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We develop coupled evolution equations for viscous fingering (VF) and phase separation in
partially miscible systems by combining a simple double-well thermodynamic free energy
and Korteweg force with a classical miscible VF model for a binary system. The VF
pattern transition into a droplet formation pattern by the spinodal decomposition effect
is demonstrated, and the simultaneous increases in the depth of the energy minimum, in
the difference in the equilibrium concentrations, and in the Korteweg force, enhance the
droplet growth. The pattern’s interfacial length increases with the spinodal decomposition
effects. These results match the corresponding experimental results.
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1. Introduction

A fingering interfacial pattern is observed when a more viscous fluid is displaced by a
less viscous fluid in a porous medium or in Hele-Shaw cells. This phenomenon is called
Saffman–Taylor instability (Saffman & Taylor 1958) or viscous fingering (VF) (Engelberts
& Klinkenberg 1951; Homsy 1987), and its application is widespread, such as in the
chromatography process (Broyles et al. 1998), transport of digestive juices (Bhaskar et al.
1992), frontal polymerization (Pojman et al. 1998), and secondary and ternary oil recovery
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(Lake et al. 2014; Sabet et al. 2020). Recently, an attempt to control viscous fingering
using nanoparticles has been made (Sabet, Hassanzadeh & Abedi 2017; Sabet et al.
2018). Fluid–fluid miscibility plays an important role in VF dynamics, and the VF pattern
can change appreciably based on the miscibility of the two fluids. Thus traditionally,
the subject is divided into immiscible and fully miscible VFs. The mutual solubility is
infinite in fully miscible systems; by contrast, it is zero in immiscible systems. Numerous
experimental studies and numerical simulations of fully miscible and immiscible VFs have
been reported (Homsy 1987; McCloud & Maher 1995). However, partially miscible VFs,
where fluids have a finite mutual solubility, have attracted attention very recently despite
their application in high-pressure and/or high-temperature processes such as enhanced
oil recovery (Lake et al. 2014) and CO2 sequestration (Orr & Taber 1984). A numerical
study with partially miscible fluids (Fu, Cueto-Felgueroso & Juanes 2017), in which the
authors considered that a less viscous CO2 displaces more viscous water in Hele-Shaw
cells, and that CO2 can dissolve into water with finite solubility, showed that partial
miscibility could control the degree of fingering to a certain extent. In parallel, Amooie,
Soltanian & Moortgat (2017) modelled the mixing and spreading resulting from viscous
fingering in porous media for fully miscible (single-phase) CO2 oil and partially miscible
(two-phase) CO2 and N2 oil mixtures, and compared them. Their simulation showed that
CO2 viscous fingering in a partially miscible system was suppressed compared to that in
a fully miscible system owing to the interphase mass exchange leading to a diminished
contrast in viscosity. In these numerical studies, the characteristics of partial miscibility
induced some quantitative differences, but did not induce qualitative differences among
fully miscible and immiscible systems.

However, an experimental study (Suzuki et al. 2020) showed that a partially
miscible system affects the dynamics qualitatively. In the partially miscible system, the
polyethylene glycol (PEG) solution is a more viscous fluid, whereas the Na2SO4 solution
is a less viscous fluid. When the two solutions are mixed in a beaker, for instance,
PEG and Na2SO4 mutually dissolve each other at finite solubility, resulting in PEG-
and Na2SO4-rich phases. In other words, a phase separation occurs. It should be noted
that the phase separation is verified to be a spinodal decomposition type based on the
calculation of the second derivative of the free energy of mixing and other experimental
analyses. The experimental results showed a transition from the standard fingering pattern
to a multiple droplet formation when the concentration of Na2SO4 was larger under a
fixed PEG concentration. The increase in the concentration of Na2SO4 indicates that the
phase separation became stronger. An experimental study Suzuki et al. (2020) concluded
that the origin of the multiple droplet formation is the nature of the phase separation and
spontaneous convection induced by the so-called Korteweg force. Such a Korteweg force is
generated owing to the chemical potential gradient during a spinodal decomposition-type
phase separation. The force, first proposed by Korteweg in 1901 (Korteweg 1901), is
defined thermodynamically as the functional derivative of the free energy (Molin & Mauri
2007) and is characterized as a body force that tends to minimize the free energy stored at
the interface between the fluids and induces spontaneous convection.

