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Abstract

We describe a generalization of the classical Julia-Wolff-Caratheodory theorem to a large class of bounded
convex domains of finite type, including convex circular domains and convex domains with real analytic
boundary. The main tools used in the proofs are several explicit estimates on the boundary behaviour of
Kobayashi distance and metric, and a new Lindelof principle.
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0. Introduction

A classical result in the theory of one complex variable, due to Fatou [12], says that
a bounded holomorphic function defined on the unit disk A in the complex plane
admits non-tangential limit at a.e. point a e 3 A. Clearly, this theorem leaves open
the question of what happens at a specific point a0 € 3 A. Of course, to get a sensible
statement one needs to make some assumptions on the function/. In 1920, Julia ([18])
identified the right hypotheses, showing how to get the existence of the non-tangential
limit at a given boundary point using Schwarz's lemma. But the real breakthrough
is due to Wolff ([28]) in 1926 and Caratheodory ([8]) in 1929, who proved, under
Julia's hypotheses, that the derivative too admits non-tangential limit at the specified
boundary point. Their results are collected in the following statement, known as the
Julia-Wolff-Caratheodory theorem.

THEOREM 0.1 (Julia-Wolff-Caratheodory). Let f e Hol(A, A) and a0 e 3 A be
such that

(0.1) liminf 1 ^ ( * ) l = a < +oo.
? 1 1 ? |
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Then

(i) / has non-tangential limit r0 € 3 A at <r0;
(ii) / ' has non-tangential limit axo6o at cr0.

See, for example, [3] for proofs and applications. It should be remarked that the
liminf in (0.1) is always strictly positive.

The extension of this theorem to bounded holomorphic functions of several vari-
ables is clearly a natural problem. This has been done in several cases: the unit ball
Bn of C" (Herve [15] and Rudin [26]); strongly convex domains ([4]); strongly pseu-
doconvex domains ([5]); and polydisks (Jafari [16] and [6]). The aim of this paper
is to describe a generalization of this theorem (and of a related result, the Lindelof
principle; see below) to a large class of bounded convex domains of finite type, includ-
ing the convex circular domains and the convex domains with real analytic boundary.
The spirit of the approach is the same as in [4] and [6] (see [7] for a more informal
description of the background ideas and of the involved techniques); but the details of
the proofs are different. In particular, the version of the Lindelof principle we discuss
here is both valid in more general domains and requires weaker hypotheses than the
one proved, for instance, in [4].

The main idea behind these generalizations is that the boundary behaviour of
holomorphic functions defined on (or with values in) a bounded domain must be
controlled by the boundary behaviour of the intrinsic Kobayashi distance and metric
of the domain. Therefore to compare our results with the classical ones we must
translate the hypotheses of Theorem 0.1 in terms involving the Kobayashi metric and
distance.

We begin with Theorem 0.1. In the disk, 1 — |£| measures the euclidean distance
of £ from the boundary 3D. Now, if D CC C" is a bounded strongly pseudoconvex or
convex domain, it is known that the Kobayashi distance kD(zo, z) from a given point
ZQ e D goes to infinity exactly as —(1/2) logS(z) as z tends to 3D, where S(z) is the
euclidean distance of z from the boundary 3D. Then a sensible translation of (0.1)
for a bounded holomorphic function / : D -v A and a point x € 3D is

liminf[jtD(zo,z) - *A(0,/(z))l < +oo.

Indeed, this is exactly what is needed to generalize Julia's part of the Julia-Wolff-Ca-
ratheodory theorem.

THEOREM 0.2 ([4]). Let D CC C" be complete hyperbolic. Take f e Hol(D, A)
andx e 3D such that

(0.2) liminf[Mzo, z) - M 0 , / ( z ) ) l < +<*>•
z-*x L

Thenf has K-limit x e 3 A atx.
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[3] TheLindelof principle and angular derivatives 223

It is worth pointing out that similar statements hold for holomorphic maps/ : D\ ->
D2 under suitable hypotheses on D2 (for example, if D2 is bounded strongly pseudo-
convex). The proof is just an application of the contracting property of the Kobayashi
distance.

The /if-limit appearing in the statement of Theorem 0.2 is a several variable gen-
eralization (one of many) of the notion of non-tangential limit. One way of defin-
ing the non-tangential limit in the unit disk is using Stolz regions: a Stolz region
ATA(<J, M) C A of vertex a € 3 A and amplitude M > 1 is the egg-shaped region
given by

(0.3) <M .

Then / : A ->• C has non-tangential limit L e C at a if and only if / (f) ->• L as
f ->• a inside any Stolz region of vertex a. Now, the work by Koranyi and Stein
on Fatou's theorem in strongly pseudoconvex domains has revealed that the right
generalization of Stolz regions in several variable is not a cone-shaped region, but a
region which is non-tangential only in the direction orthogonal to the boundary, and
instead at least parabolically tangent to the boundary along the complex-tangential
directions.

In [4] we discovered a way to define, using just the Kobayashi distance, an approach
region for domains in several complex variables which is comparable to Koranyi-
Stein's: the K-region of vertex x e 3D, amplitude M > 1 and pole Zo € D defined
by setting

K^{x, M) = I z e D | lim sup[kD(z, w) - kD(zo, w)] + kD(zo, z) < log M \ ;
I w-*x J

notice that changing the pole amounts to a shifting of the amplitudes, and so it is
not relevant. The AT-regions coincide with the Stolz regions in the unit disk (and
with Koranyi-Stein regions in the unit ball B"), and are well-suited to interact with
conditions like (0.2). We shall then say that a function / : D ->• C admits K-
limit L e € at x e 3D if / (z) —>• L as z -*• x inside any ^-region of vertex x.

Unfortunately, as Rudin already remarked, in the unit ball the K-\m\il is a general-
ization of the non-tangential limit not suitable for extensions of the Wolff-Caratheodory
part of Theorem 0.1. The correct version is a somewhat weaker (and more technical)
notion we call restricted K-limit, whose origin lies in the classical Lindelof principle.
This says that, given a point o e 3 A, a bounded (or just bounded in Stolz regions
with vertex a t*) holomorphic function/ : A —> C admits non-tangential limit L e C
at a if and only if it admits limit L when restricted to a single non-tangential curve
y : [0, 1) -> A such that )/(f) - • o as t -> 1".
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Cirka has been the first one to generalize the Lindelof principle to bounded holo-
morphic functions of several complex variables, remarking that the correct statement
involved, instead of the non-tangential limit, the existence of the limit along all curves
in a suitable class including all non-tangential ones. In the case of strongly pseu-
doconvex domains, it amounted to curves that were non-tangential in the direction
orthogonal to the boundary, and asymptotically less than parabolically tangent to the
boundary along the complex-tangential directions; so the existence of the (same) limit
along all these curves is slightly weaker than the existence of the AT-limit, but stronger
than the existence of the non-tangential limit.

In [4], inspired by [10], we described a general procedure to get new Lindelof prin-
ciples; unfortunately, it works only for bounded holomorphic functions, whereas the
functions appearing in generalizations of the Wolff-Caratheodory part of Theorem 0.1
are in general only bounded in AT-regions, with the bound depending on the amplitude
of the region.

One then needs a Lindelof principle for AT-bounded (that is, bounded in AT-regions)
functions. Possibly the main new result of this paper is exactly such a Lindelof prin-
ciple, holding in any bounded convex domain of finite type under weaker hypotheses
o n / .

