r = 4 and q ′4 > q11, then since r − 1 ≥ 3, G has a subgroup of size qn > q55

which is a contradiction by Lemma 2.10(a).

Case 14.2: K/H ∼= 2Dr(2) where r = 2t +1 ≥ 5. Then 2r−1 ∈ X. But r−1 = 2t ≥ 4

and 11 ∤ 2t , which is a contradiction.

Case 14.3: K/H ∼= 2Dp(3) where 5 ≤ p 6= 2r + 1. Then 3p
= q11, q33 or q55 and

since p is an odd prime number, q = 3 and p = 11. Then 3p(p−1) > q55 which is a

contradiction.

Case 14.4: K/H ∼= 2Dr(3) where r = 2t + 1 6= p, t ≥ 2. Then 3r−1 ∈ X, hence

3r−1
= q11, q33 or q55. Since r > 5, we have 3r(r−1) > q55 and hence G has a subgroup

of size qn > q55 which is a contradiction by Lemma 2.10(a).

Case 14.5: K/H ∼= 2Dp(3) where p = 2t + 1, t ≥ 2. Then 3p−1
= q11, q33 or q55.

Therefore, 11
∣

∣p − 1 = 2t which is a contradiction.

Case 14.6: K/H ∼= 2Dp+1(2) where p = 2r − 1, r ≥ 2. Then similar to (14.4) and

(14.5) we get a contradiction.

Step 15 If K/H ∼= 2Ar(q ′), then we consider 3 cases:

Case 15.1: K/H ∼= 2A3(2) or K/H ∼= 2A5(2). Then D(q) must be equal to 5, 7, 11

which is impossible.

Case 15.2: K/H ∼= 2Ap ′(q ′) where (q ′ + 1)|(p ′ + 1) and (p ′, q ′) 6= (3, 3), (5, 2).

Then q ′p ′

= q11, q33 or q55. Let q ′p ′

> q11. If p ′ > 3, then q ′
p
′(p

′+1)

2 > q55, which is

impossible. If p ′
= 3, then q ′

= 3 but (p ′, q ′) 6= (3, 3). If q ′p ′

= q11 and p ′ > 5 we

do similarly. Also if p ′
= 3 or 5 and q ′p ′

= q11, then q ′ < 10, which is impossible.

Case 15.3: K/H ∼= 2Ap ′
−1(q ′). Then q ′p ′

= q11, q33 or q55. If p ′ > 11, then

q ′
p
′(p

′
−1)

2 > q55, which is impossible. If p ′
= 3, 5, 7, then

(q ′ + 1)(p ′, q ′ + 1) = (q + 1)(11, q + 1), q ′p ′

= q11.
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But these equations have no common solution in Z. If p ′
= 11, then q = q ′. Thus

|G| = |PSU11(q)| = |K/H| = |K|/|H| which implies that |H| = 1 and |K| = |G| =

|PSU11(q)|. Therefore, K = PSU11(q) and hence G = PSU11(q).

The proof of the main theorem is now complete.

Remark 3.1 It is a well known conjecture of J. G. Thompson that if G is a finite

group with Z(G) = 1 and M is a non-abelian simple group satisfying N(G) = N(M),

then G ∼= M. We can give a positive answer to this conjecture for the groups under

discussion.

Corollary 3.2 Let G be a finite group with Z(G) = 1, M = PSU11(q) with N(G) =

N(M), then G ∼= M.

Proof By Lemma 2.8 if G and M are two finite groups satisfying the conditions of

Corollary 3.2, then OC(G) = OC(M). So the main theorem implies this corollary.

Remark 3.3 Wujie Shi and Bi Jianxing in [22] put forward the following conjecture:

Conjecture Let G be a group, M a finite simple group. Then G ∼= M if and only if

(i) |G| = |M|, and

(ii) πe(G) = πe(M), where πe(G) denotes the set of orders of elements in G.

This conjecture is valid for sporadic simple groups [20], groups of alternating type

[24], and some simple groups of Lie types [21–23]. As a consequence of the main

theorem, we prove the validity of this conjecture for the groups under discussion.

Corollary 3.4 Let G be a finite group and M = PSU11(q). If |G| = |M| and πe(G) =

πe(M), then G ∼= M.

Proof The assumption implies that OC(G) = OC(M), then the corollary follows

by the main theorem.
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