To prove the topological changes obtained in the experimental study (Suzuki et al.
2020), we conduct a numerical simulation of the partially miscible VF considering the
influence of the phase separation and the Korteweg force. As mentioned earlier, some
numerical simulation studies of partially miscible VFs have been reported (Fu et al. 2017;
Amooie et al. 2017), but these studies do not consider the Korteweg force in their model.
In addition, it should be emphasized that the characteristics of the partially miscible VF
were not significantly different from those of the fully miscible or immiscible VF in the
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numerical simulation of the partially miscible VF mentioned above. This paper describes
the development of a mathematical model of partially miscible VF when considering the
spinodal decomposition-type phase separation and Korteweg force. Numerical simulation
of the model equations is performed using a Fourier spectral method and successfully
explained the origin of multiple droplets formation, and the results compare well with the
experimental study (Suzuki et al. 2020).

2. Mathematical formulation

The partially miscible system employed in the experimental study (Suzuki et al. 2020) was
a three-component (PEG, Na2SO4 and water) system; however, in this study, to simply
capture the essence, we focus on a binary mixture system. Thus we consider only one
chemical species because the summation of the normalized concentration of the two
components is unity. We add the free energy concept and Korteweg force effect to the
standard fully miscible VF mathematical model developed by Tan & Homsy (1986, 1988).
The free energy functional is designed to be of the form (Jasnow & Vinals 1996),

F(c) =
∫ {

K
2

|∇c|2 + f (c)
}

dV, (2.1)

with f (c) = −(r/2)(c − p)2 + (λ/4)(c − p)4, where c is the fraction or non-dimensional
concentration of one species. The integration extends over the entire system, and K, r and
λ are three phenomenological coefficients, as yet unspecified. It is generally known that
the fourth-order polynomial formulation is used to discuss phase separation qualitatively
and there are few available data for r and λ obtained experimentally. The experimental
determination of K has been described in the literature (Cahn & Hilliard 1958; Balsara &
Nauman 1998; Pojman et al. 2006; Suzuki et al. 2019). Here, p is introduced to the positive
c-direction to change whether the initial concentration is present inside the spinodal region
(see figure 1); the details are presented in § 3. The chemical potential of the model is given
by

μ(c) = −K∇2c − r(c − p)+ λ(c − p)3. (2.2)

The concentration of one species is assumed to satisfy a modified Cahn–Hilliard equation
(Cahn & Hilliard 1958) to allow for advective transport of c, i.e

∂c
∂t

+ ∇ · (cu) = M∇2μ(c, p). (2.3)

Equation (2.3) is the same as (6) in Jasnow & Vinals (1996, p. 662), where M is a
phenomenological mobility coefficient, which can be inferred from mutual diffusion. The
experimental determination of M has been described in the literature (Barton, Graham
& McHugh 1998; Matsuyama, Berghmans & Lloyd 1999; Saxena & Caneba 2002). The
other governing flow equations are the continuity equation and equation of motion:

∇ · u = 0, (2.4)

∇P = −η(c)
κ

u + RGT
vm

μ(c, p)∇c. (2.5)

Here, the flow velocity vector is u = (u, v), η(c) is the viscosity, P is the hydrodynamic
pressure, and κ is the permeability. The term (RGT/vm) μ(c, p)∇c in (2.5) represents the
Korteweg force (Jasnow & Vinals 1996; Vladimirova, Malagoli & Mauri 1999), where RG
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Figure 1. Non-dimensional free energy for (a) System 1 and (b) Systems 2–4, with various values of α2 and
α3 as given in table 1. The solid part of each curve in (b) is in the spinodal region.

R Pe δ α1 α2 α3 p ceq �f (c)

System 1 0.5 5 0 0 −1 0 0.5 0.5 —
System 2 0.5 5 10 1 0.01 1 0.5 0.4 & 0.6 2.5 × 10−5

System 3 0.5 5 50 1 0.09 1 0.5 0.2 & 0.8 2.0 × 10−3

System 4 0.5 5 100 1 0.2 1 0.5 0.05 & 0.95 1.0 × 10−2

Table 1. Parameters for Systems 1–4.

is the gas constant, T is temperature, and vm is the molar volume. Here, η(c) = η0eRc is
considered, with the log-mobility ratio defined as R = ln(η(c = c1)/η0), following Tan &
Homsy (1986, 1988).

