A Characterization of $P S U_{11}(q)$

A. Iranmanesh and B. Khosravi

Abstract

Order components of a finite simple group were introduced in [4]. It was proved that some non-abelian simple groups are uniquely determined by their order components. As the main result of this paper, we show that groups $P S U_{11}(q)$ are also uniquely determined by their order components. As corollaries of this result, the validity of a conjecture of J. G. Thompson and a conjecture of W. Shi and J. Bi both on $P S U_{11}(q)$ are obtained.

1 Introduction

For an integer n, let $\pi(n)$ be the set of prime divisors of n. If G is a finite group then $\pi(G)$ is defined to be $\pi(|G|)$. The prime graph $\Gamma(G)$ of a group G is a graph whose vertex set is $\pi(G)$, and two distinct primes p and q are linked by an edge if and only if G contains an element of order $p q$. Let $\pi_{i}, i=1,2, \ldots, t(\Gamma(G))$ be the connected components of $\Gamma(G)$. For $|G|$ even, π_{1} will be the connected component containing 2. Then $|G|$ can be expressed as a product of some positive integers $m_{i}, i=$ $1,2, \ldots, t(\Gamma(G))$, with $\pi\left(m_{i}\right)=\pi_{i}$. The integers m_{i} are called the order components of G. The set of order components of G will be denoted by $O C(G)$. If the order of G is even, it is assumed that m_{1} is the even order component and $m_{2}, \ldots, m_{t(\Gamma(G))}$ are the odd order components of G. The order components of non-abelian simple groups having at least three prime graph components are obtained by G. Y. Chen [8, Tables 1-3]. The order components of non-abelian simple groups with two order components can be obtained according to [19, 25; see also 12, 13]. The following groups are uniquely determined by their order components: $G_{2}(q)$ where $q \equiv 0$ $(\bmod 3)[2]$, sporadic simple groups [3], Suzuki-Ree groups [6], $E_{8}(q)$ [7], $P S L_{2}(q)$ [8], A_{p} where p and $p-2$ are primes [10], $\operatorname{PSL}(3, q)[12,13], \operatorname{PSL}(5, q)[11], F_{4}(q)$ [14,17], $C_{2}(q)$ where $q>5$ [15], $\operatorname{PSU}(3, q)$ for $q>5$ [18] and $\operatorname{PSU}_{5}(q)$ [16].

In this paper, we prove that the groups $P S U_{11}(q)$, for any prime power q, are also uniquely determined by their order components, that is we have:

The Main Theorem Let G be a finite group, $M=P S U_{11}(q)$ with $O C(G)=O C(M)$. Then $G \cong M$.

2 Preliminary Results

In order to prove the main theorem, we present some lemmas.

[^0]Definition 2.1 ([9]) A finite group G is called a 2-Frobenius group if it has a normal series $G>K>H>1$, where K and G / H are Frobenius groups with kernels H and K / H, respectively.

Lemma 2.2 ([25, Theorem A]) If G is a finite group with prime graph of more than one component, then G is one of the following groups:
(a) a Frobenius or 2-Frobenius group;
(b) a simple group;
(c) an extension of a π_{1}-group by a simple group;
(d) an extension of a simple group by a π_{1}-solvable group;
(e) an extension of a π_{1}-group by a simple group by a π_{1}-group.

Lemma 2.3 ([25, Lemma 3]) If G is a finite group with more than one prime graph component and has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups and K / H is simple, then H is a nilpotent group.

The next lemma follows from [1, Theorem 2]:
Lemma 2.4 Let G be a Frobenius group of even order and let H, K be Frobenius complement and Frobenius kernel of G, respectively. Then $t(\Gamma(G))=2$, and the prime graph components of G are $\pi(H), \pi(K)$, and G has one of the following structures:
(a) $2 \in \pi(K)$ and all Sylow subgroups of H are cyclic.
(b) $2 \in \pi(H), K$ is an abelian group, H is a solvable group, the Sylow subgroups of odd order of H are cyclic groups and the 2-Sylow subgroups of H are cyclic or generalized quaternion groups.
(c) $2 \in \pi(H), K$ is an abelian group and there exists $H_{0} \leq H$ such that $\left|H: H_{0}\right| \leq 2$, $H_{0}=Z \times \operatorname{SL}(2,5),(|Z|, 2.3 .5)=1$ and the Sylow subgroups of Z are cyclic.

The next lemma follows from [1, Theorem 2] and Lemma 2.3
Lemma 2.5 Let G be a 2-Frobenius group of even order. Then $t(\Gamma(G))=2$ and G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that
(a) $\pi_{1}=\pi(G / K) \cup \pi(H)$ and $\pi(K / H)=\pi_{2}$;
(b) G / K and K / H are cyclic, $|G / K|$ divides $|\operatorname{Aut}(K / H)|,(|G / K|,|K / H|)=1$ and $|G / K|<|K / H|$;
(c) H is nilpotent and G is a solvable group.

Lemma 2.6 ([5, Lemma 8]) Let G be a finite group with $t(\Gamma(G)) \geq 2$ and let N be a normal subgroup of G. If N is a π_{i}-group for some prime graph component of G and $m_{1}, m_{2}, \ldots, m_{r}$ are some order components of G but not a π_{i}-number, then $m_{1} m_{2} \ldots m_{r}$ is a divisor of $|N|-1$.

