AUTOMORPHISMS OF HOMOGENEOUS C*-ALGEBRAS

KLAUS THOMSEN

For a homogeneous C^* -algebra we identify the quotient of the automorphism group by the locally unitary automorphisms as a subgroup of the homeomorphisms of the spectrum. We sharpen a known criterion on the spectrum that ensures that all locally unitary automorphisms of the algebra are inner.

In [7] Phillips and Raeburn proved the existence of two short exact sequences

$$1 \rightarrow \operatorname{Inn}(A) \rightarrow \operatorname{Aut}_{C_0(X)}(A) \stackrel{\Phi}{\rightarrow} H^2(X, \mathbb{Z})$$

and

$$1 \rightarrow \operatorname{Aut}_{\mathcal{C}_{0}(X)}(A) \rightarrow \operatorname{Aut}(A) \stackrel{\Psi}{\rightarrow} \operatorname{Hom}_{\delta}(X)$$

for a separable continuous trace C^* -algebra A with spectrum X. Under the additional assumption that A is stable, they concluded that both ϕ and ψ are surjective. In this note we investigate what happens when A is n-homogeneous, $n \in \mathbb{N}$. Since a homogeneous C^* -algebra has continuous trace the interesting question is what can be said about the ranges of ϕ and ψ .

In Theorem 1 we identify the range of ψ as the subgroup of homeomorphisms of X which fix the isomorphism class of the canonical fibre-bundle defined by A, thus obtaining a complete analogue of Phillips and Raeburn's result for stable algebras.

For ϕ it is a priori known that the range is contained in the

Received 18 June 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

torsion subgroup of $H^2(X,Z)$ when X is compact. We sharpen this to the effect that ϕ maps into elements whose order divides n, whether X is compact or not. Combining these results it follows that the quotient group Aut(A)/Inn(A) can be identified in most cases.

Let A be a C^* -algebra with primitive ideal spectrum X. Assume X is Hausdorff in the Jacobson topology.

For each $x \in X$, let A(x) denote the quotient C^* -algebra A/x, and for each $a \in A$, let a(x) denote the image of a in A(x).

Consider the disjoint union $B = \bigcup_{x \in X} A(x)$ with the obvious $x \in X$

projection

 $p : B \rightarrow X$.

Sets of the form

$$\{b \in B \mid p(b) \in U, \|b - \alpha(p(b))\| < \varepsilon\}$$

where $U \subseteq X$ is open, $a \in A$ and $\varepsilon > 0$, constitute a base for a topology on B such that the triple (p, B, X) becomes a C^* -bundle [3]. For each $a \in A$ we can define a cross-section $f_{\alpha} : X \to B$ by

 $f_{\alpha}(x) = \alpha(x)$, $x \in X$.

By results of Fell [2] the map $A \ni a \to f_a$ defines a *-isomorphism of A onto the cross-sections of (p, B, X) which vanish in norm at infinity.

In the case that A is a *n*-homogeneous C^* -algebra, it follows from a result of Fell [2], that there is an open covering $\{V_i\}_{i \in I}$ of X and homeomorphisms

$$\phi_i : V_i \times M_n(\mathbb{C}) \Rightarrow p^{-1}(V_i)$$

such that the maps $\phi_{i,x} \equiv \phi_i(x,\cdot)$ define *-isomorphisms of $M_n(\mathbb{C})$ onto $p^{-1}(x) = A(x), x \in V_i$. So in this case (p, B, X) is a locally trivial fibre bundle with group $\operatorname{Aut}(M_n(\mathbb{C}))$ and fibre space $M_n(\mathbb{C})$. This is the canonical fibre bundle associated with A.

Locally trivial fibre bundles over X with group $\operatorname{Aut}(M_n(\mathbb{C}))$ and fibre space $M_n(\mathbb{C})$ are classified by the cohomology set

 $H^{1}(X, \operatorname{Aut}(M_{n}(C))_{c})$

where $\operatorname{Aut}(M_n(\mathbb{C}))_c$ is the sheaf of germs of continuous $\operatorname{Aut}(M_n(\mathbb{C}))$ -valued functions on X (see [4], pp. 37-41).

If A is a n-homogeneous C^* -algebra the corresponding element $\eta(A) \in H^1(X, \operatorname{Aut}(M_n(\mathbb{C}))_C)$ is represented by $\{V_i, \alpha_{ij}\}_{i \in I}$, where the functions

$$\alpha_{ij} : V_i \cap V_j \neq \operatorname{Aut}(M_n(\mathbb{C}))$$

are given by $\alpha_{ij}^x = \phi_{i,x}^{-1} \phi_{j,x}$, $x \in V_i \cap V_j$.

