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Theoretical modelling of non-equilibrium
reaction–diffusion of rarefied gas on a wall
with microscale roughness
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Heat and mass transports through a rough surface are among the most fundamental
and important phenomena in either natural or engineering problems. In this paper,
theoretical modelling and direct simulation Monte Carlo method are employed to study
the heterogeneous reaction–diffusion features induced by microscale roughness which is
comparable to the molecular mean free path of the ambient gas. A quasi-one-dimensional
homogeneous model is proposed, and it consists of an external diffusion region outside the
roughness elements and an internal reaction–diffusion region which could be equivalent
to a smooth surface with an effective chemical property. The external macroscopic
diffusion can be characterized by a non-equilibrium criterion – the Damköhler number.
The internal diffusion in micro-cavities must be analysed by considering the rarefied gas
effects on the diffusivity, and another non-equilibrium criterion, the Thiele number, is
introduced to evaluate the effective boundary condition imposed on the external region.
Analytical formulae based on these criteria are derived to predict the equivalent surface
reaction–diffusion performance, and the predictions compare well with the numerical
results of different types of surface reaction, even on the three-dimensional roughness.
This reveals that the roughness could either enhance or weaken the apparent reaction rate
depending on the non-equilibrium degree. This study could enrich our understanding of
the gas–surface interactions on a rough wall, such as the oxidation, catalysis and energy
accommodation, and also preliminarily provides a practical method for evaluation of the
aerothermochemical performance of coating materials of hypersonic vehicles.
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Figure 1. The microscale roughness on the surface of a hypersonic vehicle.

1. Introduction

Hypersonic vehicles flying at high altitude are exposed to high-temperature and highly
dissociated gases, and the gas–surface interactions such as catalysis, oxidation and
energy accommodation show critical significance in evaluating the aerothermodynamic
performance (Gnoffo 1999). The real surface of the vehicles is rough rather than smooth
at different scales. In fact, besides that resulting from the manufacture precision, roughness
due to the slight ablation or corrosion is also inevitable even for the so-called non-ablative
thermal protection system designed for the new generation of cruising/gliding vehicles, as
shown schematically in figure 1. In contrast to the macroscopic roughness, which usually
alters the flow structure or leads to flow transition (Li & Dong 2021), the microscopic
roughness is on the scale of the mean free path of the ambient gas molecules. Therefore, it
will not directly change the macroscopic flow state, but could dramatically affect the heat
and mass transport via the gas–surface interaction processes. As a result, it is necessary to
understand the heterogeneously reacting flow over a wall with microscale roughness, and
the rarefied gas effects could arise in the microstructure, although the flow past the vehicle
is within the continuum regime. This problem is challenging since it is extremely costly,
if not impossible, to either numerically or experimentally capture the detailed features in
the microstructure.

A great many studies, as summarized by Bottaro (2019), can be found attacking the
flow and transport problems involving a rough wall in various fields, for either theoretical
interests or practical applications. Generally speaking, the transport problem raised by a
rough wall can be attributed to solving the Laplace or Poisson equation in a domain with
an oscillating boundary, which is a classical but hard problem in mathematics. Without a
universal theoretical solution, many approximately analytical methods have been employed
in specific situations. For the simplest one, the flow over a small amplitude wavy wall is
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Reaction–diffusion of rarefied gas on a rough wall

usually solved by using the regular perturbation method as a typical example in textbooks
(Van Dyke 1975). However, as the wave steepness is not small enough, mathematical
singularity arises and more issues need to be considered, as studied by Amirat & Bodart
(2001), Amirat et al. (2004); Amirat, Chechkin & Gadyl’shin (2006, 2007) and Chechkin,
Friedman & Piatnitski (1999). The conformal mapping method (Richardson 1973) has also
been used to transfer the physical domain, especially that with an irregular or even fractal
boundary (Mark Brady 1993; Blyth & Pozrikidis 2003), into a regular one which is then
solved numerically. A more practical methodology is to introduce homogenization models
(Sarkar & Prosperetti 1996; Nevard & Keller 1997; Achdou, Pironneau & Valentin 1998;
Bottaro 2019) of rough walls, i.e. to replace the rough wall with an equivalent wall with
effective wall properties. For example, Taylor (1971) and Richardson (1971, 1973) have
discussed the slip boundary condition of the porous material walls. Bottaro (2019) has
systematically reviewed and revisited the multiscale homogenization strategy in various
flow problems. Usually, the previous studies considered only Dirichlet-type (first-type)
and/or the Neumann-type (second-type) boundary conditions which apply to the shear
stress and heat flux calculations. The relatively more complicated Robin-type (third-type)
boundary condition which appears in surface reaction and mass transfer problems has
not been discussed sufficiently, and the available studies are very rare. In addition, the
rarefied gas effects are scarcely touched upon in these studies. Against this background,
the present paper will specially discuss the surface reaction and mass transfer features of
a thermal protection system covered by microstructures in which the rarefied gas effects
could be significant.

The microstructure considered here, resulting from either the manufacture precision or
slight ablation, has a scale much smaller than the thickness of the boundary layer (Song
et al. 2018; Chung et al. 2021). Under the microscope, the morphology distribution usually
has a periodicity with a characteristic dimension which, taking carbon-based materials
(Panerai et al. 2019; Levet et al. 2021; Le, Ha & Goo 2021) as an example, depends on
the diameter of carbon fibres, usually several micrometres (Vérant et al. 2012). Despite
its negligible effect on the macroscopic flow state, the increased wetted area and active
sites show a positive effect on the surface reaction rate. This is why porous catalysts are so
effective in chemical engineering (Hoogschagen 1955).

On the other hand, for a typical hypersonic vehicle flying with a Mach number Ma∞ ∼
20 at an altitude in the range 40–50 km, the thickness of the boundary layer clinging to the
leading edge is of the order of millimetres (Wang 2014, p. 32), and the mean free path of
molecules near the wall is micron sized, as shown in figure 1. As a result, the reaction and
diffusion, as well as the incomplete energy accommodation process (Luo & Wang 2020),
in the roughness elements could be significantly influenced by the rarefied gas effects, as
implied by the Knudsen number

Kn = λ
L
, (1.1)

where λ and L denote the mean free path of molecules and the characteristic scale of the
flow, respectively. In this work, there exist two flow scales, namely, the overall macroflow
and the microflow within the roughness elements, and the Knudsen number defined for
the latter is much larger than that for the former. As indicated by Massuti-Ballester &
Herdrich (2021), a lack of awareness of the microscopic roughness is one of the main
reasons causing the large scatter in the measurement data of materials’ thermochemical
properties (Thoemel & Chazot 2009).

In fact, the diffusion in the microstructure could range between two limiting behaviours
(Bird, Stewart & Lightfoot 2002; Kavokine, Netz & Bocquet 2021): bulk diffusion and
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Knudsen diffusion, corresponding to the continuum (Kn � 1) and free molecular flow
(Kn � 1) cases, respectively. As in between (Kn ∼ 1), the slip and transition phenomena
complicate the situation, and an effective diffusivity should be employed.

The homogeneous strategy of the rough wall should be tested in a typical and concise
flow model which sufficiently reflects the multiscale characteristics we are concerned with
and meanwhile filters out the unrelated factors. In most of the studies, the two-dimensional
(2-D) roughness element is chosen for simplicity, and the results can be generalized to
the three-dimensional (3-D) case (Achdou et al. 1998). It is also shown by Nevard &
Keller (1997) that the effective boundary conditions determined by the solutions of certain
special problems could also be extended to other problems with the same multiscale
characteristics. Zhou et al. (2002) found that the flow model based on a relatively simple
geometry can exhibit many of the features present in much more complex geometries,
which can significantly impact heat or mass transfer performance. Furthermore, the
small perturbation caused by the roughness can be analysed in a linearized way. For
the momentum transport problem, Wang (2003) showed that a parallel shear flow model
adequately describes the fluid motion near the wall, regardless of the actual flow state being
laminar or turbulent, as long as the size of the roughness is small enough compared with
the nominal dimension of the macroscopic flow domain. For the heat transfer problem,
Fyrillas & Pozrikidis (2001) and Blyth & Pozrikidis (2003) found that the curvature
of the surface could be neglected, and the heat conduction dominates convection near
the small-sized roughness, and the temperature field satisfies Laplace’s equation to the
leading-order approximation. For the surface reaction and diffusion problem, Ringhofer
& Gobbert (1998) stated that, for practical applications, the heat conduction and mass
transfer can be treated separately, and thus the temperature is assumed to be a given
quantity in their study in the reaction–diffusion process. They also adopted a realistic
assumption of a constant and invariant roughness shape, considering that the growth of
the surface is very slow compared with the characteristic flow time scale. Poovathingal
& Schwartzentruber (2014) carried out a numerical study on the ablation process of a
carbon-based surface, showing that the convection could be neglected in analysing an
isolated roughness element.