THEOREM 0.3. Let D C C" be a bounded convex domain, and fix Zo € D. Let
x e 3 D such that 3 D is smooth near x, and assume that the line type ofx is finite. Let
f e Hol(D, C) be T-bounded at x 6 3D. Iff(y°(t)) -> L as t ->• 1" for a special
restricted x-curve y°, then f has restricted K-limit L at x.

Here T-bounded means bounded in T-regions, which are approach regions smaller
than AT-regions but defined only in convex domains; an x -curve is a curve in D ending
at* e 3D; a restricted curve is, roughly speaking, a curve whose orthogonal projection
into the complex line orthogonal to 3D in x approaches x non-tangentially (this is
not the actual definition, but it has the correct flavour without relying on too many
details); a special curve is a curve such that its Kobayashi distance from its projection
tends to zero; and having restricted AT-limit L means having limit L restricted to any
special restricted curve (see Section 3 for the exact definitions).

We are finally able to state our generalization of Theorem 0.1 (ii), saying that
the derivatives of a bounded holomorphic function satisfying (0.2) admits restricted
AT-limit, even with weights:

THEOREM 0.4. Let D CC C be a 'good' convex domain of finite type, and take
xedD.Letfe Hol(D, A) be such that (0.2) holds atx. For v € C , v £ O, let
0 < J < 1 be such that S(z)sicD(z; v) is T-bounded at x, where 8(z) is the euclidean
distance from the boundary, and KD is the Kobayashi metric of D. Then the function

(0.4)
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is T-bounded at x, and

(i) if v is transversal to Tf(dD) then s = \, and (0.4) has non-zero restricted
K-limit at x;

(ii) if v is complex-tangential to 3D at x then s < 1 and (0.4) has restricted
K-limit zero at x.

Thus the behaviour of the Kobayashi metric at the boundary controls the boundary
behaviour of the derivatives of / , as anticipated at the beginning of this introduction.
One final remark: by a 'good' convex domain of finite type here we mean a domain
satisfying a couple of technical hypotheses needed in the proof (see the remarks at
the end of Section 2 and Section 4 and the statement of Theorem 4.2 for the exact
assumptions needed) but possibly not needed for the validity of the theorem. Anyway,
we know that strongly convex domains, weakly convex domains with real analytic
boundary and convex circular domains of finite type are 'good' in this sense, and thus
Theorem 0.4 can be applied to a much larger class of domains than the corresponding
results in [4].

This paper is organized as follows. Section 1 collects several estimates on the
boundary behaviour of the Kobayashi distance and metric in convex domains of finite
type, whose proof depends on McNeal's work [22,23]. Section 2 is devoted to the
study of complex geodesies in convex domains of finite type, a technical tool we shall
heavily need in the rest of the paper. Section 3 contains our new Lindelof principle,
and Section 4 the proof of Theorem 0.4.

1. Estimates

Let D = {z G C | r(z) < 0} CC C be a bounded domain, and x e dD. If the
boundary of D is smooth nearby x, we say that x is a point of finite line type if

sup{u(r o I) | /: C -»• C is linear and 1(0) — x] — L < +oo,

where v(r o /) denote the order of vanishing of r o / in x. The number L is the
maximum order of contact of 3D with complex lines in x\ in particular, L > 2 (it
suffices to consider a line tangent to dD). Furthermore, if D is convex nearby x then
McNeal proved that x is of finite line type if and only if it is of finite type in the sense
of D'Angelo. For this reason we shall say that a bounded convex domain D is simply
of finite type L < +oo if the line type of all x e dD is bounded by L (and the bound
is achieved at some point). In particular, D is strongly convex if and only if it is of
finite type 2.

In this section we collect several estimates on the boundary behaviour of the
Kobayashi metric and distance on a convex domain of finite type we shall need in the
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sequel. We shall denote by kD{z, w) the Kobayashi distance of z and w in the domain
D, and by KD(Z; V) the Kobayashi length in D of the tangent vector v at the point z.
We shall also consistently use the following notation: if / and g are functions, we
shall write / < g to mean that there is a constant C, sometimes universal sometimes
depending on specified parameters but always independent of / and g, such that
/ < Cg. If/ < g and g<f, we shall write/ « g.

For q € D and v e C*, we denote by S (q) = d(q, 3D) the euclidean distance from
q to the boundary of D, and by S(q; v) the euclidean distance from q to the boundary
of the intersection of D with the complex line through q parallel to v. We shall also
denote by B(x0, e) the euclidean ball of center x0 and radius £.

We begin recalling two estimates which holds for any C2 domain:

LEMMA 1.1. Let D CC C" be a Cl bounded domain.

(i) Given zo € D, there is a constant C\ such that for all z € D

(1.1) Mzo,z)<c,- - log5(z) .

(ii) Given x0 € 3D, there exist c and c > 0 such that for all z\, Zi € D P\ B(x0, e)
we have

(1-2) kD(zi, z2) < - ^ l o g I 1 H ——-— I + c.
i=\ ^ ' '

PROOF, (i) See [3, Theorem 2.3.51] or [1].
(ii) See [3, Theorem 2.3.56] or [13]. D

For the next estimate we need a new notation. Let D CC C" be a bounded C2

domain; in particular, there is e > 0 such that 3D admits a tubular neighbourhood U
of radius e. For any z e U, there is a closest x = x(z) € 3D; we then extend the
exterior normal unit vector field n from 3D to U by setting nz = nxW. If z e D fl U
and » 6 C " = 7ZD, we shall write v = vN + vT, where vN = (v, njnz is the normal
component of v at z and vT = v — vN is the tangential component of u at z (and (•, •)
denotes the canonical hermitian product of C ) .

LEMMA 1.2. Let D CC C" be a C2 bounded domain. Then there are e > 0 and
c > 0 JMC/I fftaf ifz&D is such that S (z) < £ and u e C f/ien

(1-3) fo(z;v) <
8(z)

PROOF. Let s > 0 be such that 3D admits a tubular neighbourhood of radius 2s.
In particular, for every z € D such that S(z) < s there is zo e D such that S(zo) = £,
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x(zo) = x(z), 8(z) = s — \\z — Zo\\ and the euclidean ball B of center z0 and radius s is
contained in D and tangent to 3D in x(z0). The decreasing property of the Kobayashi
metric implies KD(Z; V) < KB{Z;V); therefore it suffices to estimate the latter.

Now, it is easy to see that

KB(Z;V) = +
(e + \\z - Zo\\)2 S(z)2 S(z)(e + \\z - zo\\)'

therefore

Y < — — + TTT,

S(z)2 eS(z)

and we are done. •
For the next couple of results we need the convexity of D:

LEMMA 1.3. Let D CC C be a C2 bounded convex domain. Then:

(i) Given zo € D, there is a constant c 2 6 l such that for all z G D

(1.4) c 2 ^

(ii) There is e > 0 such that ifz e D is such that S (z) < e and v e C"

(1-5)

where the constant depends only on D.

