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Abstract

For k ≥ 2 and a nonzero integer n, a generalised Diophantine m-tuple with property Dk(n) is a set of m
positive integers S = {a1, a2, . . . , am} such that aiaj + n is a kth power for 1 ≤ i < j ≤ m. Define Mk(n) :=
sup{|S| : S having property Dk(n)}. Dixit et al. [‘Generalised Diophantine m-tuples’, Proc. Amer. Math.
Soc. 150(4) (2022), 1455–1465] proved that Mk(n) = O(log n), for a fixed k, as n varies. In this paper, we
obtain effective upper bounds on Mk(n). In particular, we show that for k ≥ 2, Mk(n) ≤ 3 φ(k) log n if n is
sufficiently large compared to k.
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1. Introduction

Given a nonzero integer n, we say a set of natural numbers S = {a1, a2, . . . , am} is
a Diophantine m-tuple with property D(n) if aiaj + n is a perfect square for 1 ≤
i < j ≤ m. Diophantus first studied such sets of numbers and found the quadruple
{1, 33, 68, 105} with property D(256). The first D(1)-quadruple {1, 3, 8, 120} was
discovered by Fermat, and this was later generalised by Euler who found an infinite
family of quadruples with property D(1), namely,

{a, b, a + b + 2r, 4r(r + a)(r + b)},

where ab + 1 = r2. In fact, any D(1)-triple can be extended to a Diophantine quadru-
ple [1]. In 1969, using Baker’s theory of linear forms in the logarithms of alge-
braic numbers and a reduction method based on continued fractions, Baker and
Davenport [2] proved that Fermat’s example is the only extension of {1, 3, 8} with
property D(1). In 2004, Dujella [10], using similar methods, proved that there are
no D(1)-sextuples and there are only finitely many D(1)-quintuples, if any. The
nonexistence of D(1)-quintuples was finally settled in 2019 by He et al. in [15].

In general, there are D(n)-quintuples for n � 1. For example,

{1, 33, 105, 320, 18240} and {5, 21, 64, 285, 6720}
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are Diophantine quintuples satisfying property D(256). There are also examples of
D(n)-sextuples, but no D(n)-septuple is known. So, it is natural to study the size of the
largest m-tuple with property D(n). Define

Mn := sup{|S| : S satisfies property D(n)}.
In 2004, Dujella [9] showed that

Mn ≤ C log |n|,

where C is an absolute constant. He also showed that for n > 10100, one can choose
C = 8.37. This constant was improved by Becker and Murty [3], who showed that for
any n,

Mn ≤ 2.6071 log |n| + O
(

log |n|
(log log |n|)2

)
. (1.1)

Our goal is to study this problem when squares are replaced by higher powers.

DEFINITION 1.1 (Generalised Diophantine m-tuples). Fix a natural number k ≥ 2. A
set of natural numbers S = {a1, a2, . . . , am} satisfies property Dk(n) if aiaj + n is a kth
power for 1 ≤ i < j ≤ m.

For each nonzero integer n, define

Mk(n) := sup{|S| : S satisfies property Dk(n)}.
For k ≥ 3 and m ≥ 3, we can apply the celebrated theorem of Faltings [12] to deduce
that a superelliptic curve of the form

yk = f (x) = (a1x + n)(a2x + n)(a3x + n)(a4x + n) · · · (amx + n)

has only finitely many rational points and a fortiori, finitely many integral points.
Therefore, a set S satisfying property Dk(n) must be finite. When n = 1, Bugeaud and
Dujella [6] showed that

M3(1) ≤ 7, M4(1) ≤ 5, Mk(1) ≤ 4 for 5 ≤ k ≤ 176, Mk(1) ≤ 3 for k ≥ 177.

In other words, the size of Dk(1)-tuples is bounded by 3 for large enough k. In the
general case, for any n � 0 and k ≥ 3, Bérczes et al. [5] obtained upper bounds for
Mk(n). In particular, they showed that for k ≥ 5,

Mk(n) ≤ 2|n|5 + 3.

Dixit et al. [8] improved these bounds on Mk(n) for large n and a fixed k. Define

Mk(n; L) := sup{|S ∩ [|n|L,∞)| : S satisfies property Dk(n)}.
Then, for k ≥ 3, as n→ ∞,

Mk(n, L) �k,L 1 for L ≥ 3 and Mk(n) �k log n. (1.2)

The purpose of this paper is to make the implied constants in (1.2) explicit. In [8], the
bounds for Mk(n) were proved under the further assumption that n > 0. As remarked
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in [8], this assumption is not necessary, but an argument was not provided. We begin
by proving the bounds (1.2) for all nonzero integers n.