Practically, a multiplying factor

Φ = kw,r

kw,s
(1.2)

can be used to evaluate the relative impact of the rough surface, where kw,s is the reaction
rate for smooth wall, and kw,r is the averaged reaction rate perceived by the macroscopic
flow field in the presence of roughness over the same projected area. Here, kw,r is
exactly the apparent or effective chemical property of the equivalent smooth wall in the
corresponding homogeneous model, and it should depend both on the geometrical details
of the roughness element and the flow state nearby. In principle, Φ or kw,r can be obtained
from molecular dynamics simulations (Poovathingal et al. 2013) of the atomic-level
interactions between the gas and the surface molecules, or from measurements of the
mesoscopic/macroscopic property in the boundary layer. Many previous studies (Kim &
Boudart 1991; Kim et al. 2020a; Kim, Yang & Park 2020b) showed that the multiplying
factor increases proportionately with the roughness factor

Rn = A
A0
, (1.3)

in a reasonable range of roughness, with A and A0 being the wetted area and projected area
of the roughness element, respectively. But this occurs only in the reaction-limited regime
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Reaction–diffusion of rarefied gas on a rough wall

where the diffusion rate is much higher than the surface reaction rate. As the reaction
rate increases and gradually dominates the diffusion rate, a diffusion-limited regime is
approached and the effective rate of surface reactions will be decreased (Poovathingal &
Schwartzentruber 2014). Theoretical and quantitative modelling of this process is the main
purpose of the present paper.

Inspired by the previous work, this paper proposed a quasi-one-dimensional (Q1-D)
homogeneous model consisting of a macroscopic one-dimensional (1-D) surface
reaction–diffusion model and a microscopic 2-D roughness model, with the latter
embedded in the former as an effective boundary. The direct simulation Monte Carlo
(DSMC) method is also employed to calibrate and validate the results within a practical
range of flow parameters. The typical oxidizing reaction of the carbon-based surface
(Poovathingal & Schwartzentruber 2014) is considered in the analysis as an example
because it is potentially associated with the formation of the roughness, but the conclusions
are shown to also applicable to the catalytic reaction. Typical roughness geometries,
varying rarefied flow regimes as well as reaction probabilities are taken into account.
Effects of the flow and heat transfer are ignored at first in the theoretical analysis, and
then recovered and evaluated at last in the numerical analysis. An extension to the 3-D
roughness is also verified and discussed in the end.

2. Physical analysis and theoretical modelling

Following the convention of the previous work, the roughness element, i.e. the
microstructure on the surface, should be embodied in a standard and practical flow model,
in order to display its effects on the transport performance near the wall. A steady
Q1-D surface reaction–diffusion model is introduced here to describe the flow features
at distances that are large compared with the roughness but small compared with the
nominal dimension, e.g. the boundary layer thickness, as shown in figure 2. The oxygen
atoms enter from the outer boundary (y = H) of the domain at a given concentration X∞
(and optionally at a given temperature T∞), and then diffuse towards the surface, which is
named external diffusion. A nominal gas–surface reaction denoting the major reaction
of carbon and O atoms (Poovathingal & Schwartzentruber 2014; Murray et al. 2020),
C(s)+ O → CO, takes place on the surface placed at y = 0 at a given temperature Tw.
The released CO molecules diffuse towards the outer boundary and finally get away, this
also being an external diffusion process. In the cavity of the roughness element, an internal
diffusion exists, and the rarefied gas effects can play a role since the characteristic scale of
the roughness is comparable to the mean free path of gas molecules, although the external
flow could be within the continuum regime. The aim is to find a homogeneous equivalence
of the rough wall to a smooth wall with effective chemical properties.

Without or with a tangential velocity, the model denotes the flow characteristics close
to or downstream of the stagnation point. It will be shown later that the tangential velocity
does not affect the equivalence, and so the tangential velocity is neglected at first. With
regard to the normal velocity, it has two components: thermal velocity and bulk velocity.
The thermal velocity is isotropous, but the bulk velocity is complex because diffusion
will always produce convection (Cussler 2009) even in isothermal and isobaric systems.
Fortunately, the convective velocity is zero if the molar average velocity is used in this
problem. Furthermore, some assumptions need to be addressed:

(i) Gas-phase reaction has a much smaller extent than the surface reaction and therefore
is neglected, which is in accordance with the traditional frozen boundary layer
assumption in engineering practice and has been discussed in some previous studies
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Figure 2. Schematic of the reaction–diffusion field near a wall. (a) Reaction–diffusion model of a rough
surface. (b) Reaction–diffusion model of a smooth surface.

(Poovathingal & Schwartzentruber 2014). Certainly, the coupling and competition
between the gas phase and heterogeneous reactions deserve future study.

(ii) Time-dependent interfacial motions are neglected here because the surface recession
is slow as compared with the mass transfer (Lachaud et al. 2007), and the flow
is steady in this problem. A future analysis may consider the materials’ mass loss
model such as the 1-D model proposed by Pirrone et al. (2022).

(iii) The roughness elements have a period distribution, which is an abstraction of most
practical surfaces (Panerai et al. 2019; Levet et al. 2021; Le et al. 2021).

(iv) The gas temperature, and therefore the property parameters, are constant within the
microscale cavities even when the external flow field has a gradient, due to the small
dimension of the surface roughness (Fyrillas & Pozrikidis 2001).

2.1. Reaction–diffusion induced by a smooth reactive wall
First, we need to have a clear understanding of the external surface reaction–diffusion
above a smooth wall in order to subsequently test the internal surface reaction–diffusion
model of the rough wall. As shown in figure 2(b), the 1-D flow field induced by a smooth
reactive wall can be described by the heat conduction equation and mass diffusion equation
(in molar units) in dimensionless form

d
dȳ

(
K̄

dT̄
dȳ

)
= 0,

T̄ = 1, ȳ = 1,

T̄ = Rt, ȳ = 0;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

d
dȳ

(
n̄D̄ij

dX
dȳ

)
= 0,

X = X∞, ȳ = 1,
dX
dȳ

= Da0X, ȳ = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.2)

where ȳ = y/H, with H being the scale of the 1-D domain which is sufficiently small
relative to the macroscopic flow scale and sufficiently large relative to the microscopic
roughness scale, Rt = Tw/T∞ and X = n(O)/n is the mole fraction of O atoms.
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Reaction–diffusion of rarefied gas on a rough wall

The temperature T , number density n, thermal conductivity K and binary diffusion
coefficient Dij are non-dimensionalized or normalized by their corresponding values at the
outer boundary ȳ = 1 (denoted by a subscript ‘∞’). In the first-order reaction boundary
condition

Da0 = kwH
Dij,w

, (2.3)

is known as the Damköhler number (Inger 2001), a non-equilibrium criterion that
represents the relative speed of surface reaction and diffusion. Here, kw is the surface
reaction rate, and the subscript ‘w’ denotes the properties at the wall.

At first appearance, the above equations seem very simple. However, even under the
thermodynamic equilibrium assumption, the transport coefficients generally depend not
only on the temperature, but also on the gas composition. As a result, (2.1) and (2.2) are
coupled nonlinear equations for a gas mixture, and the solution process relies partly on the
modelling of the mixture’s physical properties.

According to the kinetic theory (Chapman & Cowling 1990), the thermal conductivity
for species ‘i’ is

Ki = ci

√
T/Mi

σ 2
i ΩK,i

. (2.4)

For the gas mixture, there is Wilke’s semiempirical rule (Bird et al. 2002; Alkandry, Boyd
& Martin 2014), K = ∑

i(XiKi/φi) with the scaling factor

φi =
∑

j

Xj

[
1 +

√
Ki

Kj

(
Mj

Mi

)1/4
]2 [√

8
(

1 + Mi

Mj

)]−1

. (2.5)

By contrast, the binary diffusivity (Chapman & Cowling 1990; Cussler 2009) takes the
form

Dij = cij

√
T3

(
1

Mi
+ 1

Mj

)
1

pσ 2
ijΩD,ij

, (2.6)

where Mi and Mj are the molar mass of species ‘i’ and ‘j’, respectively, p denotes the
pressure, σ is a characteristic diameter appearing in the molecular potential, and prefactors
ci and cij are the empirical coefficients. Also, ΩK,i and ΩD,ij are the collisional integrals
for the thermal conduction and diffusion, respectively. The viscosity depends on the
temperature with a power law μ ∝ Tω, with ω being the viscosity index and equal roughly
to 0.75 for most real gases (Bird 1994). According to the similarity among the mass,
momentum and energy transports, the collisional integrals for thermal conductivity and
diffusivity conform to Ω ∝ T1/2−ω approximately. The diffusivity for the binary mixture
Dij is almost independent of the composition (Bird et al. 2002), and so we have n̄D̄ij ∝ Tω.
Based on the thermal properties of molecular species provided by Miró Miró & Pinna
(2021), it can be deduced that the complex relation between the thermal conductivity and
the oxygen atoms’ mole concentration is approximately linear for the present gas mixture,
i.e. K̄ ∝ T̄ω(1 + βX) with β ≈ 0.43.