PROOF, (i) The estimate (1.4) is known for strongly pseudoconvex domain (see
[3, Theorem 2.3.52], [1,24,27]); but we now show that it holds for weakly convex
domains too. The real tangent plane to 3D at x is given by Re Xx(z) = 0, where

and r is a C2 defining function for D.
Since 3D is compact and C2, there is a constant M depending only on D such that

\Xx(z)\ < M\\x - z\\. If H - {Re£ > 0} C C is the right half-plane, by convexity
we have Xx(D) C H for any x e 3D. Choosing x = x(z), the explicit expression of
kH yields a Cj > 0 depending only on zo and D such that

z) > kH(xx(Z)(zo), Xx(z)(z)) > c'2 - - logReXx

C2 ~
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where c2 — c2 — \ log M, because \\x(z) — z\\ = S(z) by construction.
(ii) As usual, let £ > 0 be such that there is a tubular neighbourhood U of 3D of

radius s. So take z e ( / ( ID, and choose again x = x(z) G 3D. Then

*Dfcv) >«H(xAz);dXAv)) =

On the other hand, the complex gradient of r at x e 3D is a non-vanishing real
multiple of the conjugate of the exterior unit normal of 3D at x; therefore there is
M, > 0 depending only on D such that (1/Afi)|(v, n,) | < \dxx(v)\ < Mx\(v, n,)|,
and we are done, because nx = nz by construction. D

The final bunch of estimates depends on the finite type condition. To state them,
we recall the following basic result by McNeal.

THEOREM 1.4 ([22,23]). Let D = {z e C" | r(z) < 0} be a bounded domain,
and let x e d D. Assume that there is a neighbourhood U of x in C" such that
D fl U is convex and smooth near x; assume moreover that the line type of x is
L < +oo. Then, after possibly shrinking U, for every q G DPI U there exist an affine
isometric change of coordinates, positive numbers X\ = 8(q) < r2 < • • • < rn and
points pi, pi,... , pn e 3D such that the new system of coordinates (z1, z2, • • •, z")
is centered in q and we have:

(1.6) 3r(p,) /3z-=O; for i > j ,

(1.7) S(<7)/r, < |3r(p,)/3z'| < S(q)/rr, for 1 < i < n,

(1.8) \9r{pj)/dzl\<S(q)/rt; for i < j,

(1-9) S(q)1/2 < T, < S(qy/L, forj =2,...,n,

where the constants are independent of q.

The construction of McNeal coordinates is as follows. Let ri be the distance from
q to 3D, and p\ e 3D a point where the distance is realized. Let z1 be the affine
isometric parametrization of the complex line from q to p\ with z'(0) = q and p\
lying on the positive Re z1 axis. Now let r2 be the distance from q to the intersection
of 3D with the (complex) orthogonal complement (through q) of the span of the
coordinate z\\ we then choose p2 € 3D to be a point where this distance is achieved,
and as z2 the affine isometric parametrization of the complex line from q to p2 with
Z2(q) = 0 and pi lying on the positive Rez2 axis. Continuing this process we get
the n coordinate functions satisfying the assertions of Theorem 1.4.

Using McNeal coordinates we can give a sort of local model for the boundary of a
convex domain of finite type.
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LEMMA 1.5. LetD C C" be a bounded convex domain. Letx e d D such that d D is
smooth nearx, and assume that the type ofx is finite. Then there is a neighbourhood U
of x such that for every q € D n U the domain

is contained in D.

REMARK. In the previous lemma, with a slight abuse of notation we wrote zj (w)
instead of d{z')q(w), where w should be considered as a tangent vector to C in q.
Being the z1 's affine maps, this amounts to considering q as the origin. We shall use
this convention from now on.

PROOF. Take v e C , with \\v\\ = 1; we want to estimate S(q\ v). Set

^\z(v)\ , \zJ(v)\ , . .
t = > and a; = for / = 1 , . . . , n.

J£ Tj(q) ' txj(q)
Clearly, £ ; « ; = !•

Let Yi,..., yn be the orthogonal unit vectors determined by the coordinate direc-
tions associated to q, so that Pj = q + T, (q)Yj for j = 1,... ,n. Every vector in the
complex line Cv is a positive real multiple of a vector of the form

w = e'"v = e'" y
j=\ ;=i

for a suitable 6 e R, where Yj = e'e(z>(v)/\zj
 (V)\)YJ- Since pj realizes the minimum

distance from q to the boundary of D along the directions spanned by the vectors
Yj,... ,yn, the point Pj = q + Xj (q)Yj belongs to D for j = 1 , . . . , n. The convexity
of D then implies that q + w/t = Yl"=i ajPj € ^- Since this holds for any 0 e R,
the euclidean distance from q to 3D along the direction v is at least l/t, and thus

(1.10)
<5(<?;u)

; = i

Now let w e C,w £ 0, be such that YL"=\ \zj (w)\/rj(q) < 1, and put v
Since z' (w) — \\w\\zi (v) forj = 1, . . . ,«, it follows that

and thus q + w e D. •
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Then

PROPOSITION 1.6. Let D C C" be a bounded convex domain. Let x 6 3D such
that 3D is smooth near x, and assume that the type of x is finite. Then there is a
neighbourhood U ofx such that for every q e D C\ U and v € C we have

where the constants depend only on D.

PROOF. Lemma 1.5 yields KD(q; v) < KAl){q)(q; v) = J2"=i \z' (V)\/Tj (q)< an^ o n e

direction is done.
Now, we clearly have

(1.11) z'(pj) = Tj8l
Jt

where <5j is Kronecker's delta.
For j = 1 , . . . , n, the tangent plane to 3D at Pj is given by Re Xj (z) = 0. where

Notice that, by convexity, Re Xj (z) > 0 for all z e D and j = 1 , . . . , n. In particular,
Xj (D) c H, the right half-plane in C. Furthermore, by (1.11) and the right-hand side
of (1.7), we have

dr .
(1.12)

Now, (1.12) yields

(1.13) KD(q;v) '•

and (1.6) yields

\Xj(q)\ = j <

(1.14) \dXj(v)\>
dr

\z'(v)\.

Then, first using the left-hand side of (1.7) and then (1.8), we get

\zj(v)\
S(q)

\dXj(v)\

S(q)
\z'(v)\

z'(v)\

h
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[11] The Lindelof principle and angular derivatives 231

From this and (1.13) and by the induction ony we obtain that

/ i i c t \ZJ(V)\ , , ,

(1-15) <KD(q;v)

for; = 1 , . . . , n, and the assertion follows. •

COROLLARY 1.7. Let D C C" be a bounded convex domain. Letx e 3D such that
3D is smooth near x, and assume that the line type of x is L > 2. Then there is a
neighbourhood U ofx such that for all q e D D U and v e C" we have

(1.16)

and

d.i7) j?L<KDiq.v)t

where the constants depend only on D.

PROOF. The second inequality in (1.16) follows immediately from Lemma 1.2, and
thus does not depend on the fact that D is of finite line type. For the first inequality,
recalling (1.9) we get

by the previous proposition. Finally, (1.17) follows from (1.10) and (1.15). •

A final estimate:

PROPOSITION 1.8. Let D CC C be a bounded convex domain. Let x € 3D be
such that 9 D is smooth nearx, and assume that the line type ofx is L > 2. Then there
is a neighbourhood U ofx such that ifp, q are in DD U with 0 < kD(p, q) < c, then

(1.18) . , *" .
S(q;p -q)

where the constant is independent of p and q (but it depends on c).

PROOF. We use McNeal coordinates centered at q. Fo r ; = 1 , . . . , n we have

kD(p, q) > kH{xj (/>), Xj (9)) = atanh
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Since kD(p, q) < c, recalling (1.12) we get

\Xj (P) ~ Xj (q)\ <, \Xj (P) ~ Xj (q)\ ^ 2kr'~ - - *" ~ l

[12]

S(q)
Now (1.6) yields

\Xj(q)\

\Xj(p)-Xj(q)\ >

_ I

£<*> \z'(p)\.