The group of homeomorphisms of X, Hom(X), acts on $H^1(X, \operatorname{Aut}(M_n(\mathbb{C}))_c)$ in the obvious way, that is if $\{U_i, \beta_{ij}\}_{i\in J}$ represents an element η of $H^1(X, \operatorname{Aut}(M_n(\mathbb{C}))_c)$ and $\psi \in \operatorname{Hom}(X)$, then the action of ψ takes η to the element $\psi^*(\eta)$ represented by $\{\psi(U_i), \beta_{ij} \circ \psi^{-1}\}_{i\in J}$.

Given an element $\eta \in H^1(X, \operatorname{Aut}(M_n(\mathbb{C}))_c)$, we let $\operatorname{Hom}_{\eta}(X)$ denote the subgroup of $\operatorname{Hom}(X)$ consisting of homeomorphisms that fixes η , that is $\operatorname{Hom}_n(X) = \{\psi \in \operatorname{Hom}(X) \mid \psi^*(\eta) = \eta\}$.

If $\alpha \in Aut(A)$, we let $\rho(\alpha)$ denote the homeomorphism on the primitive ideal spectrum X induced by α . Then ρ defines a homomorphism

$$\rho$$
 : Aut(A) \rightarrow Hom(X)

If we let LU(A) denote the locally unitary automorphisms of A , $[\delta]$, we have

THEOREM 1. For a n-homogeneous C*-algebra A with primitive ideal spectrum X, we have an exact sequence of groups:

$$1 \rightarrow LU(A) \rightarrow Aut(A) \stackrel{Q}{\rightarrow} Hom_{n(A)}(X) \rightarrow 1$$

Proof. That ker $\rho = LU(A)$ follows from ([9], Theorem 3.4) since ker ρ consists of the π -inner automorphisms. So it suffices to identify Hom_{p(A)} (X) as the range of ρ .

To prove ran (ρ) \subseteq Hom_{n(A)} (X) , we must show that

Klaus Thomsen

$$\{\rho(\alpha)(V_i), \alpha_{ij} \circ \rho(\alpha)^{-1}\}_{i \in I}$$

represents n(A) in $H^1(X, \operatorname{Aut}(M_n(\mathbb{C}))_c)$, where α is an arbitrary automorphism of A.

With the notation introduced above, α induces a map $\tilde{\alpha} : B \to B$ defined on $A(x) = p^{-1}(x)$ by

$$\tilde{\alpha}(\alpha(x)) = \alpha(\alpha)(\rho(\alpha)(x))$$
, $\alpha \in A$, $x \in X$.

Then $\tilde{\alpha}$ defines a homeomorphism on B such that $p \circ \tilde{\alpha} = \rho(\alpha) \circ p$. Let $M_{i,j} = V_i \cap \rho(\alpha)(V_j)$, $i, j \in I$. Define

$$\beta_{(i,j)} : M_{(i,j)} \rightarrow \operatorname{Aut}(M_n(\mathbb{C})) \quad \text{by}$$

$$\beta_{(i,j)}^x = \phi_{i,x}^{-1} \circ \tilde{\alpha} \circ \phi_{j,\rho(\alpha)} - 1_{(x)} , x \in M_{(i,j)}.$$

Then $\beta_{(i,j)}$ is continuous and

$$\alpha_{ik} = \beta_{(i,j)} (\alpha_{jl} \circ \rho(\alpha)^{-1}) \beta_{(k,l)}^{-1}$$

on $M_{(i,j)} \cap M_{(k,l)}$. By the definition of $H^1(X, \operatorname{Aut}(M_n(\mathbb{C}))_c)$ this gives the desired conclusion, that is $\operatorname{ran}(\rho) \subseteq \operatorname{Hom}_n(A)(X)$.

Now let $\psi \in \operatorname{Hom}_{\eta(A)}(X)$. We will construct a *-automorphism α_{ψ} of A such that α_{ψ} induces ψ on X, that is $\rho(\alpha_{\psi}) = \psi$.