Indeed, if the viscosity of a phase varies greatly with the state of the phase rather than
with the component concentration, then two variables, one for the state of the phase and the
other for the component concentration, are needed to describe the dynamics of the partially
miscible system. The present model targets the experiment on a polymer-salt aqueous
two-phase system Suzuki et al. (2020) that separates into a high viscous liquid phase and
a low viscous liquid phase. In this case, the viscosity of the phase is determined by the
polymer concentration, and if the salt concentration is chosen appropriately, then the state
of the phase is also determined by the polymer concentration. The polymer concentration
alone does give us a proper description of the phase state and concentration. Based on
these, we consider that it is sufficient to take only the concentration of one component that
affects viscosity without using phase variables to simulate VF adequately in a partially
miscible system involving liquid–liquid phase separation, which was experimentally
investigated by Suzuki et al. (2020).

We used the moving frame method, x = x − Ut and u = u − Uex (Tan & Homsy 1986,
1988). In addition, the governing equations are non-dimensionalized using

u∗ = u
U
, P∗ = P

η0ULy/κ
, v∗ = v

U
, η∗ = η

η0
, t∗ = t

Ly/U
, x∗ = x

Ly
, y∗ = y

Ly
,

(2.6a–g)

δ = κRGT
η0ULyvm

, α1 = K
L2

y
, α2 = r, α3 = λ, Pe = ULy

M
, (2.7a–e)
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where Pe is the Péclet number. The non-dimensional governing equations (after dropping
the ∗ from the variables) are as follows:

∇ · u = 0, (2.8)

∇P = −η(c)u + δ(μ(c, p)∇c), (2.9)

∂c
∂t

+ u · ∇c = 1
Pe

∇2μ(c, p), (2.10)

μ(c) = −α1∇2c − α2(c − p)+ α3(c − p)3, (2.11)

η(c) = eRc. (2.12)

The parameter α1 implies the interfacial energy such as interfacial tension, and α2 and α3
show the transport coefficients such as diffusion and phase separation, respectively. The
momentum conservation in (2.9) includes the non-dimensional Korteweg force δ. Note that
all other variables appearing in (2.8)–(2.12) are non-dimensional, although the notation is
not modified from those appearing earlier.

3. Numerical results and discussions

We used the Fourier spectral method in the stream function and vorticity formulation of
(2.8)–(2.12) as follows, for the computational procedure following (Pramanik & Mishra
2015b):

∇2ψ = − R
{
∂ψ

∂x
∂c
∂x

+ ∂ψ

∂y
∂c
∂y

+ ∂c
∂y

}

− α1δ

η(c)

{
∂

∂y

(
∂2c
∂x2 + ∂2c

∂y2

)
∂c
∂x

− ∂

∂x

(
∂2c
∂x2 + ∂2c

∂y2

)
∂c
∂y

}
(3.1)

and
∂c
∂t

+ ∂ψ

∂y
∂c
∂x

− ∂ψ

∂x
∂c
∂y

= 1
Pe

∇2μ(c, p). (3.2)

We validated that dx = dy = 2 and dt = 0.005 are sufficiently small to compute typical
sets of parameters employed here by checking the temporal evolution of the mixing length,
which is described in detail later.

We consider a situation in which a less-viscous liquid of non-dimensional concentration
c = 0 with viscosity η(c = 0) pushes a more-viscous liquid with c = 1 and viscosity
η(c = 1), and the initial interfacial concentration is c = 0.5 (see figure 2). The
non-dimensional governing equations contain seven parameters, namely R, Pe, δ, α1, α2,
α3 and p. Here, we fix R, Pe and p. In this model, we can change whether the system
is inside or without the spinodal region by changing α2 and α3, and setting p = 0.5.
Moreover, we can change the strength of the phase separation by changing α2 and α3,
which results in a change in the free energy minimum depth �f and the difference
in equilibrium concentrations �ceq. Furthermore, we can change the strength of the
Korteweg force by changing δ.

We investigated four systems, the conditions of which are listed in table 1.
The profiles of f (c) for the four systems are shown in figure 1. Spinodal
decomposition-type phase separation occurs when the initial concentration is in the
spinodal region, where the second functional derivative of the free energy is negative
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c = 0

η0 (c = 0)

c = 1

U
Ly

Lx

y

x

η (c = 1)

Figure 2. Schematic diagram of rectilinear displacement of a more-viscous fluid by a less-viscous fluid in a
porous medium.