THEOREM 1.2. Let k ≥ 3 be an integer. Then the following statements hold as |n| → ∞.

(1) For L ≥ 3,

Mk(n, L) � 1,

where the implied constant depends on k and L, but is independent of n.
(2) Moreover,

Mk(n) � log |n|,

where the implied constant depends on k.

We next state our main theorem, which is an effective version of Theorem 1.2.

THEOREM 1.3. Let k ≥ 3 be a positive integer. Then the following statements hold.

(a) For L ≥ 3,

Mk(n, L) ≤ 228 log(2k) log(2 log(2k)) + 14. (1.3)

(b) Suppose n and k vary such that as |n| → ∞ and k = o(log log |n|), then

Mk(n) ≤ 3 φ(k) log |n| + O
( (φ(k))2 log |n|

log log |n|

)
,

where φ(n) denotes the Euler totient function.

REMARK 1.4. (a) It is possible to replace 14 on the right-hand side of (1.3) with a
smaller positive integer for large values of k.

(b) For a fixed k > 2, Theorem 1.3(b) gives

Mk(n) ≤ 3 φ(k) log |n| + O
( log |n|
log log |n|

)
as |n| → ∞.

For k = 2, this upper bound is very close to the best known upper bound due to Becker
and Murty which is given by (1.1).

(c) Theorem 1.3 holds in a slightly more general setting for Diophantine tuples with
property Dk(n) in the ring of integers of the kth cyclotomic field Q(ζk). In that case,
we replace the Legendre symbol by the power residue symbol and follow the same
method as in the proof of Theorem 1.3.

2. Preliminaries

In this section, we develop the necessary tools to prove our main theorems.

2.1. Gallagher’s larger sieve. In 1971, Gallagher [13] discovered an elementary
sieve inequality which he called the larger sieve. We refer the reader to [7] for the
general discussion and record the result in a form applicable to our context.
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THEOREM 2.1. Let N be a natural number and S a subset of {1, 2, . . . , N}. Let P be a
set of primes. For each prime p ∈ P, let Sp = S (mod p). For 1 < Q ≤ N,

|S| ≤
∑

p≤Q,p∈P log p − log N
∑

p≤Q,p∈P
log p
|Sp|

− log N
,

where the summations are over primes p ≤ Q, p ∈ P, and the inequality holds provided
the denominator is positive.

2.2. A quantitative Roth’s theorem. There are several quantitative results counting
exceptions in Roth’s celebrated theorem on Diophantine approximations. We will use
the following result due to Evertse [11]. For an algebraic number ξ of degree r, we
define the (absolute) height by

H(ξ) :=
(
a

r∏
i=1

max(1, |ξ(i)|)
)1/r

,

where ξ(i) for 1 ≤ i ≤ r are the conjugates of ξ (over Q) and a is the positive integer
such that

a
r∏

i=1

(x − ξ(i))

has rational integer coefficients with greatest common divisor equal to 1.

THEOREM 2.2. Let α be a real algebraic number of degree r over Q and 0 < κ ≤ 1.
The number of rational numbers p/q satisfying max(|p|, |q|) ≥ max(H(α), 2) and∣∣∣∣∣α − p

q

∣∣∣∣∣ ≤ 1
max(|p|, |q|)2+κ

is at most

225κ−3 log(2r) log(κ−1 log(2r)).

2.3. Vinogradov’s theorem. The following bound on character sums was proved by
Vinogradov (see [16]).

LEMMA 2.3. Let χ (mod q) be a nontrivial Dirichlet character and n an integer such
that (n, q) = 1. IfA ⊆ (Z/qZ)∗ and B ⊆ (Z/qZ)∗ ∪ {0}, then∑

a∈A

∑
b∈B
χ(ab + n) ≤

√
q|A||B|.

The original method of Vinogradov gives the bound on the right-hand side of the
inequality as

√
2q|A||B|. However, the above bound holds and a short proof can be

found in [3, Proposition 2.5].
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2.4. Bounds for primes in arithmetic progression. Let Q, k, a be positive integers
with (a, k) = 1. Denote by θ(Q; k, a) the sum of the logarithms of the primes
p ≡ a (mod k) with p ≤ Q, that is,

θ(Q; k, a) :=
∑

p≡a mod k
p prime≤Q

log p.