Since $\psi \in \operatorname{Hom}_{\eta(A)}(X)$ there is a common refinement $\{M_p\}_{p \in J}$ of $\{V_i\}_{i \in I}$ and $\{\psi(V_i)\}_{i \in I}$, functions $\tau, \sigma : J \to I$ such that

$$\begin{split} & \stackrel{M_p \subseteq V_{\tau(p)}}{=} \stackrel{M_p \subseteq \psi(V_{\sigma(p)})}{=} \stackrel{p \in J}{} \\ \text{and continuous maps} \quad & \beta_p : \stackrel{M_p \rightarrow \operatorname{Aut}(M_n(\mathsf{C}))}{=} \quad \text{such that} \end{split}$$

(1)
$$\alpha_{\tau(p)\tau(q)} = \beta_p(\alpha_{\sigma(p)\sigma(q)} \circ \psi^{-1})\beta_q^{-1} \text{ on } M_p \cap M_q$$
.

Let $f: X \to B$ be a cross-section. Define a family $\{f_i\}_{i \in I}$ of continuous maps

$$f_i : V_i \rightarrow M_n(C)$$

by $f_i(x) = \phi_{i,x}^{-1}(f(x))$, $x \in V_i$.

Then

(2)
$$f_i = \alpha_{ij}(f_j)$$
 on $V_i \cap V_j$

Now define continuous functions $g_p: M_p \rightarrow M_n(C)$ by

$$g_p = \beta_p(f_{\sigma(p)} \circ \psi^{-1}) .$$

Using (1) and (2) one sees that

(3)
$$\alpha_{\tau(p)\tau(q)}(g_q) = g_p \text{ on } M_p \cap M_q$$

Next define maps $\tilde{g}_i : V_i \to M_n(C)$ by

$$\tilde{g}_i(x) = \alpha_{i\tau(p)}^x (g_p(x)) , x \in M_p \cap V_i$$
.

It follows from the cocycle relation of the α_{ij} 's and (3), that the \tilde{g}_i 's are well-defined and that $\alpha_{ij}(\tilde{g}_j) = \tilde{g}_i$ on $V_i \cap V_j$.

Hence we can define a cross-section

 $\alpha_{\mu}(f) : X \to B$

by

$$\alpha_{\psi}(f)(x) = \phi_{i,x}(\tilde{g}_i(x)) , x \in V_i$$
.

In this way we have defined a map $\alpha_{\psi} : A + A$ which is clearly an injective *-homomorphism. We need to prove that α_{ψ} is surjective.

So let $h: X \to B$ be a cross-section and construct continuous maps $h_i: V_i \to M_n(C)$ as above such that

(4)
$$\alpha_{ij}(h_j) = h_i \text{ on } V_i \cap V_j$$

Then consider the functions $f_i : V_i \neq M_n(C)$ defined by

$$f_{i}(x) = \alpha_{i\sigma(p)}^{x} (\beta_{p}^{\psi(x)^{-1}}(h_{\tau(p)}(\psi(x))) , x \in \psi^{-1}(M_{p}) \cap V_{i}.$$

Using the cocycle relation of the α_{ij} 's together with (1) and (4) one sees that the f_i 's are well-defined and that

$$\alpha_{ij}(f_j) = f_i \quad \text{on} \quad V_i \cap V_j$$

Klaus Thomsen

If f is the cross-section constructed from the f_i 's, then $\alpha_{\psi}(f) = h$. Hence α_{ψ} is surjective, that is α_{ψ} is an automorphism of A.

Since $\alpha_{\psi}(f)(x) = 0$ if and only if $f(\psi^{-1}(x)) = 0$, we conclude that the homeomorphism of X induced by α_{ψ} is ψ , that is $\rho(\alpha_{\psi}) = \psi$. \Box

The proof of the surjectivity of ρ in the preceding argument is based on [7], proof of Theorem 2.22. All we have done is to make explicit the identifications used by Phillips and Raeburn.

Next we turn to the inclusion $Inn(A) \subseteq LU(A)$ of the inner automorphisms Inn(A) of A into the locally unitary automorphisms. According to [7], a theorem of Knus [6] implies that Inn(A) = LU(A) when X is compact and $H^2(X,Z)$ is torsion-free. We prove a slightly stronger result which applies in situations where X is non-compact and in some situations where $H^2(X,Z)$ does contain torsion elements.