Lemma 2.7 ([4, Lemma 1.4]) Suppose G and M are two finite groups satisfying $t(\Gamma(M)) \geq 2, N(G)=N(M)$, where $N(G)=\{n \mid G$ has a conjugacy class of size $n\}$, and $Z(G)=1$. Then $|G|=|M|$.

The next lemma follows from [4, Lemma 1.5].
Lemma 2.8 Let G_{1} and G_{2} be finite groups satisfying $\left|G_{1}\right|=\left|G_{2}\right|$ and $N\left(G_{1}\right)=$ $N\left(G_{2}\right)$. Then $t\left(\Gamma\left(G_{1}\right)\right)=t\left(\Gamma\left(G_{2}\right)\right)$ and $O C\left(G_{1}\right)=O C\left(G_{2}\right)$.

Lemma 2.9 Let G be a finite group and let M be a non-abelian simple group with $t(\Gamma(M))=2$ satisfying $O C(G)=O C(M)$. Let $|M|=m_{1} m_{2}, O C(M)=\left\{m_{1}, m_{2}\right\}$, and $\pi\left(m_{i}\right)=\pi_{i}$ for $i=1$ or 2 . Then $|G|=m_{1} m_{2}$ and one of the following holds:
(a) G is a Frobenius or a 2-Frobenius group;
(b) G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that G / K is a π_{1}-group, H is a nilpotent π_{1}-group, and K / H is a non-abelian simple group. Moreover, $O C(K / H)=$ $\left\{m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{s}^{\prime}, m_{2}\right\},|K / H|=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{s}^{\prime} m_{2}$ and $m_{1}^{\prime} m_{2}^{\prime} \cdots m_{s}^{\prime} \mid m_{1}$, where $\pi\left(m_{j}^{\prime}\right)=\pi_{j}(K / H), 1 \leq j \leq s . A l s o,|G / K|| | \operatorname{Out}(K / H) \mid$.

Proof The first part of the lemma follows from the above lemmas. Since $t(\Gamma(G)) \geq$ 2, we have $t(\Gamma(G / H)) \geq 2$. Otherwise, $t(\Gamma(G / H))=1$, hence $t(\Gamma(G))=1$, which is a contradiction, since H is a π_{1}-group. Moreover, we have $Z(G / H)=1$. For any $x H \in G / H$ and $x H \notin K / H, x H$ induces an automorphism of K / H and this automorphism is trivial if and only if $x H \in Z(G / H)$. Therefore, $G / K \leq \operatorname{Out}(K / H)$ and since $Z(G / H)=1$, it follows that $|G / K|||\operatorname{Out}(K / H)|$.

Lemma 2.10 Let $M=\operatorname{PSU}_{11}(q)$. Suppose $D(q)=\frac{q^{11}+1}{k(q+1)}$, where $k=(11, q+1)$.
(a) If $p \in \pi(M)$, then $\left|S_{p}\right| \leq q^{55}$ where $S_{p} \in \operatorname{Syl}_{p}(M)$;
(b) If $p \in \pi_{1}(M)$ and $p^{\alpha}| | M \mid$, then $p^{\alpha}-1 \equiv 0(\bmod D(q))$ if and only if $p^{\alpha}=q^{22}$ or q^{44};
(c) If $p \in \pi_{1}(M)$ and $p^{\alpha}| | M \mid$, then $p^{\alpha}+1 \equiv 0(\bmod D(q))$ if and only if $p^{\alpha}=q^{11}$, q^{33} or q^{55}.

Proof

(a) We know that

$$
\begin{aligned}
|M|= & q^{55}(q+1)^{10}(q-1)^{5}\left(q^{2}-q+1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}-q^{3}+q^{2}-q+1\right)^{2} \\
& \times\left(q^{2}+q+1\right)\left(1-q+q^{2}-q^{3}+q^{4}-q^{5}+q^{6}\right)\left(q^{4}+1\right)\left(q^{6}-q^{3}+1\right) \\
& \times\left(q^{4}+q^{3}+q^{2}+q+1\right) \times \frac{\left(q^{11}+1\right)}{k(q+1)} .
\end{aligned}
$$

By easy calculations we determine the greatest common divisors of any two factors of $|M|$. For example, $(q-1, q+1)\left|2,\left(q+1, q^{2}-q+1\right)\right| 3,\left(q+1, q^{2}+1\right) \mid 2$, $\left(q+1, q^{4}-q^{3}+q^{2}-q+1\right)\left|5,\left(q+1, q^{6}-q^{5}+q^{4}-q^{3}+q^{2}-q+1\right)\right| 7,\left(q+1, q^{4}+1\right) \mid 2$, $\left(q+1, q^{6}-q^{3}+1\right) \mid 3$ and $q+1$ is coprime with respect to other factors of $|M|$. So if $p^{\alpha}| | M \mid$ and $p \in \pi_{1}$, then one of the following occurs: p^{α} is a divisor of q^{55}, $2^{8} 3^{4} 5^{2} 7(q+1)^{10}, 2^{13} 5^{2} 3(q-1)^{5}, 3^{11}\left(q^{2}-q+1\right)^{3}, 2^{16}\left(q^{2}+1\right)^{2}, 5^{10}\left(q^{4}-q^{3}+q^{2}-q+1\right)^{2}$,
$3^{5}\left(q^{2}+q+1\right), 7^{10}\left(1-q+q^{2}-q^{3}+q^{4}-q^{5}+q^{6}\right), 2^{17}\left(q^{4}+1\right), 3^{13}\left(q^{6}-q^{3}+1\right)$ or $5^{5}\left(q^{4}+q^{3}+q^{2}+q+1\right)$. Therefore, (a) follows.
(b) Now let there exist $p \in \pi_{1}(M), p^{\alpha}| | M \mid$ and $p^{\alpha}-1 \equiv 0(\bmod D(q))$. It is obvious that $p^{\alpha}>D(q)$.