Now, (2.1) and (2.2) can be solved numerically, or alternatively, be analysed based on
a perturbation idea since the coupling is relatively weak and the transport coefficients’
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variation due to the temperature perturbation is slight. For the latter method, the zero-order
solutions could be obtained without considering the coupling effects. Therefore, we get

T̄0 = [(1 − Rt1+ω)ȳ + Rt1+ω]1/(1+ω), (2.7)

X̄0 = X0

X∞
= 1 + Da0ȳ

1 + Da0
. (2.8)

The first-order solutions are then obtained by considering K̄ ∝ T̄ω(1 + βX0) and n̄D̄ij ∝
Tω0 in (2.1) and (2.2). As a result,

T̄1 =
[

ln(1 + cȳ)
ln(1 + c)

(1 − Rt1+ω)+ Rt1+ω
]1/(1+ω)

, (2.9)

where c = βDa0/(1 + β + Da0), and

X̄1 = X1

X∞
= 1 + Daψ(ȳ)

1 + Da
, (2.10)

ψ(ȳ) =

[(
1

Rt1+ω − 1
)

ȳ + 1
]1/(1+ω)

− 1

1
Rt

− 1
, (2.11)

and the modified Damköhler number,

Da = 1 − Rt
Rt−ω − Rt

(1 + ω)Da0. (2.12)

The iteration process could go on in principle, but it will be shown later that the
first-order approximation (2.10) is sufficient to predict the distribution of the mole
concentration, while a higher-order approximation will introduce special complexity but
negligible accuracy improvement. For the temperature distribution (2.9), a simple but
efficient improvement could be supplemented by merely replacing Da0 in c with the
modified Da. Particularly, at the wall surface, ȳ = 0 and ψ(0) = 0, and we have

X̄w = Xw

X∞
= 1

1 + Da
. (2.13)

Now we consider a specific situation where the temperature of the entire flow field is
uniform, i.e. T∞ = Tw and Rt = 1. This a basic and effective model to discuss the diffusion
and surface reaction problem. Based on L’Hôpital’s rule, it is easy to derive that Da =
Da0, ψ(ȳ) = ȳ and the concentration profile (2.10) degrades into a linear form

X̄ = X
X∞

= 1 + Da0ȳ
1 + Da0

. (2.14)

The above linear formula (2.14) is adopted conveniently in the following theoretical
analyses, but the more general (2.9) and (2.10) will also be displayed to show that the
non-uniformity of the temperature does not affect the modelling of the roughness elements.
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Reaction–diffusion of rarefied gas on a rough wall

2.2. Rarefied gas effects
The analyses in the above subsection are still based on the continuum hypothesis,
but as the microscopic phenomena are concerned, the rarefied gas effects should be
evaluated and some corrections be introduced if necessary. For the present surface
reaction–diffusion problem, corrections to the boundary conditions and diffusivity are
particularly considered.

The no-slip boundary conditions assume the continuity of tangential velocity,
temperature and the Gibbs chemical potentials across interfaces between phases. This
is, however, a limiting case of the more general Navier partial-slip boundary conditions
(Kavokine et al. 2021). In view of the chemical non-equilibrium for multicomponent
gases, the concentration slip boundary condition (Gupta, Scott & Moss 1985; Rosner &
Papadopoulos 1996) is

Xslip = 2 − γi

2γi

√
2πmi

kBTw
Dij

dX
dn

∣∣∣∣
w
, (2.15)

where d[·]/dn means the gradient in the wall-normal direction, and γi, kB and mi are
the surface reaction coefficient, Boltzmann constant and mass of the incident atom,
respectively. The surface reaction coefficient γi = Nreact/Ntot represents the probability
of the oxidation reaction when an atom collides with the wall, with Ntot being the total
number flux of atoms impinging onto the surface and Nreact that reacting with the wall.
Therefore, γi takes a value between 0 and 1. Now, considering that the surface reaction
rate

kw = 2γi

2 − γi

√
kBTw

2πmi
, (2.16)

combining (2.15) and (2.16), we find

kwXslip = Dij
dX
dn

∣∣∣∣
w
, (2.17)

which is the precisely first-order surface reaction. In other words, the slip boundary
condition is equivalent to the first-order reaction boundary condition that has been adopted
in (2.2).

It is worth noting that there is another popularly used expression for the surface reaction
rate

kw = γi

√
kBTw

2πmi
. (2.18)

In fact, there still exists an unresolved conflict for the two versions, i.e. (2.16) and (2.18).
For a low reaction coefficient, γi < 0.1 for example, these two formulae are approximately
equal, but for a high reaction probability, there is a non-physical jump between these two
formulae. It is observed that (2.18) is commonly used in the continuum regime (Scott 1992;
Massuti-Ballester & Herdrich 2017), and (2.16) in the rarefied regime (Gupta et al. 1985;
Scott 1992; Zade, Renksizbulut & Friedman 2008). Therefore (2.16) is more appropriate
for the present rarefied gas condition, as will be confirmed later in our DSMC simulations
which demonstrate a smooth transition from (2.18) to (2.16) as Kn increases.

Strictly speaking, the slip conditions also occur at the entrance to the flow domain. For
example, in the DSMC simulation (Bird 1994), the inflow boundary allows the inside
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molecules to cross the boundary to leave freely, and in the meantime, the stationary
equilibrium gas atoms flow into the flow field. The number of inflow and outflow
molecules will be equal so as to keep a steady state, which, at present, means a CO
molecule flows out while an O atom flows in on average. Therefore, the entrance resembles
a reduction wall where the reaction CO → C(s)+ O occurs with a reaction coefficient
γ∞ = 1. The no-slip Dirichlet boundary condition at ȳ = 1 in (2.2) should be replaced by
the slip Robin boundary condition

d(1 − X)
dȳ

= −Da∞(1 − X), ȳ = 1, (2.19)

where (1 − X) is the molar concentration fraction of CO, and Da∞ = k∞H/Dij,∞ is the
Damköhler number defined based on the entrance parameters, with k∞ and Dij,∞ being the
reaction rate and diffusivity at the entrance. Therefore, the concentration at the entrance is
always less than unity, and a reciprocal relationship with (2.13) could be obtained as

1 − X∞ = (1 − Xw)
1

1 + Da∞
. (2.20)

Finally, combining (2.13), (2.20) and (2.14), we get

X = X∞
1 + Daȳ
1 + Da

= Da∞ (1 + Daȳ)
Da + Da∞ + DaDa∞

, (2.21)

for a ‘completely reactive’ boundary condition at the entrance.
Actually, a coarse-grained estimation can be further given here to directly show the

rarefied gas effects (denoting by Kn) on the concentration distribution. Suppose an
averaged pure gas, with diffusivity D = 1

3 c̄λ and mean thermal velocity c̄ = √
8kBT/πm,

according to the kinetic theory of gases

kw = 2γi

2 − γi

√
kBTw

2πm
= 2γi

2 − γi

c̄
4

and k∞ = 2

√
kBTw

2πm
, (2.22a,b)

as the imaginary reaction coefficient is unity at the entrance. As a result, the Damköhler
number is inversely proportional to the Knudsen number, i.e.

Da = kwH
D

= γi

2 − γi

3H
2λ

= γi

2 − γi

3
2Kn

, (2.23)

and similarly, we get Da∞ = 3/2Kn from γ∞ = 1. Equation (2.21) can be rewritten as

X = 2(2 − γi)Kn + 3γiȳ
4Kn + 3γi

. (2.24)

A degraded version of (2.24) has been reported by Rosner & Papadopoulos (1996) and Xu
& Ju (2005) who further assumed γi = 1, and used (2.18) rather than (2.16).

Besides the slip effects on the boundaries, the rarefied gas effects also emerge in
the flow field as Kn increases. Actually, the diffusion feature deviates from the bulk
diffusion, and there appears a complex behaviour in the transition flow regime. Due
to a lack of precise description, a popular and convenient treatment (Keerthi et al.
2018) is to assume that Fick’s first law still works even in the high Kn regime and
to replace the bulk diffusivity with an empirical formula such as Bosanquet’s relation
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Reaction–diffusion of rarefied gas on a rough wall

(Hewitt & Sharratt 1963; Zalc, Reyes & Iglesia 2004; Lachaud, Cozmuta & Mansour 2010;
Achambath & Schwartzentruber 2018)

D =
(

1
DKn

+ 1
Dij

)−1

, (2.25)

where D is the effective diffusivity, DKn is the Knudsen diffusivity (Present 1958; Shindo
et al. 1983; Levdanskii et al. 2014; Kavokine et al. 2021) and Dij/DKn ∝ λ/L = Kn.

In the continuum regime, Kn � 1, and D ≈ Dij. Inversely, for the free molecular
flow, Kn � 1, and D ≈ DKn, which means the gas–surface collisions dominate collisions
between gas molecules. The diffusivity correction in the external diffusion region is
probably not so significant, but in the internal diffusion region of the roughness, the flow
is generally highly rarefied and the Knudsen diffusion is the primary mechanism. To avoid
getting too far off the main topic, a detailed discussion of the Knudsen diffusivity can be
found in Appendix A.

2.3. Diffusion–reaction induced by a rough surface
The diffusion–reaction effects of the roughness can be decoupled from the external flow
region as its size is sufficiently small compared with the characteristic scale of the
macroscopic flow. Difficulties arise from the complex geometries of the boundaries and
the porosity. Pragmatically, the effect of various actual roughness geometries could be
related to that of some standard ones under the same flow conditions, as has been seen for
the equivalent sand roughness model (Sigal & Danberg 1990; Hermann Schlichting 2017)
which has been popularly used in engineering practice. Therefore, two typical geometries,
the rectangle and the triangle, are particularly considered here, and it will be shown later
that the method and conclusion apply also to even the 3-D roughness elements.

The mass diffusion in a roughness pore is similar to the heat transfer in the same
region, and the analogy between diffusion and heat transfer could be used to model the
interaction of diffusion and reaction in the cavities, with the assumptions in § 2 similar
to the Murray–Gardner assumptions (Kraus, Aziz & Welty 2001, p. 10) for the heat
transfer in fins. For the Q1-D flow field, an imaginary plane is aligned with the peak
of the morphology (y = 0) without loss of generality, and the concentration fraction in
volume at the plane is set to an arbitrary constant Xe. As the mean free path of the gas
molecules is comparable to the characteristic dimension of the pores, the corresponding
binary diffusivity Dij should be replaced by the effective diffusivity D in (2.25).