Then, first using the left-hand side of (1.7) and then (1.8), we get

\ZJ(P)\ 1 dr

~ Hq)

< \Xj(p)- Xj(q)\

Hq)

\xj(p)-xj(q)\
Hq)

dr
\z'(p)\

z'(p)\
*i(q) '

From this and (1.19) and by the induction on j we obtain that \zj(p)\/t:j(q) ^ kD(p, q)
forj = 1 , . . . , n, and (1.18) follows from (1.10) applied with v = p — q. D

2. Complex geodesies

A main technical tool for our work is the notion of complex geodesic. A complex
geodesic in a domain D CC C is a holomorphic map cp: A -*• D, where A is the unit
disk in the complex plane, which is an isometry with respect to the Poincare distance
co on A and the Kobayashi distance on D.

The complex geodesies are particularly well-behaved in convex domains. First of
all, Lempert and Royden-Wong (see [3,17,19,20,25]) proved that for every pair of
distinct points z, w in a convex domain D (respectively, for every point z e D and
non-zero tangent direction v € C") there is a complex geodesic passing through z
and w (respectively, passing through z and tangent to v). Furthermore, a complex
geodesic in a convex domain is automatically an isometry between the Poincare metric
on A and the Kobayashi metric on D (and, conversely, any such isometry is a complex
geodesic); and if a holomorphic map cp: A -> D preserves the distance between two
given points (or the length of one given non-zero tangent vector) then <p automatically
is a complex geodesic.

In this section we shall discuss existence and uniqueness of complex geodesies
passing through an interior point z € D and a boundary point x e 3 D when D is of
finite type, generalizing results known (see [2,9]) for strongly convex domains.

First, we prove a lemma.
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LEMMA 2.1. Let D CC C" be a bounded convex domain. If<p € Hol(A, D) is a
complex geodesic in D such that <p(0) = zo> then

(2.1)

where the constants depend only on D and zo-

PROOF. It suffices to apply (1.4) and (1.1) to kD(<p(0), <p(Z)), recalling that

) = ^log|-q|j. •

To prove the existence of a complex geodesic passing through a point in the
boundary we first need to know that the complex geodesies at least extend continuously
to the boundary. For that, the following criterion due to Hardy and Littlewood will be
useful:

THEOREM 2.2 ([14]). Let f e Hol(A, C) andfixa € (0, 1). Thenf belongs to the
Holder space C°a(K) if and only | / ' ( f ) | < (1 - \Z\)"-lforaUS € A.

Now we can prove that every complex geodesic in a convex domain of finite type
extends continuously to 3 A.

THEOREM 2.3. Let D c C" be a bounded convex domain of finite type L and let
<p: A -> D be a complex geodesic. Then each component of<p belongs to the Holder
space C°-l/L(K).

PROOF. By Lemma 1.1 and Corollary 1.7 (and recalling that a complex geodesic
is automatically an isometry between the Poincare metric and the Kobayashi metric)
we get

Hence Lemma 2.1 yields

and the desired regularity of <p follows from Theorem 2.2. •

As a consequence we can prove the following:

PROPOSITION 2.4. Let D CC C be a bounded convex domain of finite type L.
Then for any Zo € D and x € 3D there exists a complex geodesic <p: A -> D such
that <p(0) = Zo and (p(l) = x.

https://doi.org/10.1017/S1446788700008818 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008818


234 Marco Abate and Roberto Tauraso [14]

PROOF. Let {z*} c D be a sequence converging to x. The convexity of D yields

for each t e N a complex geodesic <pk: A ->• D such that <Pk(O) = z0 and <pk(tk) = zk

for a suitable tk > 0. Moreover D , being a bounded convex domain, is taut, and

thus up to a subsequence we can assume that the sequence {<pk} converges to a map

<p e Hol (A, D), and that tk ->• 1". Clearly, <p(0) = z0 and for all f e A ,

= Mm JfcD(zb, <pk(S)) = <w(0, ?).

As remarked before, this is enough to assure that <p is a complex geodesic. By
Theorem 2.3, it belongs to C°1 / L(A), and then we clearly have cp(l) = x. •

Our next goal is to prove (under suitable hypotheses) the uniqueness of the complex
geodesic passing through a given point zo € D and a given point x e dD. To do so we
need to describe in more detail the theory surrounding complex geodesies in convex
domains.

Let D c c C" be a bounded convex domain, and <p: A —>• D a complex geodesic.
Lempert and Royden-Wong proved the existence of a holomorphic rfwa/ map <p*: A —•
C" satisfying the following properties:

(a) the components of <p* belongs to the Hardy space H' (A);
(b) <p* is uniquely determined up to a constant positive multiple as soon as there

exists a unique supporting hyperplane at every point of dD (for example, if 9D is C2);
(c) for almost all r € 9 A we have <p*(r) — r/z(r)n,,(r) for a unique (up to a positive

multiple) function /* € L'(3A);
(d) <p* is never vanishing in A and for every z € D there exists a unique £ = p(z) e

A such that (z — (pit), <?*(£)) = 0, where {z, w) = (z, w);
(e) p : D -+ A, the /e/r inverse of ^?, is holomorphic, p o <p = idA, and p = (p o p

is a holomorphic retraction of £> onto ^>(A);
(f) Re<<p'(0),p*(0))>0.

We now need to recover in the finite type case some properties of the dual map q>* and
of the associated maps p and p already known in the strongly convex setting.

LEMMA 2.5. Let D CC C be a bounded convex domain of finite type, and let
cp: A -> D be a complex geodesic. Set, for almost all r 6 3 A, v(r) = (<p'(r), n^(r)).
Then v, 1/u e L°°(3A).

PROOF. Take r € 9A. By (1.5), (2.1) and since Kh{tx\ 1) = 1/(1 - t2) we have

\{(p'(tr),nv(lT))\ < S((p(tr))KD(<p(tx);<p'(n)) < (1

Letting ? go to 1, we obtain that i> 6 L°°(9A).
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Now, applying (1.3) to z = <p(tr) and v = <p'{tx), we get

\{<p'(tx),n^n))\ = \\vN\\>KD(<p(tT);<p'(tT))8(<p(tT)) - \\vT\\S((p(tr))l/2.

So, by (2.1),

\(<p'(tx), nvUl))\ > (1 - t)KA(tz; 1) - \\vT\\(l - 0 1 / 2 > 1/2 -

Letting again t go to 1, we find that l/v e L°°(dA). •

Now, the curve 6 i-> <p(e'e) is almost everywhere differentiable, and its tangent
at <p(e'e) is orthogonal to n (̂l..-«). From this it is easy to prove (see [3, page 330] or [20])
that lm(<p'(e'e), <p*{eie)) = 0 for almost every 9, and thus Im(<p', <p*) s O o n A . Since
Lemma 2.5 yields (cp', <p*) e Ll(A), it follows that (<pr, <p*) is a positive constant.
Now, <p* is defined up to a positive multiple; therefore we can (and we shall) always
assume

(2.2) (<?',<?*)== 1.

In particular, the curve 11-* <p(t) approaches <p(l) non-tangentially.

COROLLARY 2.6. Let D CC C" be abounded convex domain of finite type L, and
let <p: A -> D be a complex geodesic. Then:

(i) all the components of<p* belong to the Holder class C°i l /L(A);
(ii) the function v(r) = ((p'(v), nv( r )) belongs to the Holder class C°1/L(9 A);

(iii) the function p belongs to the class C1 (D).