For $q \leq 32$ numerical calculations show that there is no p^{α} such that (b) holds. Hence let $q>32$. We consider the following possible cases:
(1) If $p^{\alpha} \mid 2^{8} 3^{4} 5^{2} 7(q+1)^{10}$, then we consider the following subcases:
(1.1) Let $p \neq 2,3,5,7$ and $p^{\alpha} \mid(q+1)^{10}$ and $p^{\alpha}-1 \equiv 0(\bmod D(q))$. Then $p^{\alpha}-1=s D(q)$ for some $s>0$. But $(q+1)^{10} / 20<D(q)$, which implies that $p^{\alpha}=(q+1)^{10} / t$, where st ≤ 20. Now numerical calculation shows that these equations have no solution and hence there can not exist any p, α such that the above relations holds.
(1.2) If $p=2$, then $2^{\alpha} \mid 2^{8}(q+1)^{10}$. Since $2^{8}(q+1)^{10} / 4000<D(q)$ for $q>32$, we have $2^{8}(q+1)^{10} / t-1=s D(q)$, where $s t \leq 4000$. Now by using mathematical software (for example Maple), we can check all of these equations and see that there exists no α such that (b) holds.
(1.3) If $p=3,5$ or 7 , then we get a contradiction similar to subcase (1.2).
(2) If $p^{\alpha} \mid 2^{13} 5^{2} 3(q-1)^{5}$, then p^{α} divides $2^{13}(q-1)^{5}, 5^{2}(q-1)^{5}$ or, $3(q-1)^{5}$. But in each case $p^{\alpha}<D(q)$ which implies that $p^{\alpha}-1 \not \equiv 0(\bmod D(q))$.
(3) If $p^{\alpha} \mid 3^{11}\left(q^{2}-q+1\right)^{3}, 2^{16}\left(q^{2}+1\right)^{2}, 5^{10}\left(q^{4}-q^{3}+q^{2}-q+1\right)^{2}, 3^{5}\left(q^{2}+q+1\right)$, $7^{10}\left(1-q+q^{2}-q^{3}+q^{4}-q^{5}+q^{6}\right), 2^{17}\left(q^{4}+1\right), 3^{13}\left(q^{6}-q^{3}+1\right)$ or, $5^{5}\left(q^{4}+q^{3}+q^{2}+q+1\right)$, then in each case $p^{\alpha}<D(q)$ which implies that $p^{\alpha}-1 \not \equiv 0(\bmod D(q))$.
(4) If $p^{\alpha} \mid q^{55}$, then we consider two subcases, namely $k=1, k=11$. Since the proofs are similar we state only the case $k=1$.

We can see easily that $q=p^{n}$ for some $n>0$. First we prove that if $p^{\beta} \mid q^{11}$ and $p^{\beta}+1 \equiv 0(\bmod D(q))$, then $p^{\beta}=q^{11}$. We have

$$
p^{\beta}+1=s . D(q)=s \cdot \frac{q^{11}+1}{q+1}=s\left(q^{10}-\cdots+q^{2}-q+1\right),
$$

and $1 \leq s \leq q+1$. Also since $q \mid p^{\beta}$ we have $q \mid s-1$ which implies that $q \leq s-1$. Therefore, $q+1=s$ and hence $p^{\beta}=q^{11}$.

Now we prove that if $p^{\alpha} \mid q^{22}$ and $p^{\alpha}-1 \equiv 0(\bmod D(q))$, then $p^{\alpha}=q^{22}$. If we assume that $p^{\alpha} \leq q^{11}$ and $p^{\alpha}+1=s \cdot D(q)$, then $s<q+1$. Since $q \mid p^{\alpha}$ we have $q \mid s+1$ and hence $q \leq s+1$. Thus $s=q$ or $s=q-1$. But easy calculation shows that $p^{\alpha}-1 \neq s \cdot D(q)$, which is a contradiction. Therefore, $p^{\alpha}>q^{11}$ and hence $p^{\alpha}=q^{11} p^{m}$ for some $m>0$. Now we have

$$
p^{\alpha}-1=q^{11} p^{m}-1=p^{m}\left(q^{11}+1\right)-p^{m}-1 .
$$

Therefore, $D(q) \mid p^{m}+1$ which implies that $p^{m}=q^{11}$, by the above statement and hence $p^{\alpha}=q^{22}$. If $p^{\alpha}>q^{22}$ and $p^{\alpha} \mid q^{55}$, then by a similar method we conclude that $p^{\alpha}=q^{44}$.
(c) Similar to part (b), we conclude that p^{α} must be equal to q^{11}, q^{33} or q^{55} and the proof is complete.

Remark For convenience let $X=\left\{q^{11}, q^{33}, q^{55}\right\}$ and $Y=\left\{q^{22}, q^{44}\right\}$.
Lemma 2.11 Let G be a finite group, $M=P S U_{11}(q)$ with $O C(G)=O C(M)$. Then G is neither a Frobenius group nor a 2-Frobenius group.