The following bound on θ(Q; k, a) was obtained by Bennet et al. in [4, Theorem 1.2].

THEOREM 2.4. For k ≥ 3 and (a, k) = 1,∣∣∣∣∣θ(Q; k, a) − Q
φ(k)

∣∣∣∣∣ < 1
160

Q
log Q

for all Q ≥ Q0(k), where

Q0(k) =

⎧⎪⎪⎨⎪⎪⎩
8 · 109 if 3 ≤ k ≤ 105,
exp(0.03

√
k log3 k) if k > 105.

2.5. Gap principle. The next two lemmas are variations of a gap principle of
Gyarmati [14].

LEMMA 2.5 [8, Lemma 2.4]. Let k ≥ 2. Suppose that a, b, c, d are positive integers
such that a < b and c < d. Suppose further that

ac + n, bc + n, ad + n, bd + n

are perfect kth powers. Then,

bd ≥ kkn−k(ac)k−1.

An immediate corollary of this lemma shows that ‘large’ elements of any set with
property Dk(n) have ‘super-exponential growth’.

COROLLARY 2.6 [8, Corollary 2]. Let k ≥ 3 and m ≥ 5. Suppose that n3 ≤ a1 < a2 <

· · · < am and the set {a1, a2, . . . , am} has property Dk(n). Then a2+3j ≥ a(k−1)j

2 provided
1 ≤ j ≤ (m − 2)/3.

A modification of the proof of Lemma 2.5 yields a gap principle for negative values
of n.

LEMMA 2.7. For n > 0 and natural numbers a, b, c, d such that n3 ≤ a < b < c < d,

(ac − n)(bd − n) ≥ abcd
2

.

PROOF. Since (ac − n)(bd − n) = abcd − n(ac + bd) + n2, it is enough to prove that

abcd
2
≥ n(ac + bd) − n2.
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Also, since a ≥ n3 and c > n3, for all cases other than n = 1, a = 1, b = 2, c = 3,

abcd ≥ 4nbd
≥ 2nbd + 2nac

≥ 2nbd + 2nac − 2n2,

where the first inequality is obvious as a ≥ n3 and c ≥ n3 + 2. This gives the desired
result. For the case n = 1, a = 1, b = 2, c = 3, since d > c, clearly

2n(ac + bd) − 2n2 = 4 + 4d < 6d = abcd. �

We are now ready to prove the following analogue of Lemma 2.5.

LEMMA 2.8. Let n > 0 and k ≥ 2. Suppose that a, b, c, d are positive integers such that
n3 ≤ a < b < c < d. Suppose further that ac − n, bc − n, ad − n, bd − n are perfect kth
powers. Then,

bd ≥ kk2−kn−k(ac)k−1.

PROOF. Since (b − a)(d − c) > 0, we have bd + ac > ad + bc and it is easily seen that

(ad − n)(bc − n) > (ac − n)(bd − n).

As (ac − n)(bd − n) and (ad − n)(bc − n) are both perfect kth powers,

(ad − n)(bc − n) ≥ [((ac − n)(bd − n))1/k + 1]k

≥ (ac − n)(bd − n) + k((ac − n)(bd − n))k−1/k

≥ (ac − n)(bd − n) + k
(abcd

2

)k−1/k
,

where the last inequality follows from Lemma 2.7. Thus,

−n(ad + bc) ≥ −n(ac + bd) + k
(abcd

2

)k−1/k
.

Since bd > ad + bc − ac > 0, we have bd + ac − ad − bc < bd and hence,

nbd > k
(abcd

2

)k−1/k
.

Therefore,

bd ≥ kk21−kn−k(ac)k−1 ≥ kk2−kn−k(ac)k−1,

which proves the lemma. �

This enables us to prove super-exponential growth for large elements of a set with
Dk(n), when n < 0.

COROLLARY 2.9. Let k ≥ 3. If n3 ≤ a < b < c < d < e are natural numbers such that
the set {a, b, c, d, e} has property Dk(−n), then e ≥ bk−1.
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PROOF. From Lemma 2.8,

ce ≥ kk2−kn−k(bd)k−1 ≥ kk2−kn−k(bc)k−1.

Therefore,

e ≥ bk−1ck−2n−k2−k ≥ bk−1n2k−62−k ≥ bk−1. �

Using induction on the previous corollary, we deduce the following corollary.