2.3.1. Rectangular roughness surface
Considering a rough wall modelled by an array of rectangular modules, as shown in
figure 3, the characteristic dimension contains the projected length A0 (projected area for
3-D roughness), the width of the pore d and depth h and the roughness factor is Rn =
A/A0 = 1 + 2h/A0. The concentration distribution satisfies the 2-D Laplace equation, the
exact analytical solution is an infinite sine and cosine series, but the boundary geometrical
morphology makes the solution too complex to apply in practice. In comparison, for the
longitudinal structures, or when the internal reaction is not too much faster than the
diffusion (Jochen 1997), the 1-D approximate equation is easier and sufficient (Kraus
et al. 2001, p. 702). As the total mass flux in the y direction is concerned, Nin − Nout =
nD(d2X/dy2)d = 2nkwX, the non-dimensional equations can be easily written as follows
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x

–y

O

d

h

A0

dy

X = Xe|y=0

Nin

Nout

Figure 3. Schematic of the rectangular roughness.

(Lachaud et al. 2007):
d2X̃
dξ2 = Th2δ2X̃,

X̃ = 1, ξ = 0,

dX̃
dξ

= −Th2δ

2
X̃, ξ = 1,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.26)

in which X̃ = X/Xe, ξ = −(y/h) and δ = h/d. The Thiele number (Achambath &
Schwartzentruber 2018) Th = √

2kwd/D, similar to the Damköhler number defined for the
external flow, represents the relative influence of the reaction compared with the diffusion
in the internal diffusion flow. The solution of (2.26) is

X̃ = cosh(Thδξ)− sinh(Thδξ)Srect, (2.27)

with

Srect =
Th
2

cosh(Thδ)+ sinh(Thδ)

cosh(Thδ)+ Th
2

sinh(Thδ)
. (2.28)

2.3.2. Triangular roughness surface
Figure 4 displays a triangular roughness element. It is apparent that d = 2h tan θ with
θ being the semiangle, and the roughness factor Rn = A/A0 = 1/sin θ = √

1 + 4δ2. The
governing equation is the generalized Bessel equation

(1 − ξ)
d2X̃
dξ2 − dX̃

dξ
= Th2δ

2 sin θ
X̃,

X̃ = 1, ξ = 0,

X̃ < ∞, ξ = 1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.29)

where Th = √
2kwd/D is the Thiele number the same as that for the rectangular roughness.

The solution is expressible as a Bessel function

X̃ = I0
(
ThStri

√
(1 − ξ)

)
I0 (ThStri)

, (2.30)

where Stri = √
2δ/sin θ , and I0 is the zero-order modified Bessel function of the first kind.
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x

–y

O
A0

X = Xe|y=0

d

h

θ

Figure 4. Schematic of the triangular roughness.

2.3.3. Effect of the surface roughness
As discussed above, the effect of the rough wall with an intrinsic reaction rate kw is
expected to be equivalent to a virtual smooth wall with an effective reaction rate Φkw.
The number flux reacting at the virtual wall is

Nreact = nXeΦkw, (2.31)

while the number flux diffusion to the wall is

Nin = nXeD
dX̃
dy
. (2.32)

Since Nreact = Nin, we have Φkw = D(dX̃/dy)|y=0 = D(dX̃/dξ)(dξ/dy)|ξ=0, and thus

Φ = − D
kwh

dX̃
dξ

∣∣∣∣∣
ξ=0

= − 2
Th2δ

dX̃
dξ

∣∣∣∣∣
ξ=0

. (2.33)

Here, ϕ is introduced to represent the multiplying factor in the pore, while Φ is for
the whole rough wall accounting for the influence of the surface porosity. With the
concentration distributions (2.27) and (2.30) in the microstructures, (2.33) can be rewritten
as

ϕrect = 2Srect

Th
(2.34)

for the rectangular roughness, and

ϕtri = Stri

Thδ
I1 (ThStri)

I0 (ThStri)
(2.35)

for the triangular roughness, where I1 is the first-order modified Bessel function of the first
kind.

For ease of application, the asymptotic approximations can be derived by considering
the dominated factors. For the rectangular roughness element, when Thδ is small, the
process is limited by the surface reaction, and Srect ≈ Th/2 + Thδ. On the contrary, when
Thδ is large, the process is limited by the diffusion, and Srect ≈ 1. Besides, when Thδ 
 1,
ϕ can be approximated by its first-order Taylor expansion. Therefore, ϕrect can be classified
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into three regimes naturally

ϕrect =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + 2δ, Thδ < 0.4,

6 + 12δ + 2Th2δ2

6 + 3Th2δ + 2Th2δ2 , 0.4 ≤ Thδ < 2,

2
Th
, Thδ ≥ 2.

(2.36)

Here, ϕrect ≈ 1 + 2δ is identical to the roughness factor Rn when the reaction is slow
enough, which is consistent with the results of references (Kim & Boudart 1991; Kim et al.
2020a,b). Specially, we find ϕrect 
 1 as Th = 2, indicating that the effect of roughness
will vanish at Th = 2, whether the depth δ is small or large. What is more interesting is that
the microstructure may even decrease the reaction rate when Th > 2, and this finding is in
agreement with the numerical simulations of Poovathingal & Schwartzentruber (2014).

Moreover, for more subtle nanopores or a very rarefied atmosphere, the local Knudsen
number KnL = λ/d � 1, the transport is dominated by the Knudsen diffusion and the
diffusivity D ∝ c̄d with a proportionality factor a little smaller than 2/3. Then we have
Th = √

2kwd/D ∝ √
γi/(2 − γi) with a proportionality factor around 2, indicating that

Th almost depends completely on γi. As a result, Th ≈ 2 and Φrect ≈ 1 when γi = 1.
Physically speaking, the result precisely corresponds to the fact that the reactant should be
fully reacted on either the smooth or the rough wall.

For the triangular roughness, a similar classification yields

ϕtri =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
sin θ

, ThStri < 0.4,

2
sin θ

(0.54 − 0.1ThStri) , 0.4 ≤ ThStri < 2,

Stri

Thδ
≈ 2

Th
, ThStri ≥ 2.

(2.37)

When the reaction is much slower than the diffusion, ϕtri = 1/sin θ , equal to the roughness
factor Rn as expected. When the process is reaction limited and the pore structure is narrow,
Stri ≈ 2δ and ϕtri = 2/Th, arriving at a consensus on the asymptotic form for large or small
Thiele number in (2.36).

2.3.4. Influence of the surface porosity
The above discussion only considers the internal reaction in the microstructure, i.e. a
limiting case for the surface porosity

ε = d
A0
, (2.38)

which is a key factor of the performance of materials (Sing 1985). In a single period,
the microstructure contains a pore of width d and platform of width (A0 − d) as shown
in figure 3. The platform has the same performance as a smooth wall, and therefore, the
overall influence of surface roughness can be considered as the combination of these two
parts,

Φ = 1 + ε (ϕ − 1) . (2.39)

Considering a narrow pore structure, namely ε � 1, thereforeΦ ≈ 1. This indicates that
although an isolated microscale structure could bring a non-negligible roughness factor Rn,
it has an insignificant effect on the surface reaction characteristics.
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Reaction–diffusion of rarefied gas on a rough wall

Gas species Diameter dref (Å) Scattering parameter α Viscosity index ω

O 3.0 1 0.8
CO 4.12 1.49 0.73
O2 4.01 1.40 0.77

Table 1. Molecular parameters in the DSMC simulations (Tref = 300 K).

3. Validations and discussions

3.1. Details of the numerical simulations
To validate the above theoretical analysis, a series of DSMC results is provided from
the open-source DS2V (Bird 2005) program which has been popularly used and well
verified in this community and is acknowledged to be reliable in simulating rarefied
and non-equilibrium flows. In the simulation, Maxwell’s diffuse reflection boundary
condition is adopted, and the momentum and energy accommodation coefficients are
both set to 1. The variable soft sphere model (Bird 1994) is used to treat the molecular
collisions, and the parameters are shown in table 1. The molecular model parameters
are significant in studying the transport properties of high-temperature gas, and many
researchers (Swaminathan-Gopalan & Stephani 2016) have devoted efforts to providing
various fitting data for different temperature ranges in practical application. However, it
does not matter which parameters or even model are used, and the present modelling study,
as well as the dimensionless results, holds its validity, since the model parameters merely
quantitatively affect the dimensional diffusion coefficient. We have found that, for the flow
conditions in the current work, the results based on the variable hard sphere model show
an insignificant deviation from those based on the variable soft sphere model. Despite
that, it is recommended that the variable soft sphere model with suitable fitting parameters
should be used in simulation of practical high-temperature flow involving significant mass
diffusion effects.

In the DS2V program, the time step is approximately 1/3 of the mean collision time, and
it is checked in the program automatically. The mesh is automatically generated and locally
adapted; the default setting ensures that each cell contains more than eight particles, and
the cell size is smaller than 1/3 of the mean free path in all simulations. If the degree of
rarefaction is high, more particles, as well as more cells, are needed to reduce the statistical
dispersion (Bhagat, Gijare & Dongari 2019), and in this study, there are approximately
3 million particles and more than 100 thousand collision cells in a typical simulation.
We have verified that the present setting of the cell size and particle number per cell is
reasonable for a credible DSMC simulation.

In this section, two aspects of the theoretical modelling, i.e. results of the external flow
and the internal flow need to be validated separately. There are four groups of simulation
cases categorized according to different conditions, as listed in table 2. Group A contains
a series of simulations for the smooth wall to validate the analytical results of the external
surface reaction–diffusion, and it acts as a baseline to evaluate the effect of the roughness.