(Kwiatkowski Da Silva et al. 2018; Porter, Easterling & Sherif 2009). In figure 1(b), the
ranges indicated by the solid lines represent the condition in which the second functional
derivative of the free energy is negative. In System 1, the combination values of α2 and
α3, shown in table 1, lead to the profile of f (c) having one minimum (at c = 0.5) within
the range 0 � c � 1. The absence of the spinodal region indicates that the solution will
be in one phase. Therefore, the condition shown in figure 1(a) is a fully miscible case. By
contrast, in Systems 2–4, p = 0.5, along with the values of α2 and α3 shown in table 1,
which leads to the profile of f (c) having two minima within the range 0 � c � 1, and the
initial concentration (c = 0.5) being within the spinodal region. For example, in System
3 of figure 1(b), the dimensionless concentration when the free energy has a minimum
value when c = 0.2 and c = 0.8. Therefore, the concentration goes to c = 0.2 or c = 0.8.
This case will be separated into two concentrations, which means that a phase separation
occurs. Thus Systems 2–4 become two phases and can be partially miscible systems with
a spinodal-type phase separation. Furthermore, in Systems 2–4, �f and �ceq are larger
in order of System 4, System 3 and System 2, as shown in figure 1(b). In addition, the
value of δ is larger in order of System 4, System 3 and System 2, as shown in table 1.
Such parameter selection is in accord with the experimental conditions in Suzuki et al.
(2020), where the concentration of Na2SO4 was varied under a fixed PEG concentration.
Under these experimental conditions, �f and �ceq, which correspond to the strength
of the phase separation, and δ, which corresponds to the magnitude of the Korteweg
convection, become large simultaneously as the concentration of Na2SO4 increases. In
a fully miscible system, δ = 0. Besides, by taking α1 = 0 (see table 1), the dimensionless
governing equations (2.8)–(2.12) coincide completely with those in Pramanik & Mishra
(2015b), which is the classical formulation of a fully miscible VF where Pe is included in
the non-dimensional governing equations.

The evolution of the fully miscible VF (corresponding to System 1) is shown in
figure 3(a). The fully miscible system without the Korteweg force δ = 0 depicts a typical
miscible fingering, which is very similar to that reported in Homsy (1987), McCloud &
Maher (1995), Tan & Homsy (1988) and Pramanik & Mishra (2015b). By contrast, in
partially miscible systems, a droplet formation was observed in all systems, as shown in
figures 3(b)–3(d). As the strength of the phase separation and Korteweg force increases,
the droplets become clear. The droplet observed here, which some of the white arrows
depict, is a blue droplet of c = 0 surrounded by the red zone of c = 1. In addition, the
droplet decreases in size because of the mutual solubility. This trend is more remarkable for
the lower strength of the phase separation. These phenomena imply that phase separation
and diffusion processes were observed. The importance here is that the transition from
viscous fingering to a droplet pattern induced by an increase in the strength of the phase
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1.00

0

(b)(a) (c) (d )

Figure 3. Temporal evolution of the dimensionless concentration field for Systems (a) 1, (b) 2, (c) 3, and (d) 4.
The dimensionless concentration field is shown at successive dimensionless times t = 1000, 2000, 3000, 4000,
from top to bottom. The scale bar is shown at the right. The droplet formation is indicated by the white arrows.
Thin yellow arrows indicate the dissolution of the advancing finger, whereas a thick yellow arrow indicates the
adjacent finger, which becomes the advancing finger after the dissolution.

separation and the Korteweg force is in good agreement with previous experiment results
(Suzuki et al. 2020), where the transition was induced by an increase in the concentration
of Na2SO4. We also note that because of the diffusion, the interface in the standard
fingering in fully miscible systems smoothly joins the states of c = 1 and c = 0 (figure 3a),
whereas the interface between the two steady states remains sharp at any time as the phase
separation becomes stronger (figures 3b–d).