COROLLARY 2.10. Let k ≥ 3 and m ≥ 5. Suppose that n3 ≤ a1 < a2 < · · · < am and
the set {a1, a2, . . . , am} has property Dk(−n). Then we have a2+3j ≥ a(k−1)j

2 provided
1 ≤ j ≤ (m − 2)/3.

3. Proof of the main theorems

3.1. Proof of Theorem 1.2. We first prove Theorem 1.2. The proof follows a similar
method to [8].

Let n be a positive integer, m = Mk(−n) and S = {a1, a2, a3, . . . , am} be a generalised
m-tuple with the property Dk(−n). Suppose nL < a1 < a2 < · · · < am for some L ≥ 3.
Consider the system of equations

a1x − n = uk,

a2x − n = vk.
(3.1)

Clearly, x = ai for i ≥ 3 are solutions to this system. Also,

|a2uk − a1vk | = n(a2 − a1).

Let α := (a1/a2)1/k and ζk � e2πi/k. Then, we have the following two lemmas analo-
gous to those proved in [8]. The proof of the first lemma is identical to the proof of
[8, Lemma 3.1].

LEMMA 3.1. Let k ≥ 3 be odd. Suppose u, v satisfy the system of equations (3.1). Let

c(k) �
(k−1)/2∏

j=1

(
sin

2πj
k

)2
.

Then, for n > 21/(L−1)c(k)−1/(L−1), ∣∣∣∣∣uv − α
∣∣∣∣∣ ≤ a2

2vk .

LEMMA 3.2. Let (ui, vi) denote distinct pairs that satisfy the system of equations (3.1)
with vi+1 > vi. For n > 21/(L−1)c(k)−1/(L−1) and i ≥ 14,∣∣∣∣∣uv − α

∣∣∣∣∣ < 1

vk−1/2
i

and vi > a4
2.
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PROOF. From Lemma 3.1, |ui/vi − α| < a2/2vk
i . Thus, we need to show a2 < 2v1/2

i for

i > 14. Since vk
i = a2ai − n, we have vi ≥ a1/k

i . By Corollary 2.10, a2+3j ≥ a(k−1)j

2 , so that

v2+3j ≥ a(k−1)j/k
2 . We choose a positive integer j0 such that (k − 1)j0 > 4k. Since k ≥ 3,

we can take j0 = 4. As 2 + 3j0 = 14, we have vi ≥ v14 > a4
2 for all i ≥ 14. This completes

the proof. �

For larger values of k, the number 14 in the above lemma can be improved to 2 + 3j0,
where j0 satisfies the condition (k − 1)j0 > 4k.

PROOF OF THEOREM 1.2. Now, assume that (u1, v1), (u2, v2), . . . , (um, vm) satisfy the
system of equations (3.1) with

vi > max(a1/k
2 , 2) ≥ max(H(α), 2).

By Lemma 3.2, for 14 ≤ i ≤ m,∣∣∣∣∣uv − α
∣∣∣∣∣ < 1

vk−1/2
i

≤ 1
v2.5

i

,

as k ≥ 3. Since α = (a1/a2)1/k < 1 and max(ui, vi) = vi, from Theorem 2.2, the number
of such vi is O(log k log log k). This proves Theorem 1.2. �

3.2. Proof of Theorem 1.3. Let m = Mk(n) and S = {a1, a2, a3, . . . , am} be a gener-
alised m-tuple with the property Dk(n). Suppose |n|L < a1 < a2 < · · · < am for some
L ≥ 3. We consider the system of equations

a1x + n = uk,

a2x + n = vk.
(3.2)

As before, x = ai for i ≥ 3 are solutions to this system. The statements of Lemmas
3.1 and 3.2 hold for all nonzero integers n. For n > 0, this was proved in [8].

PROOF OF THEOREM 1.3(a). Let (u1, v1), . . . , (um, vm) satisfy the system of equations
(3.2) with vi > max(a1/k

2 , 2) ≥ max(H(α), 2). By Lemma 3.2, for 14 ≤ i ≤ m,∣∣∣∣∣ui

vi
− α

∣∣∣∣∣ ≤ 1

vk−1/2
i

≤ 1
v2.5

i

,

as k ≥ 3. Since α = (a1/a2)1/k < 1 and max(ui, vi) = vi, applying Theorem 2.2 with
κ = 0.5 shows that the number of vi satisfying the above inequality is

225(0.5)−3 log(2k) log((0.5)−1 log(2k)) = 228 log(2k) log(2 log(2k)).

