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Abstract

We give a sufficient and necessary condition for a Praeger–Xu graph to be a Cayley graph.
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1. Scope of this note

The Praeger–Xu graphs, introduced by Praeger and Xu in [2], have exponentially large
groups of automorphisms, with respect to the number of vertices. This fact causes
various complications with regard to many natural questions.

In their recent work [1], Jajcay et al. gave a sufficient and necessary condition for
a Praeger–Xu graph to be a Cayley graph. Explicitly, [1, Theorem 1.1] states that, for
any positive integer n ≥ 3, n � 4, and for any positive integer k ≤ n − 1, the Praeger–Xu
graph PX(n, k) is a Cayley graph if and only if one of the following holds:

(i) the polynomial tn + 1 has a divisor of degree n − k in Z2[t];
(ii) n is even, and there exist polynomials f1, f2, g1, g2, u, v ∈ Z2[t] such that u, v are

palindromic of degree n − k, and

tn + 1 = f1(t2)u(t) + tg1(t2)v(t) = f2(t2)v(t) + tg2(t2)u(t). (1.1)

Our aim here is to prove that (ii) implies (i), thus obtaining the following refinement.
(It can be verified that PX(4, 1), PX(4, 2) and PX(4, 3) are Cayley graphs.)

THEOREM 1.1. For any positive integer n ≥ 3 and for any positive integer k ≤ n − 1,
the Praeger–Xu graph PX(n, k) is a Cayley graph if and only if the polynomial tn + 1
has a divisor of degree n − k in Z2[t].

Using the factorisation of tn + 1 in Z2[t], we give a purely arithmetic
condition for the Cayleyness of PX(n, k). Let ϕ be the Euler ϕ-function and,
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for every positive integer d, let

ω(d) := min{c ∈ N | d divides 2c − 1}

be the multiplicative order of 2 modulo d.

COROLLARY 1.2. Let a be a nonnegative integer, let b be an odd positive integer, let
n := 2ab with n ≥ 3 and let k be a positive integer with k ≤ n − 1. The Praeger–Xu
graph PX(n, k) is a Cayley graph if and only if k can be written as

k =
∑

d|b
αdω(d), for some integers αd with 0 ≤ αd ≤

2aϕ(d)
ω(d)

. (1.2)

2. Proof of Theorem 1.1

Suppose (ii) holds. We aim to show that tn + 1 is divisible by a polynomial of degree
n − k in Z2[t], implying (i). Working in characteristic 2, (1.1) can be written as

tn + 1 = f 2
1 (t)u(t) + tg2

1(t)v(t) = f 2
2 (t)v(t) + tg2

2(t)u(t),

in short,

tn + 1 = f 2
1 u + tg2

1v = f 2
2 v + tg2

2u. (2.1)

If g1 = 0 or if g2 = 0, then the result follows from (2.1), and the fact that u and v have
degree n − k. Therefore, for the rest of the argument, we may suppose that g1, g2 � 0.
Moreover, observe that f1, f2 � 0, because t does not divide tn + 1.

We introduce four polynomials ue, uo, ve, vo ∈ Z2[t] such that

u := u2
e + tu2

o, v := v2
e + tv2

o.

Substituting these expansions for u and v in (2.1),

tn + 1 = f 2
1 u2

e + t2g2
1v2

o + t( f 2
1 u2

o + g2
1v2

e),

tn + 1 = f 2
2 v2

e + t2g2
2u2

o + t( f 2
2 v2

o + g2
2u2

e).

Recall that n is even. By splitting the equations into even and odd degree terms, we
obtain

tn + 1 = f 2
1 u2

e + t2g2
1v2

o, 0 = t( f 2
1 u2

o + g2
1v2

e),

tn + 1 = f 2
2 v2

e + t2g2
2u2

o, 0 = t( f 2
2 v2

o + g2
2u2

e).

Set m := n/2. Since we are working in characteristic 2,

tm + 1 = f1ue + tg1vo, tm + 1 = f2ve + tg2uo, (2.2)

f1uo = g1ve, f2vo = g2ue. (2.3)
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Since u and v are palindromic by assumption, we get 1 = u(0) = ue(0) and
1 = v(0) = ve(0). In particular, both ue and ve are not zero. From (2.2) and (2.3),

f1 =
tm + 1

ueve + tuovo
ve, g1 =

tm + 1
ueve + tuovo

uo,

f2 =
tm + 1

ueve + tuovo
ue, g2 =

tm + 1
ueve + tuovo

vo. (2.4)

Our candidate for the desired divisor of tn + 1 is s := ueve + tuovo. Let us show first
that deg(s) = n − k. Since ueve and uovo have even degree, we deduce

deg(s) = max{deg(ueve), deg(tuovo)}.

Recall u = u2
e + tu2

o and v = v2
e + tv2

o. If n − k is even, then

deg(ue) = deg(ve) =
n − k

2
and deg(uo), deg(vo) <

n − k − 1
2

.

However, if n − k is odd, then

deg(ue), deg(ve) <
n − k

2
and deg(uo) = deg(vo) =

n − k − 1
2

.

Therefore, in both cases, deg(s) = n − k.
It remains to prove that s divides tn + 1. Since f1, g1, f2, g2 are polynomials, by (2.4),

s divides

gcd((tm + 1)ve, (tm + 1)vo, (tm + 1)ue, (tm + 1)uo) = (tm + 1) gcd(ve, vo, ue, uo).

Observe that gcd(ve, vo, ue, uo) divides f1ue + tg1vo, and hence, in view of the
first equation in (2.2), gcd(ve, vo, ue, uo) divides tm + 1. Therefore, s divides
(tm + 1)2 = tn + 1.

3. Proof of Corollary 1.2

By Theorem 1.1, deciding if a Praeger–Xu graph PX(n, k) is a Cayley graph is
tantamount to deciding if tn + 1 admits a divisor of order k in Z2[t]. An immediate
way to proceed is to study how tn + 1 can be factorised in irreducible polynomials.

Let n = 2ab, with gcd(2, b) = 1. Since we are in characteristic 2,

tn + 1 = t2ab + 1 = (tb + 1)2a
.

Furthermore, if λd(t) ∈ Z[t] denotes the dth cyclotomic polynomial, then

tb + 1 =
∏

d|b
λd(t)

is the factorisation of tb + 1 in irreducible polynomials over Q[t], by Gauss’ theorem.
Since the Galois group of any field extension of Z2 is a cyclic group generated by the
Frobenius automorphism, the degree of an irreducible factor of λd(t) in Z2[t] is the
smallest c such that a dth primitive root ζ raised to the power 2c is ζ, that is, ω(d).
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Hence, λd(t) in Z2[t] factorises into ϕ(d)/ω(d) irreducible polynomials, each having
degree ω(d).

Therefore, tn + 1 ∈ Z2[t] has a divisor of degree k if and only if k can be written
as the sum of some ω(d) terms, each summand repeated at most 2aϕ(d)/ω(d) times,
which is exactly (1.2).
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