PROOF. Setting /x(r) = ||<p*(r)||, by (2.2) we get r/x(r)u(r) = 1 almost every-
where on 3A; since l/v e L°°(3A), this implies that v belongs to the same Holder
class as [i (if any). Furthermore, since we know that (p 6 C°1 / L(A), a classical result
by Hardy and Littlewood [14] says that (p* is 1/L-Holder if and only if /x is. Given
this, since cp* and <p extends continuously to the boundary, so does p; and the regularity
of dp is the same as the regularity of tp*, that is p e C1 (D).

So it suffices to prove that /x € C°-l/L(dA), and this can be achieved as in [3,
Theorem 2.6.34] or [20]. •

In particular, for every z 6 D and v e C we have dpz(v) = (v, <p*(p(z))), and for
every r € 3A and n e C" we have

(2.3) dpv(r)(v) = (v, <p*(r)) = fr>>p*t))

We shall say that a convex domain D is strictly linearly convex if for every x € dD
the complex tangent hyperplane Tx

c(dD) = Tx(dD) n iTx(3D) intersects 3D only
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in x. Strongly convex domains and convex domains with real-analytic boundary
(which are automatically of finite type) are necessarily strictly linearly convex, but the
converse is not true.

Our interest in this notion lies in the following

LEMMA 2.7. Let D CC O be a bounded convex domain of finite type, <p: A ->• D
a complex geodesic, and p: D -*• A its left inverse. Then ifz€D does not belong
to any hyperplane T^T)dD for all r € 3 A, thenp(z) € A.

PROOF. The number of solutions in A of (z — (p(X)»*>*(?)) = 0 is equal to the
winding number of the function gz(£) = (z — (p(&), $*{%))• Arguing as in [3, Propo-
sition 2.6.22] one sees that for z € D the winding number is 1 unless gz(z) = 0 for
some r € 3 A, which is equivalent to having z € T^(z)dD for some r € 3 A (and in
that case p(z) = <p(x) e 3D). •

We are finally ready to prove the uniqueness of complex geodesies:

THEOREM 2.8. Let D CC C" be a bounded strictly linearly convex domain of finite
type. Then

(i) for any pair of distinct points Zo, w0 € D there is a unique complex geodesic
<p: A —> D such that (p(0) = zo and <p(t) = w0, where t = tanh kD(zo, Wo);

(ii) for any Zo € D and x € dD there exists a unique complex geodesic (p such
that ^(0) = Zo and <p(l) = x.

PROOF, (i) We shall not need this fact in the sequel, but it is interesting to compare
its proof with the proof of (ii). Assume, by contradiction, that there are two complex
geodesies q> and rfr passing through Zo and w0 as required, and let p be the left inverse
of cp. Then p o xjr is a holomorphic self-map of the disk with two fixed points, and
hence p of = idA. The previous lemma then implies ^|8A = Via*, and thus <p = rj/.

(ii) Assume now that <p and r(r are two complex geodesies with ^>(0) = x/r(O) = zo
and (p(l) = ij/(l) =x. Denote by p the left inverse of tp, and by q the left inverse of \jt.
S e t / =po\lfandg = qo<p. Clearly,/ , g e Hol(A, A) n C(A) , / (0 ) = g(0) = 0
a n d / (1) = g( l ) = 1. Again, it suffices to prove t ha t / = idA.

First, we prove that there exists the radial limit of / ' at 1. By the classical Julia-
Wolff-Caratheodory theorem, it is enough to show that

liminf[a)(0, t) - co(0,f (t))] < oo.

Now, <p(t) and \jr(t) are non-tangential x-curves; therefore there is M > 1 such that
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for all t close enough to 1 we have

[l ly(O*ll W(t)-x\\\ hA

max < —-. —, — ; r— ) < M.
( 8(<p(t)) 8{W)) j

Moreover, by (2.1), <$(<?(£)) * S(^(?)) % (1 - |f |), and therefore Lemma 1.1 (ii)
yields

(o(0,t)-eo(fl,f(t))

= kD(zo, <p(t)) - kD(zo, p o V(0) < kD(<p(t), p o xff(t)) < kD(<p(t), f (t))

2

^ | |<t(O^()| | 11^(0^(011
- 2 5(^(0) 2 a(V(O)

< - log 1 H H— log 1 H I + c

-x\

Hence there exist the radial limits/'(I) and ^'(1)- Since/(0) = ^(0) = 0, a classical
result (see [3, Corollary 1.2.10]) says that / ' ( l ) > 1 and/ ' ( l ) = 1 if and only if/
is the identity (and likewise for g). But then (2.3) and the continuity of (x/r1, n^) and
{<p\ ii,) yields 1 < / ' ( I ) = (T/r'(D, nx)/(<p'(l), nx). Analogously,

1 < g ( 1 ) = = ;

~8KJ (^'(D,nx) / ' (D
therefore/'(I) = g'(l) = 1, and thus/ = idA, as claimed. •

REMARK. We do not actually need the full power of strict linear convexity to get
uniqueness of complex geodesies; we can allow some intersection between complex
tangent hyperplanes and the boundary. Indeed, let £ C 3D be the set of points
x € 3D such that Tx

c(dD) D 3D contains at least two points (and thus, by convexity, a
real segment). Then the previous proof shows that if <p is a complex geodesic such that
<p (3 A) fl E is not of full measure then <p is the unique complex geodesic passing through
<p(0) and any other point in its image. Since the tangent vector to cp(d A), which exists
a.e., is transversal to the complex tangent hyperplanes, a sufficient condition for this
is that the set E has zero 2-dimensional Hausdorff measure.

We shall not even need the full uniqueness statement. What is really needed in the
sequel is the following
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COROLLARY 2.9. Let D CC C" be a bounded strictly linearly convex domain of
finite type, fix Zo € D and denote for every z e D by <pz the only complex geodesic
with (pz(0) = z0 and (pz(t0) = z, where f0 = tanh£D(zo, z) € [0, 1]. Then z h->- <pz is
continuous.

PROOF. Let{z*} c D be a sequence converging to z e D. Then every subsequential
limit of {(p^} is a complex geodesic passing through zo and z, and thus (by uniqueness)
it is <pz. By tautness, this imply that <pz is the limit of {(pZk), as claimed. •

More generally, a convex domain D is solid in zo £ D if for every z e D it is
possible to choose a complex geodesic <pz with <pz(0) = z0 and <pz(t0) = z, where
t0 = tanhfcD(zo, z), in such a way that the map z h* <pz is continuous. We have just
proved that strictly linearly convex domains of finite type (or, more generally, convex
domains of finite type strictly linearly convex except in a set of zero 2-dimensional
Hausdorff measure) are solid in every point. Another example is given by convex
circular domains (no regularity assumption on the boundary) which are always solid
with respect to the origin (it suffices to choose (pz(Z) = £*, where x is the intersection
of 3D with the real half-line issuing from the origin and passing through z; see [3,
Corollary 2.6.4]).

In Section 4 we shall prove a Julia-Wolff-Caratheodory theorem for convex domains
D of finite type solid in a given point zo € D. Actually, the solid assumption will be
needed only for the following two lemmas.

LEMMA 2.10. Let D CC C" be a bounded convex domain solid in zo e D. Then
for every x G 3D and z 6 D we have

- o>(0, t)].

PROOF. First of all, it is easy to check that the function 11-» kD(z, <px (f)) — w(0, 0
is not increasing for t € [0, 1); let hz(x) denote its limit as t -*• 1~. By definition
hz(x) < limsupUJ__c[A:o(z, w) — kD(0, w)]. To prove the converse inequality we need
to show that for every e > 0 there is 8 > 0 so that if || w — x || < 8 then

M z , w) - MO, w) < hz(x) + s.