The baseline simulation is conducted under the flow condition with the bulk velocity
0 m s−1, temperature 300 K and number density of oxygen atoms 1024 m−3. The inflow
is prescribed at y = H = 500 μm, the reactive carbon wall is placed at y = 0 μm and
the periodic boundary condition is used in the x direction, as presented in figure 2. The
reaction coefficient varies from 0 to 1, namely, γi = 0.001, 0.01, 0.1, 0.2, 0.5 and 1. Besides,
two kinds of roughness geometry are set in group B, to indicate the effects of the roughness
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Group Geometry d (μm) Rn λ∞ (μm) T∞ (K) u (m s−1) γi

A Smooth — 1 0.25–2500 300 0 0.001–1
Smooth — 1 1.25–25 300 0 0.001–1
Smooth — 1 0.25–2500 500/1000/2000 0 0.001–1

B Rectangle 4 1.41/2/3 0.25–2500 300 0 0.001–1
Rectangle 2 3 0.25–2500 300 0 0.001–1
Triangle 8 1.41/2/3 0.25–2500 300 0 0.001–1
Triangle 4 2 0.25–2500 300 0 0.001–1

C Smooth — 3 2.5 2000 0/1000 0.01
Rectangle 4 3 2.5 2000 0/1000 0.01
Smooth — 3 2.5 2000 0/1000 0.0284

D Smooth — 3 2.5 300 0 0.01
Rectangle 4 3 2.5 300 0 0.01
Smooth — 3 2.5 300 0 0.0284

Table 2. Parameters in the DSMC simulations.

geometry, roughness factor Rn and surface porosity. Group C has the same roughness as
group B, but a shear velocity and a temperature gradient are taken into consideration. In
group D, as an extension of the theories for the oxidation reaction, the catalytic reaction
O + O → O2 is simulated to assess the effects of roughness on catalysis.

3.1.1. Reaction–diffusion performance of a smooth surface
First, the concentration profiles with variable Damköhler numbers Da are displayed
in figure 5, where γ∞ = 1 has been assumed and two typical values of Da∞ are
demonstrated. A good agreement between the DSMC results and the theoretical
predictions by (2.21) can be observed. As γ = 1 is also adopted, a special version of
(2.24) shows a direct dependence of the concentration profile on the Knudsen number, i.e.
X = (2Kn + 3ȳ)/(4Kn + 3), which is also compared with the DSMC results in figure 6,
indicating that the concentration profile remains essentially linear in the entire flow
regime. The above two figures demonstrate that the first-order slip model is sufficient
to predict the concentration slip here. A distinct concentration slip can be observed when
Kn∞ > 0.05, and formula (2.15) is approximately accurate in the slip regime, but with the
increase of Kn number, (2.21) with the correction of Bosanquet’s relation works better.
It is interesting to note that all the profile lines in figure 6 intersect at ȳ = 0.43 and
X̄ = 43 %. The reason is that CO molecule is heavier than the O atom, and the mean
thermal velocity and thus Damköhler number are inversely proportional to the square
root of the mass, i.e. Da/Da

′ = √
mCO/mO = √

28/16, leading to an immovable point
X̄ = ȳ = 1/(1 + √

28/16) ≈ 0.43.
It is also interesting to rationalize our use of (2.16). While the reaction probability γ

is directly set in the simulation, the reaction rate kw could be deduced from the DSMC
results by using (2.21) and (2.3) successively. Figure 7 shows the relation between kw
and γ under various Knudsen numbers. The DSMC results vary smoothly between the
two limits, from (2.18) to (2.16), as the flow becomes rarefied. This comparison vividly
clarifies the confusion of different expressions for the reaction rate in the literature.

Figure 8(a) shows the temperature profiles in the non-isothermal situation, and
figure 8(b) shows the concentration profiles under different reaction rates when
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Figure 5. Concentration profiles of oxygen atom under different non-equilibrium degrees (symbols: DSMC
results in group A; lines: theoretical predictions by (2.21)); (a) Kn∞ = 0.005 and Da∞ = 177.3, (b) Kn∞ = 0.5
and Da∞ = 2.34.
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Figure 6. Concentration profiles under different rarefaction degrees (symbols: DSMC results in group A;
lines: theoretical predictions by (2.21)).
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Figure 7. The relation between the reaction rate kw and the reaction coefficient γ (group A).
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Figure 8. Temperature (a) profiles (γ = 0.1) (symbols: DSMC results in group A, Kn∞ = 0.005; dashed
lines: zero-order approximation (2.7); solid lines: first-order approximation (2.9)) and concentration (b) profiles
(T∞ = 2000 K) (solid lines: first-order approximation (2.10)) in a non-isothermal flow field.

T∞ = 2000 K. It is found that as a large temperature difference is imposed, both the
temperature and concentration distributions show apparent nonlinearities. However, the
analytical first-order approximations are appropriate for the corresponding predictions
under various practical conditions.

3.2. Reaction–diffusive around a roughness element
For a smooth wall, the reaction rate kw depends only on γ , but for a rough wall, the
apparent reaction rate is also related to the morphological features. Figure 9 displays
the concentration contours near the rough wall, and it is observed that the horizontal
variation of the concentration is slight relative to the longitudinal variation, and a 1-D
approximation is reasonable for either the internal or external region of the pore. The
reasonableness could be further testified by the concentration profiles along three typical
lines extracted from the flow field, and as shown in the figure, the consistency among them
is quite satisfactory. The analytical prediction of the concentration distribution in the pore
is provided by (2.27), and that outside the pore is provided by (2.21) with the apparent
surface reaction rate determined by (2.39). A distinct inflection point can be observed
at y = 0, and the maximum relative error is less than 5 % at y = 0, which provides a
visualized validation of the Q1-D theoretical modelling in this study.

It is important to reiterate that the multiplying factor Φ is a key factor used to
quantitatively compare the impact of the roughness. The results are summarized in
figures 10 and 11 for the rectangular and triangular roughness elements, respectively, with
the local Knudsen number KnL = λ/d varying up to five orders of magnitude. In general,
as γ increases,Φ will decrease to even less than 1, indicating that the roughness will retard
rather than accelerate the reaction when the process is diffusion limited. This performance
corresponds to the fact that molecules in the microstructure block the atoms and prevent
them from colliding with the wall, and the reactant and product cannot transport through
the pore in time, leading to a reduction of the overall reaction rate in the microstructure.
When KnL � 1, the Knudsen diffusion is dominant, Φ = Rn when γ � 1, and Φ = 1
when γ = 1, as discussed in the above section. It is notable that the diffusivity (2.25) and
then the multiplying factor Φ decrease continuously with the decrease of Kn.

Furthermore, the separate curves in figure 10 can be described by the characteristic
parameter Th in a normalized curve, as shown in figure 12(a), where the solid line
represents the theoretical prediction of (2.34), and the three approximate segments (S1–S3)
represent the asymptotic predictions of (2.36). Similarly, the corresponding features of the
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Figure 9. Contours (a) and profiles (b) of the concentration field adjacent to the roughness (group B, Rn = 3,
KnL = 0.05, γ = 0.01; symbols: DSMC results; solid line: theoretical predictions of (2.27) and (2.21) for the
internal and external regions, respectively).
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Figure 10. Multiplying factor for the rectangular roughness (group B, ε = 1
2 ); (a) Rn = 1.414, (b) Rn = 2,

(c) Rn = 3.
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Figure 11. Multiplying factor for the triangular roughness (group B, ε = 1); (a) Rn = 1.414, (b) Rn = 2,
(c) Rn = 3.
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Figure 12. Dependence of Φ on Th number (group B, Rn = 2; theory lines predicted by (2.34) and (2.35);
approximation S1–S3 predicted by (2.36) and (2.37)); (a) Φ for the rectangular roughness (ε = 1

2 ), (b) Φ for
the triangular roughness (ε = 1).
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Figure 13. The influence of surface porosity (group B, ε = 1, 0.5, 0.25; symbols: DSMC results; lines:
theoretical predictions by (2.39)).

triangular roughness are plotted in figure 12(b). Figure 13 shows the slight difference
between effects of the rectangle and triangular roughness with consideration of the
surface porosity (2.39). It is apparent that both of the roughness geometries exhibit a
similar pattern, with the multiplying factor of the rectangular roughness only a little
higher than that of the triangular roughness. However, lines of the rectangular and
triangular roughnesses arrive at a consensus for large Th, as anticipated. The considerable
consistency has practical meaning, since it indicates the potential that the present results
could be extended to other roughness structures without major corrections.

3.3. Equivalence of a rough wall to a smooth wall
The above discussion verified Φ under various conditions, and the reasonableness of the
equivalent wall will be discussed here. Therefore, group C in table 2 is used to discuss
the equivalence of a rough wall to a smooth wall. Three simulations are performed;
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Figure 14. Concentration profiles for a rough wall and the equivalent smooth wall (symbols: DSMC results
in group C, Kn∞ = 0.005; lines: theoretical predictions by (2.21)).
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Figure 15. Temperature and concentration profiles for a rough wall and the equivalent smooth wall with an
effective reaction coefficient (symbols: DSMC results in group C , Kn∞ = 0.005; lines: theoretical predictions
of temperature and concentration by (2.9) and (2.10), respectively). (a) Temperature profiles (T∞ = 2000 K).
(b) Concentration profiles.

first, a smooth wall with the intrinsic reaction coefficient γ = 0.01, second, a rough wall
with the same reaction coefficient and, third, a smooth wall with an effective reaction
rate γeff ≈ 0.0284, since (2.39) predicts Φ ≈ 2.84. The first simulation is a baseline, the
second is the actual situation while the third demonstrates the practical value of the present
theoretical modelling, as shown in figure 14 for the isothermal case and in figure 15 for
the non-isothermal case. The concentration distribution is significantly affected by the
roughness, but the analytical formulae introduced here provide a nearly perfect correction.
For the non-isothermal case, all the simulated temperature profiles are in good agreement
with the theoretical predictions, indicating that the temperature of the gas is not directly
influenced by the roughness since the gaseous reaction is ignored currently.