Proof G is not a Frobenius group otherwise by Lemma 2.4, OC $(G)=\{|H|,|K|\}$ where K and H are the Frobenius kernel and the Frobenius complement of G, respectively. Since $|H| \mid(|K|-1)$, we have $|H|<|K|$. So $|H|=\frac{q^{11}+1}{(q+1)(11, q+1)},|K|=|G| /|H|$. There exists a prime p such that $p^{\alpha} \mid 3(q-1)^{5}$. If P is a p-Sylow subgroup of K, then since K is nilpotent, $P \triangleleft G$ and hence $D(q)||P|-1$ by Lemma 2.6, which implies that $p^{\alpha} \in Y$ by Lemma $2.10(\mathrm{~b})$. Then $3(q-1)^{5} \geq q^{22}$ which is a contradiction. Therefore, G is not a Frobenius group.

Let G be a 2-Frobenius group. By Lemma 2.5, there is a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $|K / H|=\frac{q^{11}+1}{(q+1)(11, q+1)}<2^{8}(q+1)^{10}$ and $|G / K|<|K / H|$. Thus there exists a prime p such that $p \mid 2^{8}(q+1)^{10}$ and $p||H|$. If P is a p-Sylow subgroup of H, since H is nilpotent, P must be a normal subgroup of K with $P \subseteq H$ and $|K|=\frac{q^{11}+1}{k(q+1)}|H|$. Therefore, $\left.\frac{q^{11}+1}{k(q+1)} \right\rvert\,(|P|-1)$ by Lemma 2.6 and hence $q^{22}| | P \mid$, which is impossible since $|P| \leq 2^{8}(q+1)^{10}$. Therefore, G is not a 2-Frobenius group.

Lemma 2.12 Let G be a finite group. If the order components of G are the same as those of $M=P S U_{11}(q)$, then G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups and K / H is a simple group. Moreover, the odd order component of M is equal to one of those of K / H, and in particular, $t(\Gamma(K / H)) \geq 2$.

Proof The first part of the Lemma follows from the above lemmas since the prime graph of M has two components. For primes p and q, if K / H has an element of order $p q$, then G has one. Hence, by the definition of prime graph component, the odd order component of G must be an odd order component of K / H.

3 Proof of the Main Theorem

By Lemma 2.12, G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups, K / H is a non-abelian simple group, $t(\Gamma(K / H)) \geq 2$ and the odd order component of M is an odd order component of K / H. We now proceed the proof of the main theorem in the following steps:
Step 1 If $K / H \cong A_{n}$ where $n=p, p+1, p+2$ and $p \geq 5$ is a prime number. Then we have two cases:

Case 1.1: $k=1$. In this case p or $p-2$ is equal to $\frac{q^{11}+1}{q+1}$. If $p=\frac{q^{11}+1}{q+1}$, then $p-1=q(q-1)\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{4}-q^{3}+q^{2}-q+1\right)$ and

$$
\begin{equation*}
p-2=q^{10}-q^{9}+q^{8}-q^{7}+q^{6}-q^{5}+q^{4}-q^{3}+q^{2}-q-1 \tag{1}
\end{equation*}
$$

But easy calculation shows that $(p-2,|G|) \mid 3^{5} \times 5^{2} \times 7 \times 43$ and hence $p-2 \mid 3^{5} \times$ $5^{2} \times 7 \times 43$. So $p=3,5,7, \ldots$ But $D(2)=683, D(3)=44287, D(4)=838861$ and hence equation (1) is not satisfied in each case. If $p-2=q^{10}-q^{9}+\cdots-q+1$, then we proceed similarly for $p-4$ since $p>5$.

Case 1.2: $k=11$. Then p or $p-2$ is equal to $\frac{q^{11}+1}{11(q+1)}$ and $p-2$ or $p-4$ must be equal to $\frac{q^{10}-q^{9}+\cdots-q-21}{11}$, respectively. Now we proceed similarly to the last case and get a contradiction.
Step 2 If K / H is a sporadic simple group, then $D(q)$ must be equal to $5,7,11,13$, $17,19,23,29,31,37,41,43,47,59,67,71$, which has no solution, since $D(2)=683$. Therefore, K / H is a simple group of Lie type.
Step 3 If $K / H \cong E_{6}\left(q^{\prime}\right)$, then $D(q)=\left(q^{\prime 6}+q^{\prime 3}+1\right) /\left(3, q^{\prime}-1\right)$ and hence $q^{\prime 9} \in Y$, which implies that $q^{\prime 9}=q^{22}$ or q^{44}. But $q^{136}>q^{55}$ which is a contradiction, by Lemma 2.10(a).

Step 4 If $K / H \cong{ }^{2} E_{6}\left(q^{\prime}\right)$, then $D(q)=\left(q^{\prime 6}-q^{\prime 3}+1\right) /\left(3, q^{\prime}+1\right)$ and hence $q^{\prime 9} \in X$, which implies that $q^{{ }^{9}}=q^{11}, q^{33}$ or q^{55}. If $q^{\prime 9}=q^{33}$ or q^{55} then $q^{1^{36}}>q^{55}$ which is a contradiction. If $q^{\prime 9}=q^{11}$ then the equations $\left(q^{\prime 3}+1\right)\left(3, q^{\prime}+1\right)=(q+1)(11, q+1)$, and $q^{\prime 9}=q^{11}$ have no common solution in \mathbb{Z}, which is a contradiction.
Step 5 If $K / H \cong A_{r}\left(q^{\prime}\right)$, then we distinguish the following 6 cases:
Case 5.1: $K / H \cong A_{p^{\prime}-1}\left(q^{\prime}\right)$ where $\left(p^{\prime}, q^{\prime}\right) \neq(3,2),(3,4)$. Then $q^{\prime p^{\prime}}-1 \equiv$ $0(\bmod D(q))$ from which by Lemma $2.10(\mathrm{~b})$ we have $q^{\prime p^{\prime}} \in Y$. This implies that $q^{\prime p^{\prime}}=q^{22}$ or q^{44}. Now if $p^{\prime}>5$, then $\frac{q^{\prime p^{\prime}\left(p^{\prime}-1\right)}}{2}>q^{55}$, which is impossible by Lemma 2.10(a). If $p^{\prime}=3$ and $q^{\prime 3}=q^{22}$, then