Choose t0 < 1 so that kD(z, (px (to)) ~ o)(0, t0) < hz(x) + e/2, and then fix 8 > 0 such
that if ||IO — JC|| < 8 then kD(zo, w) > w(0, fo) and

IMz, <pw(to)) ~ M z , *»,«b))| < e/2;
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such a S exists because D is solid in zo- Then

kD(z, w) - kD(zo, w) = kD (z, v
< kD(z,(pw(t0))-co(0,t0)

< kD(z, <px(to)) - a>(0, «D) + e/2 < hz(x) + s,

and we are done. •

LEMMA 2.11. Let D CC €" be a convex domain solid in zo € D. Then for all
x e dD andf € Hol(D, A) we have

liminf[*l)(zo,z)-a>(O,/(z))]= lim[a>(0, 0 - a>(0,

PROOF. First of all, it is easy to check that the function? i->- a>(0, t)—co(0,f (<px(t)))
is not decreasing in [0, 1); let h € 0& U {+00} denote its limit as t -*• 1". Clearly,

lim înf [Jfc0(zo, z) - o>(0, f (z))] < h.

To prove the converse inequality we need to show that for every e > 0 there is a S > 0
so that \\z — x || < S implies kD(zo, z) - co(0, / (z)) > h — e. Choose t0 > 0 so that
o)(0, to) - w(0,/ (^(r0))) > h - e/2, and take <5 > 0 so that if z € D is such that
||Z-JC|| < <5thenfcD(zo,z) > a>(0, r0) and M0,/(<p,(to)))-a>(0,/(%(*,)))! < e/2.
In particular,

o)(0, /) - a>(0,/(

> a)(0, r0) - w(0,/(^(r0))) -e/2>h-e

for all f > f0- Then

koizo, z) — a>(O,f(z)) = co(0, tanhjto(z0, z)) — co(0, /(<p2(tanh£D(zo, z))))

>h — s,

and we are done. •

3. The Lindelof principle

As described in the introduction, to prove the Julia-Wolff-Caratheodory theorem
one needs the Lindelof principle. The aim of this section is to prove the Lindelof
principle for a convex domain of finite type.

Let D CC C be a bounded convex domain; in this section we shall fix once for all:
a point Zo € D; a point A: € 3D such that 3D is of finite type in a neighbourhood of*;
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and a complex geodesic <px such that (px(0) = Zo and ^,(1) = x, with corresponding
left-inverse px and holomorphic retraction px — <px o p~x. Except in a secondary
lemma, we shall not assume that D is solid in zo\ in particular, we shall not assume
that D is strictly linearly convex.

Our previous approaches to Lindelof principles (see [4-6] and [7]) were based on
the (small) K-regions of vertex x € 3D, amplitude M > 1 and pole Zo e D, given by

KAx, M) = \z € D | limsup[fcD(z, w) - kD(zo, w)] + kD(zo, z) < logA/f.
I w-*x J

(Caution: in [3,4] this region was denoted by H^ (x, M) because there we also needed
another approach region denned using the liminf instead of the lim sup.) WhenD = A
the AT-regions of pole the origin are the classical Stolz regions

< M .

Later on, we shall also need the (small) horosphere of center x € 3 D, radius R > 0
and pole zo 6 D:

Ett(x,M) = \ze D |limsup[*D(z,u>)-ifcD(zo,u>)] < (1/2)log/?I.
[ W-+X J

In the unit disk small horospheres of pole the origin are the classical horocycles

EA(r,R) = k € A < R

It turns out that in convex domains the choice of a different kind of approach regions
yields better results. A T-region of vertex x € 3D, amplitude M > 1, pole zo € D
and girth 0 < S < 1 is

T^(x,M,8) = {z e D | /5,(z) € KA(l,M), kD(z,Px(z)) < a>(0,8)}.

If D is solid in zo> the 7-regions are actually smaller than ^f-regions (but we stress
that we shall not need this result in the sequel):

LEMMA 3.1. Let D CC C" be a bounded convex domain solid in Zo € D. Then for
allx edD,M> land0<8 < 1 we have Ta(x, M, 8) c Km(x, M(l+8)/(l-8)).

PROOF. In fact, take z e T^x, M, 8) and set f = px(z). Then we have

, W) - kD(zo, w) + kD(zo, z)

< 2kD(z, px(z)) + kD(px(z), w) -kD(zo,w) + kD(zo, px(z))

< 2co(0,8) + kD(px(z),w) -
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for all w e D. Now, recalling Lemma 2.10 we find

limsup[£D(Px(z), W) - kD(zo, w)] + kD(zo, px(z))
w—*x

= \im[kD(px(z),(px(t)) - kD(zo, <PxO))] + kD(zo,pAz))

= Um[<w(px(z), t) - co(0, t)] + co(0,px(z)) < logM,

because px(z) e ATA(1, M). Therefore

lim sup[kD(z, w) - kD(zo, w)] + kD(zo, z) < log ( 1 + log M,

that is z e K^x, M(l + <5)/(l - 8)) as claimed. •

To state our new Lindelof principle we recall a few customary definitions. An
x-curve is a continuous curve y: [0, 1) —• D such that y(t) —*• x as t —> I". For
every A:-curve y in D we set yx = px o y and yx = px o y; the latter is a 1-curve in A.
We shall say that anx-curve / is special if kD(y(t), yx(t)) —*• 0 as t —> 1~, and that
it is M-restricted if yx(t) € ATA(1, M) eventually; in particular, if y is restricted then
Yx approaches 1 non-tangentially. Notice that if / is a special A/-restricted x -curve
then for all 0 < S < 1 we have y(t) e T^ix, M, S) eventually.

We shall say that a m a p / : D ->• C is K -bounded at x € 3D if it is bounded in every
AT-region of vertex x (with the bound depending on the amplitude of the A"-region).
On the other hand, we shall say that a map / : D ->• C is T-bounded at x e 3D if
there exists 0 < So < 1 such that / is bounded in every 7-region T^ix, M, <50) of
vertex x and girth So, (with the bound depending again on the amplitude M). Note
that, by Lemma 3.1, if D is solid in zo then if a function / is AT-bounded at x then it
is r-boundedat*.

Finally, we shall say that the map / has K-limit L 6 C at x e dD if / (z) —>• L
when z -*• x staying inside any K-region K^x, M); and that it has restricted K-limit

L e C at x if/ (y(t)) -> L as t -> 1~ for any special restricted x-curve y. Then our
new Lindelof principle is:

THEOREM 3.2. Let D C C be a bounded convex domain, and fix zo € D. Let

x € dD such that 3D is smooth near x, and assume that the line type of x is

finite. Choose a complex geodesic <px such that <px(0) — Zo and <px(l) = x, and let

f 6 Hol(D, C) be T-boundedatx e 3D. Iff(y°(t)) -> L as t - • 1~ for a special

restricted x-curve y", then f has restricted K-limit L at x.

PROOF. Let y be a special M-restricted ;c-curve. For t e [0, 1) let the map
* r € Hol(C, C") be defined by setting *,(£) = yx(t) + i;{y{t) - yx(t)). First of all
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note that for any R > 1 there is 0 < tR < 1 such that *,(AR) c D for all t > tR,
where AR = R A. In fact, ^(Ay?) C D if and only if for all £ e AR we have

= l?l11/ (0 - yAt)\\ < &(yAt)\ y(t) - yAO),
that is

\\y(t)-yAt)\\ < J

Since y is a special x-curve, we have kD(y(t), yx(t)) -*• 0, and the existence of tR

follows from Proposition 1.8.
Moreover, since p~{(y (f)) is the intersection of a complex hyperplane with D, we

have *,(£) e p?(y(t)) and therefore />,(*,(?)) = yx(r) = *,(0) for all f > tR.
Hence t i-> *,(£) is eventually an M-restricted JC-curve for any f e As. We can
assume without loss of generality that yAO € ATA(1, M) for t > tR.