In the previous numerical study that investigated the effect of Pe on fully miscible
VF, Pramanik & Mishra (2015b), the Péclet number was defined as UL/D, where U
is the velocity of the main flow, L is the size of the computational domain, and D is
diffusivity, where VF was observed when Pe has order of magnitude 1000. However, in the
present study, even in the fully miscible system without phase separation, VF is observed
under the condition Pe = 5, which is obviously smaller than that used in the previous
typical numerical study (Pramanik & Mishra 2015b). This is due to the difference in the
size of L. In the previous study (Pramanik & Mishra 2015b) and the present model, the
dimensionless time is defined as t∗ = t/(L/U). If L in Pramanik & Mishra (2015b) is
200 times larger than L in the present model, for the same D, U and t, then in Pramanik
& Mishra (2015b) Pe is 200 times larger than Pe in the present model. On the other
hand, t∗ in Pramanik & Mishra (2015b) is 200 times smaller than t∗ in the present model.
These indicate that for equivalent Pe × t∗, we observe equivalent VF dynamics. In other
words, the VF dynamics for Pe = 5 and t∗ = 1000 in the present model is equivalent for
Pe = 1000 and t∗ = 5 in figure 8(a) of Pramanik & Mishra (2015b).

The mechanism of droplet formation was described in a previous study (Suzuki et al.
2020) as follows. The experiments in Suzuki et al. (2020) employed an aqueous two-phase
system that goes through thermodynamically unstable regions and a phase separation of a
spinodal type. Such phase separation promotes a mass transfer against the concentration
gradients, leading to a separation of the system into low- and high-concentration regions.
Furthermore, the Korteweg force creates a spontaneous fluid convection, promoting a
phase separation. These effects result in a pinching of the viscous fingers and eventually
lead to the formation of droplets. The transition from fingering to droplet pattern formation
by tuning α2, α3 and δ shows theoretically that the nature of a phase separation and a
spontaneous convection is the origin of the droplet formation. Thus the results shown
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in figure 3 verify this claim from the experimental study (Suzuki et al. 2020). Another
numerical study, by De Wit & Homsy (1999), reported the droplet formation in viscous
fingering. In this numerical study, a fully miscible VF with a chemical reaction was
simulated, which is similar to a phase separation, producing two fluids of low and
high concentrations. When the composition falls in a region that corresponds to the
spinodal region in the phase separation system, the system evolves spontaneously towards
a chemically thermodynamic equilibrium. These effects result in a pinching of the viscous
fingers and finally lead to the formation of droplets. Thus the numerical study by De Wit
& Homsy (1999) showed that phase separation produces droplets in viscous fingering
dynamics. Our numerical study includes a phase separation based on thermodynamic free
energy and the Korteweg force, which was not considered by De Wit & Homsy (1999).
Therefore, our mathematical model can simulate viscous fingering more realistically with
a phase separation because the hydrodynamics and chemical thermodynamics are properly
combined.

3.1. Phase separation effects on mixing length
We conducted several quantitative analyses. First, the mixing length was computed. To
compute the mixing length, we first compute the two-dimensional concentration field of
the concentration, c(x, y, t), which can be averaged along the transverse coordinate to yield
one-dimensional transversely averaged concentration profiles

〈c(x, t)〉 = 1
Ly

∫ Ly

0
c(x, y, t) dy. (3.3)

Here, 〈c(x, t)〉 increases monotonically with x. The length of x, where c is within the range
0.01 � c � 0.99, is defined as the mixing length, L. The time evolution of L is shown
in figure 4(a). In System 1, L grows as L ∝ t0.50 when t is less than approximately 2500,
whereas when t is more than approximately 2500, L grows almost linearly over time. Along
with the observation of the displacement pattern, we found that the displacement grows
diffusively without the formation of fingering during the early stage, and grows nearly
linearly with t with the formation of fingering during the later stage. This behaviour is
very similar to that of a fully miscible VF with ordinary diffusion (Tan & Homsy 1988),
where diffusion obey Fick’s law. In Systems 2–4, the growth behaviour can also be divided
into two types. The transient corresponds to the onset of the fingering. The growth during
the early stage (t � 600–800) was slower than that of System 1. As the strength of the
phase separation increases, the early growth becomes slower. This could be because the
phase separation suppresses the ordinary diffusion. The onset of fingering occurs later, as
the strength of the phase separation becomes more intensive. The result can be explained
as follows. In this model, the coefficient of the diffusion term is α2/Pe in (2.10). That is,
the apparent Pe is Pe/α2. In partially miscible systems, the value of Pe/α2 in the different
systems follows System 2 > System 3 > System 4 (see table 1). The order of onset time
also follows in a similar manner as System 2 < System 3 < System 4. It is considered that
the reason why onset is the fastest (slowest) in System 2 (4) is that the apparent Pe is the
largest (smallest). It is accepted that the onset is earlier as Pe is larger for fully miscible
VF (Pramanik & Mishra 2015b). Furthermore, in the fully miscible case, because there
is no Korteweg force (that is, δ = 0) that acts to enhance the fingering, the onset can be
considered to be the slowest. During the later stage, we fit the linear relation L = v′t +
a, where a is the intercept. The linear fitting was done in 2500 � t � 4000 for System
1, 650 � t � 2050 for System 2, 850 � t � 4000 for System 3, and 900 � t � 4000 for
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Figure 4. (a) Results of the mixing length, L, with time evolution. In the inset, v′ versus α2δ is plotted.
(b) Time evolution of V ′ is shown for Systems 1–4. Note that the variables L, t, v′ and V ′ are
dimensionless.