So, for k ≥ 3, the total number of solutions is at most

228 log(2k) log(2 log(2k)) + 14. �

PROOF OF THEOREM 1.3(b). Let S = {a1, a2, . . . , am} be a generalised Diophantine
m-tuple with property Dk(n) such that each ai ≤ |n|3. Since Mk(n; 3) has a finite bound
depending on k, it is enough to prove the statement for |S|. We shall apply Gallagher’s
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larger sieve with primes p ≤ Q satisfying p ≡ 1 (mod k). Let P be the set of all primes
p ≡ 1 (mod k). For all such primes p ∈ P, there exists a Dirichlet character χ (mod p)
of order k.

Denote by Sp the image of S (mod p) for a given prime p. For p ∈ P, applying
Lemma 2.3 withA = B = Sp and χ (mod p) a character of order k,

|Sp|(|Sp| − 1) ≤
∑

a∈Sp−{0}

∑
b∈Sp

χ(ab + n) + |Sp| ≤
√

p|Sp| + |Sp|.

Thus,

|Sp| ≤
√

p + 2.

Take N = |n|3. Since ai ≤ |n|3, applying Theorem 2.1 yields

|S| ≤
∑

p∈P,p≤Q log p − log N
∑

p∈P,p≤Q
log p
|Sp|

− log N
.

By Theorem 2.4,

∑
p≤Q

p≡1mod k

log p =
Q
φ(k)

+ O
( Q
log Q

)
,

when Q > Q0(k). As in Section 2.4, θ(Q; k, 1) =
∑

p≤Q,p≡1mod k log p. We take f (t) =
1/(
√

t + 2). By partial summation,

∑
p≤Q

p≡1mod k

f (p) log p = θ(Q; k, 1) f (Q) −
∫ Q

2
θ(t; k, 1) f ′(t) dt. (3.3)

The right-hand side is equal to

Q
φ(k)(

√
Q + 2)

+ O
( √Q
log Q

)
+

1
φ(k)

( ∫ Q

2

t

2(
√

t + 2)2
√

t
dt

)
+ O

( ∫ Q

2

1
√

t log t
dt

)
.

The three terms above can be estimated as

Q
φ(k)(

√
Q + 2)

=

√
Q
φ(k)

+ O(1),

1
φ(k)

( ∫ Q

2

t

2(
√

t + 2)2
√

t
dt

)
=

√
Q
φ(k)

+ O(log Q),

O
( ∫ Q

2

1
√

t log t
dt

)
= O

( √Q
log Q

)
.

https://doi.org/10.1017/S0004972723001077 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723001077


[10] Generalised Diophantine m-tuples 251

Putting this together in (3.3) yields

∑
p≤Q

p≡1mod k

log p
√

p + 2
=

2
√

Q
φ(k)

+ O
( √Q
log Q

)
.

Thus,

|S| ≤

Q
φ(k)

+ O
( Q
log Q

)
− log N

2
√

Q
φ(k)

+ O
( √Q
log Q

)
− log N

.

Choose Q = (φ(k) log N)2. Note that the condition Q > Q0(k) is the same as

log N >
exp(0.015

√
k(log k)3)

φ(k)
. (3.4)

Since k = o(log log |n|), (3.4) holds for N large enough. Now, for both the numerator
and the denominator, divide by log N to get

|S| ≤
φ(k) log N − 1 + O

( Q
log N log Q

)

1 + O
( √

Q
log N log Q

) . (3.5)

Because k = o(log log N), it is easy to see that
√

Q
log N log Q

=
φ(k)

2 log φ(k) + 2 log log N
= o(1).

Hence, from (3.5),

|S| ≤
φ(k) log N + O

( (φ(k))2 log N
log log N

)

1 + O
(
φ(k)

log log N

) .

As O(φ(k)/log log N) = o(1), it follows that

1

1 + O
(
φ(k)

log log N

) = 1 + O
(
φ(k)

log log N

)
.

So, we obtain

|S| ≤ φ(k) log N + O
( (φ(k))2 log N

log log N

)
.
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Since N = |n|3 and Mk(n) := sup{|S|}, we conclude that

Mk(n) ≤ 3 φ(k) log |n| + O
( (φ(k))2 log |n|

log log |n|

)

as required. �

Acknowledgements

We thank Professor Alain Togbé for his question regarding effective versions of the
bounds in [8] during the second author’s talk in the Leuca 2022 conference, which
motivated this paper. We are grateful to Professor Ram Murty and Dr. Seoyoung Kim
for helpful comments on an earlier version of this paper. We also thank the referee for
detailed and helpful comments on the paper.