Now let <50 < 1 be such that/ is bounded in any region T^ix, M, (50). Fix R > 1;
then vl>,(AR/lSo) c £> for all f > rfi/io. If £ € AR c AR/Jo we then have

Hence *,(AS) C ^ ( JC , Af, So) for f > fs/j,,. By assumption |/1 is bounded, say by
C, in T^ix, M, So). Hence for R > 1 and / > tR/So we have

« ) , yAt)) =

< ^ , ( 0 , l)=6>(0, 1//?).

Letting R -* +oo we find that as t -*• 1 ~ we have

(3.1) f(y(t))^L ifandonlyif

Now consider fx = f o<px e Hol(A, C). The map fx is AT-bounded at 1 because /
is 7-bounded at x, and £ = px(cpx(t;)) 6 A"A(1, M) implies <?,(£) e r a U , M, 50)-
Moreover, since y is a M-restricted x-curve then yx is a non-tangential 1-curve.

By assumption, / has limit L along the special restricted curve y°. By (3.1) it
follows that/* has limit L along the non-tangential 1-curve y°; then, by the classical
Lindelof principle, we have/* (/*(*)) = f (yx(t)) -*• L as t -*• 1" for all restricted
x-curve y. But then (3.1) yields / (y(t)) -+ L for all special restricted *-curve y,
and we are done. •

4. The Julia-Wolff-Caratheodory theorem

In this section we shall deal with the promised version of the Julia-Wolff-Caratheo-
dory theorem in convex domains of finite type. Let / : D ->• A be a bounded
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holomorphic function defined on a bounded domain D, and fix zo € D. We shall say
that/ is a-Julia at* € dD if

liminf[fcD(z<>, w) - ^(O./C^))] = flog or < +00.

This is the basic assumption; from this we shall be able to infer the existence of the
(restricted) ^f-limit of/ and its (weighted) derivates at x.

The existence of the limit for / is a standard consequence of the general Julia
lemma for complete hyperbolic domains:

THEOREM 4.1. Let D CC C" be a complete hyperbolic domain. Fix zo € D, and
letf e Hol(D, A) be a-Julia at x € dD. Then f has K-limit x € dA atx.

PROOF. See [3, Proposition 2.7.15]. •

If v = (vi, . . . , vn) 6 C is different from the origin, we shall write

Our aim is then to prove the following version of the Julia-Wolff-Caratheodory theo-
rem:

THEOREM 4.2. Let D CC C" be a convex domain of finite type solid in Zo € D,
and take x e dD such that there exists the radial limit of<p'x at 1. Let f e Hol(D, A)
be a-Julia at x. For v € C", v ^ 0, let 0 < s < 1 be such that S(Z)SKD(Z; V) is
7-bounded at x. Then the function 8(z)s~1df (z)/dv is T-bounded and has restricted
K-limit at x. Furthermore, ifv is transversal to Tf-(dD) we can take 5 = 1, and the
limit is zero if and only ifv € Tf(dD).

Such an s always exists. Indeed we have the following

PROPOSITION 4.3. Let D CC C be a convex domain, and let x € dD be such that
dD is smooth near x, and assume that the line type of x is L > 2. Then there is a
neighbourhood U ofx such that for any z € U D D and for any v € C different from
the origin we have:

(i) 8(Z)KD(Z;V)<\\V\\;

00 \\v\\<Hz)l/L>cD(z;vy,
(iii) ifv is transversal to T^(dD) then \\v\\ < S(Z)KD(Z; V);

(iv) ifv e Tx
c(dD) then we can find \/L < s < 1 - 1/L such that S(ZYKD(Z; V)

is T-bounded at x.
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PROOF, (i) and (ii) follows from Corollary 1.7, while (iii) follows from Lem-
ma 1.3 (ii). Concerning (iv), if z e T^ix, M, 8) n U, by Proposition 1.8, we have
that

Wz-pAz)\\<kD(px(z),z)8(pAzy,z-pAz))<&(pAzy,z-pAz))

<S(pAz))l/L<S(z)i/L,

because kD(z, px(z)) «a(0, 8) implies 8 (px(z))< 8 (z). Moreover, since v e Tx
c(dD),

||vw|| = \\(v,nz)\\ = IKw.n, - n , ) | | < | | z - * | |

< WZ-PAZ)\\ + WpAz) -X\\ < 8(z)i/L+8(z) < 8(z)i/L,

where we used the fact that pAz) approaches x non-tangentially, and thus we have
WpAz) -X\\< 8(pAz)) < 8(z). Therefore, by Lemma 1.2,

\\VN\\ \\VT\\ ^ 1 1 ^ 1
+ + 1"'

So in the statement of Theorem 4.2 we can take s = 1 if v is transversal to Tx
c(dD),

and 1/L < s < 1 — \/L < 1 otherwise.
The first step in the proof consists in replacing 8(z) by 1 — px(z)- This is possible

because of the following

LEMMA 4.4. Let D CC C" be a convex domain, and fix ZQ € D. Let x € 3D be
such that there is a complex geodesic cpx with <px(0) = Zo and <px(l) = x. Then both
11 — Px (z) \/8(z) and its inverse are T-bounded at x (for any girth 8).

PROOF. Take z € T^x, M, 8). Then

\l-pAz)\ < M(l - \px(z)\) = M(\ - K^ipAz))),

where K^iz) = tanhfcD(zo, z). On the other hand,

0 < kD(zo, z) - kD(zo, pAz)) < kD(z, pAz)) < co(0,8),

and thus 1 - K^(px(z)) < 2e-2t"(az)(l + ,5)/(l - 8). The 7-boundedness of
|1 - px(z)\/8(z) then follows from Lemma 1.3 (i).

Finally, the (global) boundedness of <5(z)/|l — P*(z)\ follows from Lemma 1.1 (i)
and kD(zo, z) > co(0, px(z)). •

Since either s = 1 or the limit is zero (and every special restricted x -curve is
eventually inside a T-region), we are then left to prove that

(4.1) {i-pAz))s~l^(z)
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has the stated restricted AT-limit; the advantage now is that we deal with a holomorphic
function, and so we can apply the Lindelof principle proved in the last section.

Our first aim then is to prove that (4.1) is T-bounded. For this we need the following

LEMMA 4.5. Let D CC C be a convex domain, and fix zo € D. Let x e 3D be
such that there is a complex geodesic cpx with <px(0) = Zo and <px(\) = x. Then for
every z € ^ ( J C , M, S), r € (0, 1) and complex geodesic \jr such that ^(0) = z we
have f(Ar) C T^x, Mr, Sr), where Mr = M{\ + r ) / ( l - r) and

(4 2) _ . a ( l - r ) ' - 2 ( l - 3 ) r
( 4 - 2 ) Sr~ ( l - r ) » + 2 ( l - « ) r -

PROOF. We have

< <w(0, S) + 2aj(O, r) = co(0, Sr).