System 4. As shown in figure 4(a), the line for System 2 bends around t = 2000 and the
fitting was done before t = 2050. More discussion about the bend is given later. We plot
v′, which is the the average velocity during the above-mentioned period, as a function of
α2δ in the inset of figure 4(a), where four plots correspond to Systems 1–4 in descending
order of the value of α2δ, and find that v′ increases with α2δ. In Systems 2–4, we changed
simultaneously α2 and δ to make a comparison with the corresponding experiment (Suzuki
et al. 2020). As mentioned earlier, when both the values α2 and δ increase, the phase
separation effects become larger. Thus the product of α2δ can be considered an indicator
of the strength of the phase separation effects.

In figure 4(b), we calculate the time derivative of L, which is denoted as V ′, which means
the instantaneous finger velocity. In System 1, the velocity V ′ initially decreases with t and
reaches a constant value before the onset of the fingering. After the onset (t = 2500),
V ′ increases due to the fingering formation. In Systems 2–4, we found that V ′ increases
with t when 500 � t � 1000. This is a unique characteristic of a phase separation system.
Therefore, the behaviour of the velocity is a property that can distinguish qualitatively
a system with a phase separation from a fully miscible system. The phase separation
systems have finite values of δ, which means that a Korteweg force acts. The existence
of a Korteweg force is responsible for an increase in V ′ with time when 500 < t < 1000.
In Systems 3 and 4, V ′ reaches a constant value after the increase. In System 2, we
noted that after the increase in the velocity during 500 � t � 1000, V ′ decreases (which
corresponds to the bend of line in figure 4a) and then increases again. Along with
the observation in figure 3, the temporal decrease could be due to a dissolution of the
advancing finger (indicated by thin yellow arrows), and the temporal increase again could
be due to a fingering growth of the adjacent finger (indicated by thick yellow arrows) after
the dissolution. It should be noted that a temporal decrease of the mixing length due to
the sudden fade away of droplets at the leading front of the mixing zone was also reported
previously by De Wit & Homsy (1999), who investigated viscous fingering with a chemical
reaction whose effect is equivalent to phase separation. Therefore, we consider that such
non-monotonic behaviour of the velocity is inherent to a weak phase separation system.
Based on the above, we claim that the velocity is a property that can distinguish three
systems qualitatively: systems with strong phase separations, a weak phase separation,
and no phase separation.
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3.2. Phase separation effects on interfacial length
We next analyse the interfacial length I, which is defined as (Mishra, Martin & De Wit
2008; Pramanik & Mishra 2015a)

I(t) =
∫ Ly

0

∫ Lx

0

√(
∂c
∂x

)2

+
(
∂c
∂y

)2

dx dy. (3.4)