$$
\left(q^{11}-1\right)(q+1)(11, q+1)=\left(q^{\prime}-1\right)\left(3, q^{\prime}-1\right), \quad q^{\prime 3}=q^{22}
$$

But these equations have no common solution in \mathbb{Z}, and hence this case is also impossible. If $p^{\prime}=3$ and $q^{\prime 3}=q^{44}$ or if $p^{\prime}=5$, then we get a contradiction similarly.

Case 5.2: $K / H \cong A_{p^{\prime}}\left(q^{\prime}\right)$ where $\left(q^{\prime}-1\right) \mid\left(p^{\prime}+1\right)$. Then $q^{\prime p^{\prime}} \in Y$, which implies that $q^{\prime p^{\prime}}=q^{22}$ or q^{44}. But if $p^{\prime}>3$, then $q^{\frac{p^{\prime}\left(p^{\prime}+1\right)}{2}}>q^{55}$, which is impossible. If $p^{\prime}=3$, then $q^{\prime}-1 \mid 4$, which implies that $q^{\prime} \leq 5$. But $q^{22} \mid q^{\prime 3}$ and $q>1$ which is impossible.

Case 5.3: $K / H \cong A_{1}\left(q^{\prime}\right)$, where $4 \mid\left(q^{\prime}+1\right)$. If $D(q)=\frac{q^{\prime}-1}{2}$, then $q^{\prime} \in Y$, which implies that $q^{\prime}=q^{22}$ or q^{44}. But then $2=\left(q^{11}-1\right)(q+1)(11, q+1)$, and it is impossible, since $q>1$. If $D(q)=q^{\prime}$, then we consider two cases:

Case 5.3.a: If $k=1$ then $q^{\prime}=\left(q^{11}+1\right) /(q+1)$ and since $q^{\prime}+1| | K / H\left|=\left|A_{1}\left(q^{\prime}\right)\right|\right.$, we have $q^{\prime}+1| | G \mid$. But $\left(q^{\prime}+1,|G|\right) \mid 2^{18} \times 3^{5} \times 19 \times 43$. Since $|K / H|||G|$ and $q^{\prime}+1 \mid 2^{18} \times 3^{5} \times 19 \times 43$, the only possible case is $q=2$ and $K / H=A_{1}(683)$. Hence $|G / K| \cdot|H|=2^{3} \times 3^{2} \times 11 \times 19 \times 31$. Since $\left|\operatorname{Out}\left(A_{1}(683)\right)\right|=1$ and by Lemma $2.9(2),|G / K|| | \operatorname{Out}\left(A_{1}(683) \mid\right.$ we conclude that $|H|=2^{3} \times 3^{2} \times 11 \times 19 \times 31$. Let P be the 3-Sylow subgroup of H. Since H is nilpotent, $P \triangleleft G$ and hence $683=$ $D(2) \mid(|P|-1)=8$, by Lemma 2.6, which is a contradiction.

Case 5.3.b: If $D(q)=q^{\prime}$ and $k=11$, then $q^{\prime}+1=\left(q^{11}+1\right) /(11(q+1))+1$ and we get a contradiction similarly.

Case 5.4: $K / H \cong A_{1}\left(q^{\prime}\right)$ where $4 \mid\left(q^{\prime}-1\right)$. Since the possibility $D(q)=q^{\prime}$ was discussed in case 5.3 , we assume that $D(q)=\frac{q^{\prime}+1}{2}$. Then $q^{\prime} \in X$, which implies that $q^{\prime}=q^{11}, q^{33}$ or q^{55}. Obviously $q^{\prime}=q^{11}$ implies that $q=1$, therefore, $q^{\prime}=q^{33}$ or q^{55}. If $q^{\prime}=q^{33}$, then $k\left(q^{22}-q^{11}+1\right)(q+1)=2$ which is impossible. If $q^{\prime}=q^{55}$, then we proceed similarly.

Case 5.5: $K / H \cong A_{1}\left(q^{\prime}\right)$ where $4 \mid q^{\prime}$. If $D(q)=q^{\prime}-1$, then $q^{\prime} \in Y$, which implies that $q^{\prime}=q^{22}$ or q^{44}. But for example if $q^{\prime}=q^{22}$, then $1=\left(q^{11}-1\right)(q+1)(11, q+1)$ which is impossible. If $D(q)=q^{\prime}+1$, then $q^{\prime} \in X$, which implies that $q^{\prime}=q^{11}, q^{33}$ or q^{55}. Now proceed similarly to Case 5.4.

Case 5.6: $K / H \cong A_{2}(2)$ or $K / H \cong A_{2}(4)$. Then $D(q)$ must be equal to $3,5,7,9$ which is impossible, since $D(q)>683$.