Figure 15 shows the temperature and concentration profiles in a non-isothermal
condition. All three temperature profiles are in good agreement with the theory lines which
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Figure 16. Temperature (a), velocity (b) and concentration (c) profiles for a rough wall and the equivalent
smooth wall in a shear flow (symbols: DSMC results in group C, Kn∞ = 0.005; lines: theoretical predictions
of temperature and concentration by (2.9) and (2.10), respectively).

are predicted by (2.9). The concentration distribution of the equivalent smooth wall is in
line with the data from the rough wall, as anticipated.

Although the analytical results in this study were derived under the assumption of zero
tangential velocity, it was inferred physically that they ought to be extended to the flow
with a shear velocity. Therefore, group C in table 2 also includes cases to check the
influence of the shear velocity. The bulk velocity in the x direction is set to be 1000 m s−1,
and the velocity gradient is 2 × 106 s−1, showing a typical strong shear characteristic.
As shown in figure 16, the simulations are performed as the same as figure 15 except for
the addition of the tangential velocity. The temperature profile diverges slightly from the
prediction of (2.9) due to the viscous dissipation effect of the shear flow. The velocity
slip and temperature jump are barely discernible under this condition, since Kn∞ is still
small enough and the accommodation coefficients of momentum and energy are set to 1.
If the incomplete accommodation phenomenon (accommodation coefficient less than 1)
is specially of concern in other problems, it is speculated that by using the idea in this
study, similar corrections could be introduced for the velocity slip and temperature jump
boundary conditions.

These results indicate that the roughness has ignorable effects on the temperature and
velocity distributions, echoing our inference at the beginning, namely, the microscale
roughness will not directly alter the macroscopic flow structure. As a result, the reacting
flow over a rough wall can be equivalent to that over a smooth wall with an effective
surface property, even with a large temperature difference and a high shear velocity. In
addition, various models of the velocity slip and temperature jump can be used on the
virtual smooth wall like in other places.

3.4. Extension to the catalysis reaction
Heterogeneous catalysis (O + O → O2) is another surface reaction that is very important
in hypersonic aerothermodynamics, and it affects the aerodynamic heating rate
significantly (Zhang & Wang 2022). Qualitatively, it is similarly affected by the surface
roughness, but quantitatively, there are significant differences between the oxidation and
catalysis reactions. The concentration distribution in a corresponding isothermal catalysis
reaction–diffusion problem can be got from Bird’s monograph (Bird et al. 2002, p. 553),
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Figure 17. Concentration profiles for the catalysis reaction and diffusion problem (symbols: DSMC results in
group D, Kn∞ = 0.005; lines: theory by (3.1)).

namely,

1 − 1
2

X̄ = 1
2ȳ

(
1 − 1

2
X̄w

)1−ȳ

, (3.1)

where X̄w is the concentration at the surface (ȳ = 0), and

X̄w = 2
Da

ln (2 − X̄w). (3.2)

This is a transcendental equation, but it is easy to get a numerical solution, where Da =
kwH/Dij,w is formally as same as that for the oxidation reactions. The simulations in group
D of table 2 are intended to explore the influence of the roughness on the surface catalysis.
As before, three simulations are performed, and two analytical predictions from (3.1),
one with the intrinsic reaction rate and the other with the effective one, are shown and
compared in figure 17. It can be seen that the theoretical results are in good agreements
with the DSMC simulations, and the correction based on the multiplying factor Φ works
very well.

Moreover, we consider some engineering-type materials like carbon fibre reinforced
composite on which the depth of cavities may be much larger than the diameter (Levet
et al. 2017). Thoemel & Chazot (2009) did a series of catalytic reaction simulations where
the pore diameter d was fixed, but the pore depth varied to increase the surface area. In
this microstructure, Th can be approximately regarded as fixed by the pore diameter, and
it is inferred from limited information that Th is around 0.1. The results are illustrated in
figure 18 where the lines are predicted by (2.34), and the symbols are from simulations of
Thoemel & Chazot (2009). The figure also shows the experimental data of Kim & Boudart
(1991) where the 3-D roughness was produced by the silica powder in a fixed tube. While
details of the 3-D roughness are unclear, only the variation trend is compared qualitatively,
as also done in the study of Thoemel & Chazot (2009).
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Figure 18. Multiplying factor Φ for the heterogeneous catalysis reaction.

3.5. Extension to the 3-D geometry
Poovathingal & Schwartzentruber (2014) have carried out a 3-D simulation of C–C
ablation, where the carbon fibres are arranged in the plane uniformly, as shown in figure 19,
where d and h are the diameter and the height of the fibre, respectively, and a is the spatial
scale occupied by a single fibre. Different roughnesses can be obtained by changing the
diameter and space of the fibres. The 1-D approximate diffusion–reaction equations can be
generalized to the 3-D roughness. In fact, if the original point y = 0 is still placed on the
top surface of the fibres, a treatment similar to what has been done to the 2-D roughness
will lead to

d2X̃
dξ2 = Th2r2X̃,

X̃ = 1, ξ = 0,

dX̃
dξ

= −Th2δ

2
X̃, ξ = 1,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.3)

where r = √
π(h/a), Th = √

2kwd/D, ξ = −(y/h) and δ = h/d. The solution is

X̃ = cosh(Th r ξ)− sinh(Th r ξ)S3D, (3.4)

with

S3D =
Thδ
2r

cosh(Th r)+ sinh(Th r)

cosh(Th r)+ Thδ
2r

sinh(Th r)
. (3.5)

As a result, Φ can be got from (2.33)

Φ = D
kwh

dX̃
dξ

∣∣∣∣∣
ξ=0

= 2S3D

Th

√
πd
a
. (3.6)

The simulation results of Poovathingal & Schwartzentruber (2014) are compared
with the present analytical predictions in figure 20, where the abscissa ‘area ratio’ is
transformed from the ‘initial area’ used by Poovathingal & Schwartzentruber (2014).
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Figure 19. Schematic of 3-D roughness produced by the carbon fibres.

(b)(a)

y–
0 10 20 30 40 50

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1.0
30

40

50

60

70

80

90

100

Symbols:

Poovathingal (2014)

Theory

Simulation results

Rn = 3.36

Φ

X 
(%

)

Rn

Rn = 5.71

Rn = 10.42

Rn = 22.25

Rn = 51.56

from Poovathingal (2014)

Lines: Theory

Figure 20. Comparison between the simulation results of Poovathingal & Schwartzentruber (2014), and the
present theoretical predictions (KnL = 0.4). (a) Concentration profiles of O for different microstructures (lines
predicted by (2.10)). (b) Dependence of Φ on Rn for 3-D roughness (the line predicted by (3.6)).

As can be seen, the present theoretical modelling gives satisfactory results even for the
3-D roughness.

4. Conclusions

In this study, a theoretical model has been developed to study the non-equilibrium reaction
and diffusion features of the rarefied gas in the microscale structures on a wall.

The quasi-1-D reaction and diffusion process was divided into an external region
outside the microstructure and an internal region inside it. The external flow field
was firstly solved, and the smooth wall solution was used as a baseline to verify the
following roughness correction. A Damköhler number was introduced to characterize
the non-equilibrium and rarefied performance of the external surface reaction–diffusion
process. Subsequently, the internal flow field of the typical roughness was solved,
and a Thiele number was introduced to characterize the non-equilibrium and rarefied
performance, with a special discussion on the Knudsen diffusion in the pores. A
normalized formulation was derived to cover various factors, and the effect of the
roughness was summed up as a multiplying factor of the intrinsic reaction rate. Therefore,
the chemical performance of a rough wall could be homogeneous and equivalent to a
smooth wall with an effective reaction rate. Finally, the theoretical analyses were also
validated by the present DSMC results and data from the literature. It was shown that
the results and conclusions are generalized and extendable, and are applicable to more
practical situations including a 3-D geometry, large temperature difference, high shear
velocity and general gas–surface interactions.
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The theoretical and practical value of the present study is apparent, considering that it is
still a very difficult, if not impossible, challenge to study the multiscale flow and reaction
phenomena on the rough wall, by using either an experimental or numerical technique.
The equivalent correction provides a convenient and effective method to evaluate the
chemical performance of rough walls, such as the thermal protection system materials
of hypersonic vehicles. Besides, the homogeneous model also potentially enlightens us on
the development of numerical and experimental techniques in dealing with the complex
boundaries in engineering problems.
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Appendix A. Knudsen diffusivity

Knudsen diffusion was first proposed by Knudsen (1909) in the study of the flow of a low
pressure gas through an infinitely long cylindrical channel, and it plays an important role
in a large number of natural and engineered porous media including carbon nanotubes
(Kavokine et al. 2021) and fractal porous catalysts (Coppens & Froment 1995). Basically,
the diffusivity can be derived from the random walk model, as given by Einstein’s relation
(Arya, Chang & Maginn 2003; Corral-Casas et al. 2021). However, there are still disputes
and uncertainties on the microscopic mechanism and valuation of Knudsen diffusion.
Knudsen derived an analytical expression of Knudsen diffusivity with a completely diffuse
wall surface

DKn = 1
3 c̄d, (A1)

where d is the diameter of the cylindrical channel. From then on, various modifications
(Smoluchowski 1910; Clausing 1932; Coppens & Froment 1995; Colson & Barlow
2019) have been proposed to take account of effects including the finite length and
cross-sectional shapes of channels and gas–surface interaction. In practice, Knudsen’s
original result (A1) is approximately but widely used even for various short and
tortuous pores (Coppens & Froment 1995) despite its limitations. However, the hydraulic
radius/diameter model (Lowell & Shields 1991; Coppens & Froment 1995) has been shown
to give predictions in better agreement with the experiential data. The hydraulic diameter
is defined as

dh = 4V
S
, (A2)

where V and S are the volume and wet surface area of the pore, respectively. Thus, the
equivalent Knudsen diffusivity DKn = 1

3 c̄dh. As shown in figure 21, for a cuboid pore
(d × h × w), we will get

dh = 4dhw
2dh + 2hw + dw

. (A3)
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Figure 21. (a) Knudsen diffusion in a cuboid pore model, and its extensions to (b) 2-D and (c) 1-D situations.