The temporal evolution of I is shown in figure 5. The vertical width of the computational
domain is 256. In all systems, initially I = 256, which means that the interface is vertically
flat, thus no fingering takes place. When the fingering is formed, the vertical interface
is deviated and I increases from 256. Therefore, a deviation from I = 256 indicates the
onset of fingering. Thus figure 5(a) shows clearly that the onset occurs earlier in order of
Systems 2, 3, 4 and 1. We also found that the onset occurs later when the phase separation
is strong, from figure 4(a). After the onset, as the strength of the phase separation and
Korteweg force increases, I becomes larger, which means that the number of droplets
increases. We show I versus L in the inset of figure 5(a). The results show that I as a
function of L is always larger when the effects of the phase separation are stronger. This
observation can be compared directly to the corresponding experimental results (Suzuki
et al. 2020). To do so, we measured the interfacial length of the displacement pattern Iexp,
which is shown in figure 3 in Suzuki et al. (2020), as a function of the maximum radius
of the pattern, rmax. The results show that Iexp is mostly similar without regard to the
concentration of Na2SO4 for rmax < 30 mm, while Iexp is larger as the concentration of
Na2SO4 is larger (the phase separation becomes stronger) for rmax > 30 mm. Figure 3
of Suzuki et al. (2020) shows that little droplets or only a small number of droplets
are formed for rmax < 30 mm, while the number of droplets clearly increases with the
concentration of Na2SO4 at rmax = 42 mm. A comparison between the behaviour of
Iexp as a function of rmax and visual observation of the fingering pattern as a function
of rmax demonstrates that the formation of the droplets increases the interfacial length.
Based on this consideration and visual observation of the numerical results (figure 3), an
increase of growth rate of I with an increase in the phase separation effects should be
attributed to the droplet formation. The inset of figure 5(a) in the numerical simulation
and figure 5(b) in the corresponding experiment both show that the interfacial length
as a function of the pattern size is almost the same without regard to the strength of
the phase separation at an earlier stage before droplet formation, whereas it becomes
larger with an increase in the strength of the phase separation at later stages after droplet
formation. There, we find that the results shown in the inset of figure 5(a) in the numerical
simulation and figure 5(b) in the corresponding experiment (Suzuki et al. 2020) match
extremely well.

Regarding the geometry, the representative velocity is constant in the simulation of the
rectilinear geometry, while it decreases with time in the experiment of the radial geometry.
In the experiment of the radial geometry, the relative effect of Korteweg convection to
convection by fluid injection is larger with time. The difference may affect the dynamics
of the interfacial length, I, quantitatively. In figure 5, the slope of the I versus L curve
obtained from the simulation is gradually decreasing, while the slope of the Iexp versus
rmax curve obtained from the experiment is gradually increasing, mostly. These results
may be consistent with the relative effect of Korteweg convection to convection by fluid
injection being larger in the experiment.
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Figure 5. Results on the interfacial length, I: (a) time evolution of I, with inset I as a function of L; and
(b) Iexp as a function of rmax from Suzuki et al. (2020).

4. Conclusions

In conclusion, we established a numerical simulation of viscous fingering with a phase
separation of the spinodal decomposition type, taking into account the Korteweg force.
The simulation reproduced successfully the experimental observation in Suzuki et al.
(2020) of the transition from viscous fingering to a droplet pattern owing to the increase
in the phase separation effects. We show that the time derivative of the mixing length
is a property that can qualitatively distinguish three systems: systems with strong phase
separations, a weak phase separation, and no phase separation. Furthermore, the interfacial
length as a function of the mixing length obtained in the simulation is in good agreement
with the experiments of the previous study (Suzuki et al. 2020).

In this paper, for the first time, we show mathematically that the fingering pattern
transitions to the droplet pattern when the system transitions from fully miscible to
partially miscible in the rectilinear geometry, which was observed in the experiment in
the radial geometry, and that its origin is the effect of phase separation and Korteweg
convection, by using a simple model that can effectively adjust the effects of phase
separation. This indicates that the droplets observed in the experiment are not originated by
the circular geometry. The difference in geometry between the experiment and simulation
is not important to the objective and significance of this paper. This study provides
successfully a mathematical model and numerical simulation that can reproduce the
existing experimental results of viscous fingering with a phase separation. Therefore, this
model and its simulation will be useful in elucidating the mechanism of the experimental
results currently under investigation, such as the effect of the flow rate on the dynamics. In
turn, new dynamics of VF with a phase separation will be obtainable through numerical
experiments conducted using the proposed model, the results of which we will verify
experimentally. Such collaboration between experimentation and numerical simulation
will enable a comprehensive understanding of VF with a phase separation in partially
miscible systems, which can contribute to establishing highly efficient processes involving
VF with a phase separation in various fields such as enhanced oil recovery and CO2
sequestration.
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