Step 6 If $K / H \cong B_{r}\left(q^{\prime}\right)$ or $C_{r}\left(q^{\prime}\right)$ or $D_{r}\left(q^{\prime}\right)$, by a similar method we get contradictions. For example, suppose $K / H \cong B_{r}\left(q^{\prime}\right)$, then we consider two cases:

Case 6.1: $K / H \cong B_{m}\left(q^{\prime}\right)$ where $m=2^{k} \geq 4$ and q^{\prime} is odd. Then $q^{m} \in X$, which implies that $q^{\prime m}=q^{11}, q^{33}$ or q^{55}. If $m=4$ and $q^{\prime 4}>q^{11}$ or if $m>4$, then $q^{\prime m^{2}}| | K / H \mid$ and hence $q^{\prime m^{2}}>q^{55}$, which is a contradiction. If $q^{\prime m}=q^{11}$ and $m=4$,i.e., $q^{\prime 4}=q^{11}$, then $2=(q+1)(11, q+1)$ which is a contradiction, since $q>1$.

Case 6.2: $K / H \cong B_{p}(3)$. Then $3^{p} \in Y$ and therefore $3^{p}=q^{22}$ or q^{44} which is a contradiction, since p is a prime number and can not be equal to 22 or 44 .

Step 7 If $K / H \cong F_{4}\left(q^{\prime}\right)$, then we consider 2 cases:
Case 7.1: If $D(q)=q^{\prime 4}-q^{\prime 2}+1$, then $q^{\prime 6} \in X$, which implies that $q^{\prime 6}=q^{11}$, q^{33} or q^{55}. If $q^{\prime 6}>q^{11}$, then $q^{\prime 24}>q^{55}$ which is a contradiction. If $q^{\prime 6}=q^{11}$, then $q^{\prime 2}+1=(q+1)(11, q+1)$. But these equations have no common solution in \mathbb{Z}.

Case 7.2: If $D(q)=q^{\prime 4}+1$, then $q^{\prime 4} \in X$, which implies that $q^{\prime 4}=q^{11}, q^{33}$ or q^{55}. But then $q^{\prime 24}>q^{55}$ which is impossible.

Step 8 If $K / H \cong E_{7}(2)$ or $E_{7}(3)$ or ${ }^{2} E_{6}(2)$ or ${ }^{2} F_{4}(2)^{\prime}$, then $D(q)$ must be equal to 13, 17, 19, 73, 127, 757, 1093 which is impossible.
Step 9 If $K / H \cong G_{2}\left(q^{\prime}\right)$, then we consider 3 cases:
Case 9.1: $K / H \cong G_{2}\left(q^{\prime}\right)$ where $2<q^{\prime} \equiv 1(\bmod 3)$. Then $D(q)=q^{\prime 2}-q^{\prime}+1$ and hence $q^{\prime 3} \in X$, which implies that $q^{\prime 3}=q^{11}, q^{33}$ or q^{55}. If $q^{\prime 3}=q^{11}$, then $q^{\prime}+1=(q+1)(11, q+1)$. But these equations have no common solution in \mathbb{Z}. If $q^{\prime 3}=q^{n}$ where $n=33$ or 55 , then we get a contradiction similarly.

Case 9.2: $K / H \cong G_{2}\left(q^{\prime}\right)$ where $2<q^{\prime} \equiv-1(\bmod 3)$. Then $D(q)=q^{\prime 2}+$ $q^{\prime}+1$ and hence $q^{\prime 3}=q^{22}$ or q^{44}. Now we can proceed similarly to 9.1 and get contradictions.

Case 9.3: $K / H \cong G_{2}\left(q^{\prime}\right)$ where $3 \mid q^{\prime}$. Then $q^{\prime 2} \pm q^{\prime}+1=D(q)$. This is similar to cases 9.1 and 9.2.

Step 10 If $K / H \cong{ }^{3} D_{4}\left(q^{\prime}\right)$, then $D(q)=q^{\prime 4}-q^{\prime 2}+1$, and hence $q^{\prime^{6}}=q^{11}, q^{33}$ or q^{55}. If $q^{\prime 6}>q^{11}$, then $q^{\prime 12}>q^{55}$ which is a contradiction by Lemma 2.10(a). If $q^{\prime 6}=q^{11}$, then $q^{\prime 2}+1=(q+1)(11, q+1)$, which have no a common solution in \mathbb{Z}.

Step 11 If $K / H \cong E_{8}\left(q^{\prime}\right)$ or $K / H \cong{ }^{2} G_{2}\left(q^{\prime}\right)$ where $q^{\prime}=3^{2 r+1}$, then we get a contradiction similarly. For example if $K / H \cong{ }^{2} G_{2}\left(q^{\prime}\right)$ then $D(q)=q^{\prime} \pm \sqrt{3 q^{\prime}}+1$. Thus $q^{\prime 3} \in X$ and we get a contradiction similar to the last steps.

Step 12 If $K / H \cong{ }^{2} F_{4}\left(q^{\prime}\right)$ where $q^{\prime}=2^{2 r+1}>2$, then $D(q)=q^{\prime 2} \pm \sqrt{2 q^{\prime 3}}+q^{\prime} \pm$ $\sqrt{2 q^{\prime}}+1$. Therefore, $q^{\prime 6}+1 \equiv 0(\bmod D(q))$ and hence $q^{\prime 6} \in X$. Now we get a contradiction similar to the last step.