If w � d and w � h, a 2-D approximation is obtained as

dh = 4dh
2h + d

= 4d
2 + d/h

. (A4)

And then, the 2-D Knudsen diffusivity

DKn = 2
3

c̄d
1

1 + d/(2h)
, (A5)

which is consistent with the conclusion of the previous studies, i.e. the Kn diffusivity
in the short channel is smaller than the long channel, and the approximate behaviour
DKn = 2

3 c̄d(1 − 1
2(d/h)) as d � h is similar to the correction for the cylindrical channel

of finite length (Colson & Barlow 2019).
It is interesting that a further extension could be made to the 1-D Knudsen diffusion

between two infinite parallel plates where both the lower and upper plates serve as
the ‘wet surface’, as discussed in § 2.1. In fact, as d � h and w � h, dh = 4V/S =
4dhw/(2dh + 2hw + 2dw) → 2h, and thus the Knudsen diffusivity

DKn = 2
3 c̄h. (A6)

Note that, in § 2.1, the distance between the entrance and the wall is denoted by the symbol
H instead of h used here in the Appendix.

REFERENCES

ACHAMBATH, A.D. & SCHWARTZENTRUBER, T.E. 2018 Molecular simulation of boundary layer flow over
thermal protection system microstructure. AIAA Paper 2018-0493.

ACHDOU, Y., PIRONNEAU, O. & VALENTIN, F. 1998 Effective boundary conditions for laminar flows over
periodic rough boundaries. J. Comput. Phys. 147 (1), 187–218.

ALKANDRY, H., BOYD, I.D. & MARTIN, A. 2014 Comparison of transport properties models for flowfield
simulations of ablative heat shields. J. Thermophys. Heat Transfer 28 (4), 569–582.

AMIRAT, Y. & BODART, O. 2001 Boundary layer correctors for the solution of laplace equation in a domain
with oscillating boundary. Z. Anal. Anwend. 20 (4), 929–940.

AMIRAT, Y., BODART, O., DE MAIO, U. & GAUDIELLO, A. 2004 Asymptotic approximation of the solution
of the laplace equation in a domain with highly oscillating boundary. SIAM J. Math. Anal. 35 (6),
1598–1616.

AMIRAT, Y., CHECHKIN, G.A. & GADYL’SHIN, R.R. 2006 Asymptotics of simple eigenvalues and
eigenfunctions for the laplace operator in a domain with an oscillating boundary. Comput. Maths Math.
Phys. 46 (1), 97–110.

AMIRAT, Y., CHECHKIN, G.A. & GADYL’SHIN, R.R. 2007 Asymptotics for eigenelements of laplacian in
domain with oscillating boundary: multiple eigenvalues. Appl. Anal. 86 (7), 873–897.

ARYA, G., CHANG, H.-C. & MAGINN, E.J. 2003 Knudsen diffusivity of a hard sphere in a rough slit pore.
Phys. Rev. Lett. 91 (2), 026102.

BHAGAT, A., GIJARE, H. & DONGARI, N. 2019 Modeling of Knudsen layer effects in the micro-scale
backward-facing step in the slip flow regime. Micromachines 10 (2), 118.

965 A21-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.414


S.-L. Zhang and Z.-H. Wang

BIRD, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 2nd edn. Oxford
University Press.

BIRD, G.A. 2005 The DS2V/3 V program suite for DSMC calculations. In Rarefied Gas Dynamics: 24th
International Symposium (ed. M. Capitelli), vol. 762, pp. 541–546. AIP Conference proceedings.

BIRD, R.B., STEWART, W.E. & LIGHTFOOT, E.N. 2002 Transport Phenomena, 2nd edn. J. Wiley.
BLYTH, M.G. & POZRIKIDIS, C. 2003 Heat conduction across irregular and fractal-like surfaces. Intl J. Heat

Mass Transfer 46 (8), 1329–1339.
BOTTARO, A. 2019 Flow over natural or engineered surfaces: an adjoint homogenization perspective. J. Fluid

Mech. 877, 211.
CHAPMAN, S. & COWLING, T.G. 1990 The Mathematical Theory of Non-Uniform Gases: An Account of the

Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, 3rd edn. Cambridge University
Press.

CHECHKIN, G.A., FRIEDMAN, A. & PIATNITSKI, A.L. 1999 The boundary-value problem in domains with
very rapidly oscillating boundary. J. Math. Anal. Appl. 231 (1), 213–234.

CHUNG, D., HUTCHINS, N., SCHULTZ, M.P. & FLACK, K.A. 2021 Predicting the drag of rough surfaces.
Annu. Rev. Fluid Mech. 53 (1), 439–471.

CLAUSING, P. 1932 Über die strömung sehr verdünnter gase durch röhren von beliebiger länge. Ann. Phys.
404 (8), 961–989.

COLSON, F. & BARLOW, D.A. 2019 Statistical method for modeling knudsen diffusion in nanopores. Phys.
Rev. E 100 (6–1), 062125.

COPPENS, M.-O. & FROMENT, G.F. 1995 Knudsen diffusion in porous catalysts with a fractal internal
surface. Fractals 03 (04), 807–820.

CORRAL-CASAS, C., GIBELLI, L., BORG, M.K., LI, J., AL-AFNAN, S.F.K. & ZHANG, Y. 2021
Self-diffusivity of dense confined fluids. Phys. Fluids 33 (8), 082009.

CUSSLER, E.L. 2009 Diffusion: Mass Transfer in Fluid Systems, 3rd edn. Cambridge University Press.
FYRILLAS, M.M. & POZRIKIDIS, C. 2001 Conductive heat transport across rough surfaces and interfaces

between two conforming media. Intl J. Heat Mass Transfer 44 (9), 1789–1801.
GNOFFO, P.A. 1999 Planetary-entry gas dynamics. Annu. Rev. Fluid Mech. 31, 459–494.
GUPTA, R.N., SCOTT, C.D. & MOSS, J.N. 1985 Slip-boundary equations for multicomponent

nonequilibrium airflow. NASA Technical Paper 2452.
HERMANN SCHLICHTING, K.G. 2017 Boundary-Layer Theory, 9th edn. Springer.
HEWITT, G.F. & SHARRATT, E.W. 1963 Gaseous diffusion in porous media with particular reference to

graphite. Nature 198 (4884), 952–957.
HOOGSCHAGEN, J. 1955 Diffusion in porous catalysts and adsorbents. Ind. Engng Chem. 47 (5), 906–912.
INGER, G.R. 2001 Scaling nonequilibrium-reacting flows: the legacy of Gerhard Damköhler. J. Spacecr.

Rockets 38 (2), 185–190.
JOCHEN, M. 1997 Experimental determination of oxygen and nitrogen recombination coefficients at elevated

temperatures using laser-induced fluorescence. AIAA Paper 1997-3879.
KAVOKINE, N., NETZ, R.R. & BOCQUET, L. 2021 Fluids at the nanoscale: from continuum to subcontinuum

transport. Annu. Rev. Fluid Mech. 53 (1), 377–410.
KEERTHI, A., et al. 2018 Ballistic molecular transport through two-dimensional channels. Nature 558 (7710),

420–424.
KIM, Y.C. & BOUDART, M. 1991 Recombination of O, N, and H atoms on silica: kinetics and mechanism.

Langmuir 7 (12), 2999–3005.
KIM, I., LEE, S., KIM, J.G. & PARK, G. 2020a Analysis of nitrogen recombination activity on silicon dioxide

with stagnation heat-transfer. Acta Astronaut. 177, 386–397.
KIM, I., YANG, Y. & PARK, G. 2020b Effect of titanium surface roughness on oxygen catalytic recombination

in a shock tube. Acta Astronaut. 166, 260–269.
KNUDSEN, M. 1909 Die gesetze der molekularströmung und der inneren reibungsströmung der gase durch

röhren. Ann. Phys. 333 (1), 75–130.
KRAUS, A.D., AZIZ, A. & WELTY, J.R. 2001 Extended Surface Heat Transfer. Wiley.
LACHAUD, J., BERTRAND, N., VIGNOLES, G.L., BOURGET, G., REBILLAT, F. & WEISBECKER, P. 2007

A theoretical/experimental approach to the intrinsic oxidation reactivities of C/C composites and of their
components. Carbon 45 (14), 2768–2776.