References
[1] J. Arkin, V. E. Hoggatt Jr and E. G. Straus, ‘On Euler’s solution of a problem of Diophantus’,

Fibonacci Quart. 17(4) (1979), 333–339.
[2] A. Baker and H. Davenport, ‘The equations 3x2 − 2 = y2 and 8x2 − 7 = z2’, Q. J. Math. Oxford Ser.

(2) 20 (1969), 129–137.
[3] R. Becker and M. R. Murty, ‘Diophantine m-tuples with the property D(n)’, Glas. Mat. Ser. III 54

(2019), 65–75.
[4] M. A. Bennett, G. Martin, K. O’Bryant and A. Rechnitzer, ‘Explicit bounds for primes in arithmetic

progressions’, Illinois J. Math. 62(1–4) (2018), 427–532.
[5] A. Bérczes, A. Dujella, L. Hajdu and F. Luca, ‘On the size of sets whose elements have perfect

power n-shifted products’, Publ. Math. Debrecen 79(3–4) (2011), 325–339.
[6] Y. Bugeaud and A. Dujella, ‘On a problem of Diophantus for higher powers’, Math. Proc.

Cambridge Philos. Soc. 135 (2003), 1–10.
[7] A. Cojocaru and M. R. Murty, An Introduction to Sieve Methods and Their Applications, London

Mathematical Society Student Texts, 66 (Cambridge University Press, Cambridge, 2005).
[8] A. B. Dixit, S. Kim and M. R. Murty, ‘Generalised Diophantine m-tuples’, Proc. Amer. Math. Soc.

150(4) (2022), 1455–1465.
[9] A. Dujella, ‘Bounds for the size of sets with the property D(n)’, Glas. Mat. Ser. III 39(2) (2004),

199–205.
[10] A. Dujella, ‘There are only finitely many Diophantine quintuples’, J. reine angew. Math. 566 (2004),

183–214.
[11] J.-H. Evertse, ‘On the quantitative subspace theorem’, J. Math. Sci. (N.Y.) 171(6) (2010),

824–837.
[12] G. Faltings, ‘Endlichkeitssätze für abelsche Varietäten über Zählkorpern’, Invent. Math. 73 (1983),

349–366. Erratum: ibid., 75 (1984), 381.
[13] P. X. Gallagher, ‘A larger sieve’, Acta Arith. 18 (1971), 77–81.
[14] K. Gyarmati, ‘On a problem of Diophantus’, Acta Arith. 97 (2001), 53–65.
[15] B. He, A. Togbé and V. Ziegler, ‘There is no Diophantine quintuple’, Trans. Amer. Math. Soc.

371(9) (2019), 6665–6709.
[16] I. M. Vinogradov, Elements of Number Theory (Dover Publications, Inc., New York, 1954),

translated by S. Kravetz.

https://doi.org/10.1017/S0004972723001077 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723001077


[12] Generalised Diophantine m-tuples 253

SAUNAK BHATTACHARJEE, IISER Tirupati,
C/O Sree Rama Engineering College, (Transit Campus),
Tirupati, Andhra Pradesh 517507, India
e-mail: saunakbhattacharjee@students.iisertirupati.ac.in

ANUP B. DIXIT, Institute of Mathematical Sciences (HBNI),
CIT Campus, Taramani, Chennai, Tamil Nadu 600113, India
e-mail: anupdixit@imsc.res.in

DISHANT SAIKIA, Freie Universität Berlin,
Kaiserswerther Str. 16-18, Berlin 14195, Germany
e-mail: saikiadishant@gmail.com

https://doi.org/10.1017/S0004972723001077 Published online by Cambridge University Press

mailto:saunakbhattacharjee@students.iisertirupati.ac.in
mailto:anupdixit@imsc.res.in
mailto:saikiadishant@gmail.com
https://doi.org/10.1017/S0004972723001077

	1 Introduction
	2 Preliminaries
	2.1 Gallagher's larger sieve
	2.2 A quantitative Roth's theorem
	2.3 Vinogradov's theorem
	2.4 Bounds for primes in arithmetic progression
	2.5 Gap principle

	3 Proof of the main theorems
	3.1 Proof of Theorem 1.2
	3.2 Proof of Theorem 1.3