Step 13 If $K / H \cong{ }^{2} B_{2}\left(q^{\prime}\right)$ where $q^{\prime}=2^{2 t+1}>2$, then if $D(q)=q^{\prime}-1$ we get $q^{\prime} \in Y$ and if $D(q)=q^{\prime} \pm \sqrt{2 q^{\prime}}+1$, we get $q^{\prime 2}+1 \equiv 0(\bmod D(q))$. Therefore, $q^{\prime 2} \in X$. Now we proceed similar to the last steps and get contradictions.

Step 14 If $K / H \cong{ }^{2} D_{r}\left(q^{\prime}\right)$, then we consider 6 cases:
Case 14.1: $K / H \cong{ }^{2} D_{r}\left(q^{\prime}\right)$ where $r=2^{t} \geq 4$. Then $q^{\prime r} \in X$. If $r=4$ and $q^{\prime 4}=q^{11}$, then $\left(2, q^{\prime}+1\right)=k(q+1)$ which is impossible. Also in other cases if $r>4$ or if $r=4$ and $q^{\prime 4}>q^{11}$, then since $r-1 \geq 3, G$ has a subgroup of size $q^{n}>q^{55}$ which is a contradiction by Lemma 2.10(a).

Case 14.2: $K / H \cong{ }^{2} D_{r}(2)$ where $r=2^{t}+1 \geq 5$. Then $2^{r-1} \in X$. But $r-1=2^{t} \geq 4$ and $11 \nmid 2^{t}$, which is a contradiction.

Case 14.3: $K / H \cong{ }^{2} D_{p}(3)$ where $5 \leq p \neq 2^{r}+1$. Then $3^{p}=q^{11}, q^{33}$ or q^{55} and since p is an odd prime number, $q=3$ and $p=11$. Then $3^{p(p-1)}>q^{55}$ which is a contradiction.

Case 14.4: $K / H \cong{ }^{2} D_{r}(3)$ where $r=2^{t}+1 \neq p, t \geq 2$. Then $3^{r-1} \in X$, hence $3^{r-1}=q^{11}, q^{33}$ or q^{55}. Since $r>5$, we have $3^{r(r-1)}>q^{55}$ and hence G has a subgroup of size $q^{n}>q^{55}$ which is a contradiction by Lemma 2.10(a).

Case 14.5: $K / H \cong{ }^{2} D_{p}(3)$ where $p=2^{t}+1, t \geq 2$. Then $3^{p-1}=q^{11}, q^{33}$ or q^{55}. Therefore, $11 \mid p-1=2^{t}$ which is a contradiction.

Case 14.6: $K / H \cong{ }^{2} D_{p+1}(2)$ where $p=2^{r}-1, r \geq 2$. Then similar to (14.4) and (14.5) we get a contradiction.

Step 15 If $K / H \cong{ }^{2} A_{r}\left(q^{\prime}\right)$, then we consider 3 cases:
Case 15.1: $K / H \cong{ }^{2} A_{3}(2)$ or $K / H \cong{ }^{2} A_{5}(2)$. Then $D(q)$ must be equal to $5,7,11$ which is impossible.

Case 15.2: $K / H \cong{ }^{2} A_{p^{\prime}}\left(q^{\prime}\right)$ where $\left(q^{\prime}+1\right) \mid\left(p^{\prime}+1\right)$ and $\left(p^{\prime}, q^{\prime}\right) \neq(3,3),(5,2)$. Then $q^{\prime p^{\prime}}=q^{11}, q^{33}$ or q^{55}. Let $q^{\prime p^{\prime}}>q^{11}$. If $p^{\prime}>3$, then $q^{\prime \frac{p^{\prime}\left(p^{\prime}+1\right)}{2}}>q^{55}$, which is impossible. If $p^{\prime}=3$, then $q^{\prime}=3$ but $\left(p^{\prime}, q^{\prime}\right) \neq(3,3)$. If $q^{\prime p^{\prime}}=q^{11}$ and $p^{\prime}>5$ we do similarly. Also if $p^{\prime}=3$ or 5 and $q^{\prime p^{\prime}}=q^{11}$, then $q^{\prime}<10$, which is impossible.

Case 15.3: $K / H \cong{ }^{2} A_{p^{\prime}-1}\left(q^{\prime}\right)$. Then $q^{\prime p^{\prime}}=q^{11}, q^{33}$ or q^{55}. If $p^{\prime}>11$, then $q^{\frac{p^{\prime}\left(p^{\prime}-1\right)}{2}}>q^{55}$, which is impossible. If $p^{\prime}=3,5,7$, then

$$
\left(q^{\prime}+1\right)\left(p^{\prime}, q^{\prime}+1\right)=(q+1)(11, q+1), \quad q^{\prime p^{\prime}}=q^{11} .
$$

But these equations have no common solution in \mathbb{Z}. If $p^{\prime}=11$, then $q=q^{\prime}$. Thus $|G|=\left|P S U_{11}(q)\right|=|K / H|=|K| /|H|$ which implies that $|H|=1$ and $|K|=|G|=$ $\left|P S U_{11}(q)\right|$. Therefore, $K=P S U_{11}(q)$ and hence $G=P S U_{11}(q)$.

The proof of the main theorem is now complete.
Remark 3.1 It is a well known conjecture of J. G. Thompson that if G is a finite group with $Z(G)=1$ and M is a non-abelian simple group satisfying $N(G)=N(M)$, then $G \cong M$. We can give a positive answer to this conjecture for the groups under discussion.

Corollary 3.2 Let G be a finite group with $Z(G)=1, M=P S U_{11}(q)$ with $N(G)=$ $N(M)$, then $G \cong M$.