LACHAUD, J., COZMUTA, I. & MANSOUR, N.N. 2010 Multiscale approach to ablation modeling of phenolic
impregnated carbon ablators. J. Spacecr. Rockets 47 (6), 910–921.

LE, V.T., HA, N.S. & GOO, N.S. 2021 Advanced sandwich structures for thermal protection systems in
hypersonic vehicles: a review. Compos. B 226 (5), 109301.

965 A21-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.414


Reaction–diffusion of rarefied gas on a rough wall

LEVDANSKII, V.V., ROLDUGIN, V.I., ZHDANOV, V.M. & ZDIMAL, V. 2014 Free-molecular gas flow in a
narrow (nanosize) channel. J. Engg Phys. Thermophys. 87 (4), 802–814.

LEVET, C., HELBER, B., COUZI, J., MATHIAUD, J., GOURIET, J.-B., CHAZOT, O. & VIGNOLES, G.L.
2017 Microstructure and gas-surface interaction studies of a 3D carbon/carbon composite in atmospheric
entry plasma. Carbon 114 (3–4), 84–97.

LEVET, C., LACHAUD, J., DUCAMP, V., MEMES, R., COUZI, J., MATHIAUD, J., GILLARD, A.P.,
WEISBECKER, P. & VIGNOLES, G.L. 2021 High-flux sublimation of a 3D carbon/carbon composite:
surface roughness patterns. Carbon 173 (3–4), 817–831.

LI, S.T. & DONG, M. 2021 Verification of local scattering theory as is applied to transition prediction in
hypersonic boundary layers. Adv. Mech. 51 (2), 364–375.

LOWELL, S. & SHIELDS, J.E. 1991 Powder Surface Area and Porosity. Springer.
LUO, J. & WANG, Z. 2020 Analogy between vibrational and chemical nonequilibrium effects on stagnation

flows. AIAA J. 58 (5), 2156–2164.
MARK BRADY, C.P. 1993 Diffusive transport across irregular and fractal walls. Proc. R. Soc. Lond. A

442 (1916), 571–583.
MASSUTI-BALLESTER, B. & HERDRICH, G. 2017 Experimental methodology to assess atomic recombination

on high-temperature materials. J. Thermophys. Heat Transfer 32 (2), 353–368.
MASSUTI-BALLESTER, B. & HERDRICH, G. 2021 Heterogeneous catalysis models of high-temperature

materials in high-enthalpy flows. J. Thermophys. Heat Transfer 35 (3), 459–476.
MIRÓ MIRÓ, F. & PINNA, F. 2021 Decoupling ablation effects on boundary-layer stability and transition.

J. Fluid Mech. 907 (14), 1552.
MURRAY, V.J., RECIO, P., CARACCIOLO, A., MIOSSEC, C., BALUCANI, N., CASAVECCHIA, P. &

MINTON, T.K. 2020 Oxidation and nitridation of vitreous carbon at high temperatures. Carbon 167 (15),
388–402.

NEVARD, J. & KELLER, J.B. 1997 Homogenization of rough boundaries and interfaces. SIAM J. Appl. Maths
57 (6), 1660–1686.

PANERAI, F., COCHELL, T., MARTIN, A. & WHITE, J.D. 2019 Experimental measurements of the
high-temperature oxidation of carbon fibers. Intl J. Heat Mass Transfer 136 (3), 972–986.

PIRRONE, S.R.M., AGABITI, C., PAGAN, A.S. & HERDRICH, G. 2022 A fast thermal 1D model to study
aerospace material response behaviors in uncontrolled atmospheric entries. Materials 15 (4), 1505.

POOVATHINGAL, S.J. & SCHWARTZENTRUBER, T.E. 2014 Effect of microstructure on carbon-based surface
ablators using DSMC. AIAA Paper 2014-1210.

POOVATHINGAL, S., SCHWARTZENTRUBER, T.E., SRINIVASAN, S.G. & VAN DUIN, A.C.T. 2013 Large
scale computational chemistry modeling of the oxidation of highly oriented pyrolytic graphite. J. Phys.
Chem. A 117 (13), 2692–2703.

PRESENT, R.D. 1958 Kinetic theory of gases. Am. J. Phys. 29, 649–650.
RICHARDSON, S. 1971 A model for the boundary condition of a porous material. Part 2. J. Fluid Mech.

49 (2), 327–336.
RICHARDSON, S. 1973 On the no-slip boundary condition. J. Fluid Mech. 59 (4), 707–719.
RINGHOFER, C.A. & GOBBERT, M.K. 1998 An asymptotic analysis for a model of chemical vapor deposition

on a microstructured surface. SIAM J. Appl. Maths 58 (3), 737–752.
ROSNER, D.E. & PAPADOPOULOS, D.H. 1996 Jump, slip, and creep boundary conditions at nonequilibrium

gas/solid interfaces. Ind. Engng Chem. Res. 35 (9), 3210–3222.
SARKAR, K. & PROSPERETTI, A. 1996 Effective boundary conditions for stokes flow over a rough surface.

J. Fluid Mech. 316, 223–240.
SCOTT, C.D. 1992 Wall Catalytic Recombination and Boundary Conditions in Nonequilibrium Hypersonic

Flows—With Applications, vol. 2. Springer.
SHINDO, Y., HAKUTA, T., YOSHITOME, H. & INOUE, H. 1983 Gas diffusion in microporous media in

Knudsen’s regime. J. Chem. Engng Japan 16 (2), 120–126.
SIGAL, A. & DANBERG, J.E. 1990 New correlation of roughness density effect on the turbulent boundary

layer. AIAA J. 28 (3), 554–556.
SING, K.S.W. 1985 Reporting physisorption data for gas/solid systems with special reference to the

determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57 (4), 603–619.
SMOLUCHOWSKI, M.V. 1910 Zur kinetischen theorie der transpiration und diffusion verdünnter gase. Ann.

Phys. 338 (16), 1559–1570.
SONG, S., YANG, X., XIN, F. & LU, T.J. 2018 Modeling of surface roughness effects on stokes flow in

circular pipes. Phys. Fluids 30 (2), 023604.
SWAMINATHAN-GOPALAN, K. & STEPHANI, K.A. 2016 Recommended direct simulation monte carlo

collision model parameters for modeling ionized air transport processes. Phys. Fluids 28 (2), 027101.

965 A21-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.414


S.-L. Zhang and Z.-H. Wang

TAYLOR, G.I. 1971 A model for the boundary condition of a porous material. Part 1. J. Fluid Mech. 49 (2),
319–326.

THOEMEL, J. & CHAZOT, O. 2009 Surface catalysis of rough surfaces. AIAA Paper 2009-3931.
VAN DYKE, M. 1975 Perturbation Methods in Fluid Mechanics, annotated edn. Parabolic Press.
VÉRANT, J.L., PERRON, N., PICHELIN, M.B., CHAZOT, O., KOLESNIKOV, A., SAKHAROV, V.,

GERASIMOVA, O. & OMALY, P. 2012 Microscopic and macroscopic analysis for TPS SiC material under
earth and mars re-entry conditions. Intl J. Aerodyn. 2 (2–4), 152.

WANG, C.Y. 2003 Flow over a surface with parallel grooves. Phys. Fluids 15 (5), 1114–1121.
WANG, Z. 2014 Theoretical Modelling of Aeroheating on Sharpened Noses Under Rarefied Gas Effects and

Nonequilibrium Real Gas Effects. Springer.
XU, B. & JU, Y.G. 2005 Concentration slip and its impact on heterogeneous combustion in a micro scale

chemical reactor. Chem. Engng Sci. 60 (13), 3561–3572.
ZADE, A.Q., RENKSIZBULUT, M. & FRIEDMAN, J. 2008 Slip/jump boundary conditions for rarefied

reacting/non-reacting multi- component gaseous flows. Intl J. Heat Mass Transfer 51 (21–22), 5063–5071.
ZALC, J.M., REYES, S.C. & IGLESIA, E. 2004 The effects of diffusion mechanism and void structure on

transport rates and tortuosity factors in complex porous structures. Chem. Engng Sci. 59 (14), 2947–2960.
ZHANG, S. & WANG, Z. 2022 Effects of chemical energy accommodation on nonequilibrium flow and heat

transfer to a catalytic wall. Chin. J. Aeronaut. 35 (10), 165–175.
ZHOU, H., KHAYAT, R.E., MARTINUZZI, R.J. & STRAATMAN, A.G. 2002 On the validity of the

perturbation approach for the flow inside weakly modulated channels. Intl J. Numer. Meth. Fluids 39 (12),
1139–1159.

965 A21-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

41
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.414

	1 Introduction
	2 Physical analysis and theoretical modelling
	2.1 Reaction--diffusion induced by a smooth reactive wall
	2.2 Rarefied gas effects
	2.3 Diffusion--reaction induced by a rough surface
	2.3.1 Rectangular roughness surface
	2.3.2 Triangular roughness surface
	2.3.3 Effect of the surface roughness
	2.3.4 Influence of the surface porosity


	3 Validations and discussions
	3.1 Details of the numerical simulations
	3.1.1 Reaction--diffusion performance of a smooth surface

	3.2 Reaction--diffusive around a roughness element
	3.3 Equivalence of a rough wall to a smooth wall
	3.4 Extension to the catalysis reaction
	3.5 Extension to the 3-D geometry

	4 Conclusions
	Appendix A. Knudsen diffusivity
	References