Let G be a discrete group and denote by $\operatorname{Inn}(G,A)$ and LU(G,A) the inner and the locally unitary actions of G on A, respectively, [8]. Even though G need not be abelian we can consider the dual group \hat{G} of characters on G. \hat{G} is compact in the topology of point-wise convergence and we can construct the cohomology set $H^1(X, \hat{G}_C)$, where \hat{G}_C denotes the sheaf of germs of \hat{G} -valued continuous functions on X. Since \hat{G} is abelian $H^1(X, \hat{G}_C)$ is in fact an abelian group and we can consider this group as a pointed set with the trivial element as the base point. Note that also $\operatorname{Inn}(G,A)$ and LU(G,A) are pointed sets with the trivial action as base point in both cases.

THEOREM 2. Let A be an n-homogeneous C^* -algebra with primitive ideal spectrum X and G a discrete group. Then there is an exact sequence of pointed sets

 $0 \rightarrow \operatorname{Inn}(G,A) \rightarrow LU(G,A) \stackrel{\mu}{\rightarrow} H^{1}(X,\hat{G}_{a})$

such that μ maps into the elements of $H^1(X, \hat{G}_{c})$ whose order divides n.

Proof. Let $\alpha : G \Rightarrow Aut(A)$ be a locally unitary action. This means that, if M(A) denotes the multiplier algebra of A, then we can choose

an open cover $\{N_i\}_{i \in I}$ of X and maps

$$U_i: G \rightarrow M(A)$$

such that $\alpha_g(a)(x) = U_i(g)(x)a(x)U_i(g)(x)^*$, $a \in A$, $x \in N_i$, $g \in G$ and $G \ni g \Rightarrow U_i(g)(x)$ is a unitary representation of G for each $x \in N_i$. Note that we have tacitly extended the quotient map $A \Rightarrow A(x)$ to the multiplier algebra M(A). However, by shrinking the N_i 's and multiplying the U_i 's with suitable central elements of A, we can assume that $U_i(g) \in A$ for all $i \in I$, $g \in G$.

Define maps $\chi_{ij}^{g} : N_{i} \cap N_{j} \rightarrow \mathsf{T}$ by

(5)
$$\chi_{ij}^{g}(x) \mathbf{1}_{x} = U_{i}(g)(x)^{*}U_{j}(g)(x) , x \in N_{i} \cap N_{j}, g \in G.$$

Here l_x denotes the unit in $A(x) \simeq M_n(\mathbb{C})$. Then $G \ni_i g \to \chi^g_{ij}(x)$ defines a character $\phi_{ij}(x)$, and, using the traces for instance, one sees that the corresponding map

$$\phi_{ij} : N_i \cap N_j \to \hat{G}$$

is continuous. Since $\phi_{ij}\phi_{jk} = \phi_{ik}$ on $N_i \cap N_j \cap N_k$ we conclude that $\{N_i, \phi_{ij}\}_{i \in I}$ defines an element $\mu(\alpha) \in H^1(H, \hat{G}_c)$.

It is not hard to see that the element $\mu(\alpha)$ depends only on the locally unitary action α and not on any of the choices we have made.

Let Det_x denote the determinant map on $A(x) \simeq M_n(\mathbb{C})$. Then (5) yields that

(6)
$$(\chi_{ij}^g(x))^n = \overline{\operatorname{Det}_x(U_i(g)(x))} \operatorname{Det}_x(U_j(g)(x))$$

for all $g \in G$, $x \in N_i \cap N_j$.

Since Det_x is continuous, it follows that we have continuous maps $\phi_i : N_i \neq \hat{G}$ given by

$$\phi_i(x)(g) = \text{Det}_x(U_i(g)(x)) , x \in N_i , g \in G$$
.

Then (6) tells us that $n_{\Pi}(A) = 0$ in $H^1(X, \hat{G}_{\mathcal{O}})$.

To complete the proof it suffices to show that $\mu\left(\alpha\right)=0$ implies $\alpha\in\,Inn\left({\it G}\,{\it ,}A\right)$.

But if $\mu(\alpha) = 0$, we can shrink the N_i 's and assume that $\phi_{ij}(x) = \chi_j(x)^{-1}\chi_i(x)$, $x \in N_i \cap N_j$, where $\chi_i : N_i \rightarrow \hat{G}$ are continuous maps, $i \in I$.

Consider ${\it A}$ as consisting of cross-sections of the canonical bundle associated with ${\it A}$.

Then define multipliers $U_{_{\mathcal{O}}}$ of A by

$$(U_{a}^{a})(x) = \chi_{i}(g)(x)U_{i}(g)(x)a(x)$$

and

$$(aU_{a})(x) = \chi_{i}(g)(x)a(x)U_{i}(g)(x), g \in G, x \in N_{i}, a \in A$$
.