Proof By Lemma 2.8 if G and M are two finite groups satisfying the conditions of Corollary 3.2, then $O C(G)=O C(M)$. So the main theorem implies this corollary.

Remark 3.3 Wujie Shi and Bi Jianxing in [22] put forward the following conjecture:
Conjecture Let G be a group, M a finite simple group. Then $G \cong M$ if and only if
(i) $|G|=|M|$, and
(ii) $\pi_{e}(G)=\pi_{e}(M)$, where $\pi_{e}(G)$ denotes the set of orders of elements in G.

This conjecture is valid for sporadic simple groups [20], groups of alternating type [24], and some simple groups of Lie types [21-23]. As a consequence of the main theorem, we prove the validity of this conjecture for the groups under discussion.

Corollary 3.4 Let G be a finite group and $M=P S U_{11}(q)$. If $|G|=|M|$ and $\pi_{e}(G)=$ $\pi_{e}(M)$, then $G \cong M$.

Proof The assumption implies that $O C(G)=O C(M)$, then the corollary follows by the main theorem.

References

[1] G. Y. Chen, On Frobenius and 2-Frobenius group. J. Southwest China Normal Univ. 20(1995) 485-487.
[2] $\xrightarrow{ }$ A new characterization of $G_{2}(q),[q \equiv 0(\bmod 3)]$. J. Southwest China Normal Univ. (1996), 47-51.
[3] \longrightarrow, A new characterization of sporadic simple groups. Algebra Colloq. 3(1996), 49-58.
$[4] \quad$ On Thompson's conjecture. J. Algebra 185(1996), 184-193.
$[5] \longrightarrow$ —urther reflections on Thompson's conjecture. J. Algebra 218(1999), 276-285.
$[6] \longrightarrow$, A new characterization of Suzuki-Ree groups. Sci. China (Ser. A) 40(1997), 807-812.
$[7] \longrightarrow$ A new characterization of $E_{8}(q)$. J. Southwest China Normal Univ. 21(1996), 215-217.
[8] A Aew characterization of $P S L_{2}(q)$. Southeast Asian Bull. Math, 22(1998), 257-263.
[9] K. W. Gruenberg and K. W. Roggenkamp, Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. London Math. Soc. 31(1975) 149-166.
[10] A. Iranmanesh and S. H. Alavi, A new characterization of A_{p} where p and $p-2$ are primes. Korean J. Comput. Appl. Math. 8(2001), 665-673.
[11] , A characterization of simple groups $\operatorname{PSL}(5, q)$. Bull. Austral. Math. Soc.65(2002) 211-222.
[12] A. Iranmanesh, S. H. Alavi and B. Khosravi, A characterization of $\operatorname{PSL}(3, q)$ where q is an odd prime power. J. Pure Appl. Algebra 170(2002), 243-254.
[13] \longrightarrow A characterization of $\operatorname{PSL}(3, q)$ for $q=2^{m}$. Acta Math. Sinica 18(2002), 463-472.
[14] A. Iranmanesh and B. Khosravi, A characterization of $F_{4}(q)$ where $q=2^{n}(n>1)$. Far East J. Math. Sci. 2(2000) 853-859.
[15] \longrightarrow A characterization of $C_{2}(q)$ where $q>5$. Comment. Math. Univ. Carolin. 43(2002) 9-21.
$[16] \longrightarrow$ A characterization of $\operatorname{PSU}_{5}(q)$. Int. Math. J.3(2003), 129-141.
[17] \longrightarrow A characterization of $F_{4}(q)$ where q is an odd prime power. Lecture Note London Math. Soc. 304(2003), 277-283.
[18] A. Iranmanesh, B. Khosravi and S.H. Alavi, A characterization of $\operatorname{PSU}(3, q)$ for $q>5$. Southeast Asian Bull. Math. 26(2002) 33-44.
[19] A. S. Kondrat'ev, On prime graph components of finite simple groups. Mat. Sb.180(1989) 787-797.
[20] W. Shi, A new characterization of the sporadic simple groups. In: Group Theory, de Gruyter, Berlin, 1989.
[21] \longrightarrow A new characterization of some simple groups of Lie type. Contemp. Math. 82(1989) 171-180.
[22] , Pure quantitative characterization of finite simple groups (I)., Prog. Natur. Sci. 4(1994), 316-326.
[23] W. Shi and Bi Jianxing, A characteristic property for each finite projective special linear group. Lecture Notes in Math. 1456(1990), 171-180.
[24] \longrightarrow A new characterization of the alternating groups. Southeast Asian Bull. Math. 17(1992), 81-90.
[25] J. S. Williams, Prime graph components of finite groups. J. Algebra 69(1981), 487-513.

Department of Mathematics
Tarbiat Modarres University
P. O. Box: 14115-137

Tehran
Iran
and
Institute for Studies in Theoretical Physics and Mathematics
Tehran
Iran
e-mail: iranmana@modares.ac.ir

Department of Mathematics Tarbiat Modarres University P. O. Box: 14115-175

Tehran
Iran

[^0]: Received by the editors January 16, 2003
 The first author would like to thank the Institute for Studies in Theoretical Physics and Mathematics (IPM) Tehran, Iran for providing the grant no. 81200019.

 AMS subject classification: 20D08, 20D05, 20D60.
 Keywords: Prime graph, order component, finite group,simple group.
 (c)Canadian Mathematical Society 2004.