Next,

) , 0 - o>(P, t)]

< lim[a>(px(z), t) - (0(0, /)] +a>(0,px(z)) + 2a>(px(z), Px

< logM + 2*i,(z, ^r(f)) < logMr,

and we are done. •

PROPOSITION 4.6. Let D CC €" be a convex domain of finite type, solid in Zo € D,
and take x € 3D. Let f € Hol(D, A) fee a-Julia at zo- Take v € C" different from the
origin, and choose 0 < 5 < 1 such that 8(Z)SKD(Z;V) is T-bounded at x. Then (4.1)
is T-bounded at x.

PROOF. For every z e D, let \jrz e Hol(A, D) be a complex geodesic such that
i/rz(0) = z and i^'(0) = V/KD(Z; V). Let <5O > 0 be such that S(Z)SK:D(Z; W) is bounded
in T-regions of vertex x and girth <50, fix 0 < S < So and choose r € (0, 1) such that
<5r < So, where Sr is given by (4.2). We claim that (4.1) is bounded in T-regions of
vertex x and girth S.

Write

av

\i\=r
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2" - x

8(ZyicD(z;v)

pAz)-l

av,
8(z) ) reie

where x e 3 A is given by Theorem 4.1. We must show that the four factors in the
integrand are T-bounded.

The fourth factor is T-bounded by assumption, and Lemma 4.4 shows that the third
factor is T-bounded too. Now take z € 7^(JC, M, 8); then Lemma 4.5 yields

-pAMre"))
<Mr-

where Mr = M{\ + r)/(l - r). Now,

< kD(pAz),pAfz(rem))) < kD(z,

= co(0, r),

and thus the second factor is T-bounded too.
We are left with the first factor. Take z € T^x, M, 80), and set

(1/2) log/? = \ogM-a)(0,pAz)).

In particular, px(z) e £^(1, R) and

R - pAz)\.

Now, by Lemma2.11 we know that/ o<px isa-Juliaat 1. Thus f(px(z)) e EA(x,aR)
and

l08 lTr ), tx) — co(0, tx)] — co(0,f (z))
I—* I

<21im[a>(/-(z),rr)-a>(0,rr)]

Therefore |(r-/(z))/(l-p,(z))| < 2aM2(l+50)/(l-50)forallz e TJx, M,80).
Recalling Lemma 4.5 we then get

r-/(ik(rew))
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for all z 6 T^(x, M, 8), and so the first factor is 7-bounded too. •

We must now prove that (4.1) has limit along a special restricted A:-curve: the ob-
vious candidate is y(t) = (px(t). We first deal with the complex tangential directions:

PROPOSITION 4.7. Let D CC C" be a convex domain of finite type, solid in Zo € D,
and take xedD.Letfe Hol(D, A) be a-Julia at zo- Take v e Tx

c(dD) different
from the origin, and choose 0 < s < I such that 8(Z)SKD(Z; V) is T-bounded at x.

m,^x(\ - ty~ldf (<px(t))/dv = 0.

PROOF. Let $ : A X C -» C be given by <!>(£, r?) = (px(t;) + t]v, and set
<t>-\D)=B. Define h: B - • A by putting h = f o <t>. Clearly, £(£, 0) = / (<pAO)
and dh(Z;, O)/drj = dfvAi)(v). Then we can write

M£, n) = / ( % ( ? ) ) + r]df<pAO(v) + o(\r]\).

Set h(£, n) =f (<Px(Z)) + (1/2)/? df9x(i)(v); being the average of the first two partial
sums of the power series expansion of h, we still have h(B) c A. Writing

with g(£) = dfVx(V)(v)/2(l — f )'"*, the assertion is equivalent to l im ,^ g (0 = 0.
Now, since t \-+ <px(t) is a non-tangential x-curve, and recalling Lemma 1.5, we

see that B contains a domain of the form

E«o) = Uf,ij)€ B
- fr I2 \n\1/so

-k)2 c(t0)
 <

for suitable t0 close enough to 1 andc(r0) e flfc (possibly large), where s0 = min{l/2, s).
Fix a > 1, and set ^, = t + ia(l — t); clearly £, £ A for r close to 1. Furthermore,

we have

1 - t < 2 ^ =$• (£,, 0) e £(fo),

and

i _ , < I z A =>, t i?»-frl2 ^ 1 - '

Therefore for every t close enough to 1 we can find rj, e C such that

( 1 - f o ) 2 > c(r0)
 > l - < b '
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In particular, (£,, rj,) € B, and we can also assume that 77,(1 — f,)'~sg(f,) 6 R. Notice
moreover that |JJ,| > Ci(l — f)*> where ci depends only on t0 and not on a. We then
have |1 - f,| > a(l - t) and

Now, £, eventually belongs to a Stolz region in A; hence Lemma 2.11 and the classical
one-variable Julia-Wolff-Caratheodory theorem yields

that is,/(%(&)) = 1 - (a + o(l))(l - ia)(l - 0- Thus

1 > Re h(S,, ij,) = 1 - (a + o(l))(l - 0 +

> 1 - (a + o(l))(l - 0 +
that is,

If 5 > 1/2, letting r -*• 1" we get lim,^!- |g(£,)| = 0; if s < 1/2 we instead get
lim sup^j \g(Z,)\ < a/c\a}~s. This means that choosing a large enough we can make
this lim sup as small as we please; since we can clearly obtain the same estimate for
£,' = t — ic(l — t), and g is 7-bounded, it follows that lim^i \g(t)\ = 0 in all cases,
as claimed. •

And finally the transversal directions:

PROPOSITION 4.8. Let D CC €." be a convex domain of finite type, solid in zo € D,
and take x € 3D such that there exists the radial limit of<p'x at 1. Let f 6 Hol(D, A)
be a-Julia at x. Then for any v € C" transversal to 7^C(9D) the limit

(4.3) lim f >

exists and it is non-zero.

PROOF. Let vx = lim,-*! <p'x(t); we know that vx is transversal to Tx
c(dD). Further-

more,

£-(9x(t)) = dfvAl)(vx) = (fo <px)\t) + dfvAl){vs - <p'x(t)).
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Now, by Proposition 4.6, ||^/^(r)|| (the operator norm) is bounded, and thus the

classical one-variable Julia-Wolff-Caratheodory theorem applied to / o <px yields

lira—(«p,(r))=a.
' - • ' avx

Since every vector transversal to Tx
€(dD) is of the form Xvx + w for suitable l e C

and w 6 Tx
c(dD), from Proposition 4.7 we get the assertion. •

REMARK. The hypothesis on the existence of the radial limit of <p'x is satisfied, for

instance, in real-analytic convex domains of finite type (because Lempert's argument

[L] applies word by word to prove that complex geodesies extend real-analytic to

the boundary) and in convex circular domains (because <px(%) = %x). Anyway,

Proposition 4.8 holds under weaker hypotheses too. For instance, it suffices to assume

that ||^O)II is bounded as t goes to 1 and write

dfvA0(knx) = {f o <px)\t) + df9At)(knx - <p'x(t)N) - dfvA0(<px(t)T),

where X = u(l) = (<^(1), n*) ^ 0 . The first addendum on the right goes to a; the

second goes to zero, because ||d/fe(,)|| is bounded and ||A.n, — (p'x(t)N\\ -*• 0; and the

third goes to zero too, because ||d/^(()|| = o(l) when restricted to complex tangential

vectors. Thus we have again the existence of the limit (4.3) for one transversal vector,

and therefore for all of them.

So we finally have both T-boundedness and the existence of the limit along a

special restricted*-curve for (4.1); applying the Lindelof principle Theorem 3.2, and

recalling Lemma 4.4, we get Theorem 4.2.
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