Since $\chi_i(g)U_i(g) = \chi_j(g)U_j(g)$ over $N_i \cap N_j$, the U_g 's are well-defined.

Then $G \ni g \stackrel{*}{\to} U_g$ is a unitary representation of G as multipliers of A such that $\alpha_g = A d U_g$, $g \in G$. Hence we conclude that $\alpha \in \text{Inn}(G,A)$.

COROLLARY 3. Let A be a n-homogeneous C^* -algebra with paracompact spectrum X. Then there is an exact sequence of groups

 $1 \not\rightarrow \operatorname{Inn}(A) \not\rightarrow LU(A) \stackrel{\underline{\mathcal{V}}}{\rightarrow} H^2(X,\mathsf{Z})$

such that μ maps into the elements of $H^2(X,Z)$ whose order divides n.

Proof. Apply Theorem 2 with G = Z and use that $H^2(X,Z) \simeq H^1(X,T_c)$. The only thing to check is that the map μ of Theorem 2 induces a group homomorphism $\mu : LU(A) \rightarrow H^2(X,Z)$ in this case. \Box

COROLLARY 4. If A is a n-homogeneous C*-algebra with paracompact spectrum X such that $H^2(X,Z)$ contains no nontrivial element of order dividing n, then

$$\operatorname{Aut}(A)/\operatorname{Inn}(A) \cong \operatorname{Hom}_{\eta(A)}(X)$$

152

Automorphisms of C*-algebras

Proof. Combine Theorem 1 and Corollary 3.

COROLLARY 5. If X is a locally compact paracompact space and $n \in \mathbb{N}$ an integer such that no nontrivial element of $H^2(X,Z)$ has an order dividing n, then every automorphism α of $C_0(X,M_n(\mathbb{C}))$ is given by a pair (u,ψ) , where u is a unitary in $C_b(X,M_n(\mathbb{C}))$ and ψ is a homeomorphism of X, that is

$$\alpha(f)(x) = u(x)f(\psi(x))u(x)^*, f \in C_0(X, M_n(\mathbb{C})), x \in X$$

Proof. Combine Theorem 1 and 2 and use that the sequence of Theorem 1 splits in this case, together with the fact that $C_b(X, M_n(\mathbb{C}))$ is the multiplier algebra of $C_0(X, M_n(\mathbb{C}))$.

In [5], Example (d), Kadison and Ringrose gave examples of π -inner (that is locally unitary) automorphisms of $C(PU(n), M_n(\mathbb{C}))$ which are not inner. PU(n) is the projective unitary group $U(n)/T \approx \operatorname{Aut}(M_n(\mathbb{C}))$ and $H^2(PU(n), \mathbb{Z}) \approx \mathbb{Z}_n$ for all $n \in \mathbb{N}$ [1]. It follows from Corollary 3 that all locally unitary automorphisms of $C(PU(n), M_n(\mathbb{C}))$ are inner whenever n and m are mutually prime.

References

- [1] P.F. Baum and W. Browder, "The cohomology of quotients of classical groups", *Topology*, 3 (1965), 305-336.
- [2] J.M.G. Fell, "The structure of algebras of operator fields", Acta Math., 106 (1961), 233-280.
- [3] J.M.G. Fell, "An extension of Mackey's method to Banach *-algebraic bundles", Mem. Amer. Math. Soc., 90 (1969).
- [4] F. Hirzebruch, Topological Methods in Algebraic Geometry, (Springer Verlag, Berlin-Heidelberg-N.Y., 1966).
- [5] R.V. Kadison and J.R. Ringrose, "Derivations and automorphisms of operator algebras", Comm. Math. Phys., 4 (1967), 32-63.
- [6] M.A. Knus, "Algèbres d'Azumaya et modules projectifs", Comment Math. Helv., 45 (1970), 372-383.

- [7] J. Phillips and Iain Raeburn, "Automorphisms of C*-algebras and Second Cech Cohomology", Indiana Univ. Math. J., 29 (1980), 799-822.
- [8] J. Phillips and Iain Raeburn, "Crossed products by locally unitary automorphism groups and principal bundles", J. Operator Theory, 11 (1984), 215-241.
- [9] M.J. Russell, "Automorphisms and derivations of continuous trace C*-algebras", J. London Math. Soc., (2)22 (1980), 139-145.

Matematisk Institut, Aarhus Universitet, Ny Munkegade, DK - Aarhus C, Denmark.