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The Best Constants Associated with
some Weak Maximal Inequalities in
Ergodic Theory

Ciprian Demeter

Abstract. We introduce a new device of measuring the degree of the failure of convergence in the

ergodic theorem along subsequences of integers. Relations with other types of bad behavior in ergodic

theory and applications to weighted averages are also discussed.

1 Introduction

Let (X,Σ,m) denote a non-atomic probability space and τ : X → X a measure pre-

serving transformation mapping X to itself. For a given increasing sequence of pos-
itive integers (ak) and f ∈ L1(X), we will consider averages of the form An f (x) =
1
n

∑n
k=1 f (τ ak x). The natural logarithm of a number x will be denoted by ln x, while

[x] and {x} will stand for the integer and fractional part of x. Given two sequences

(ak) and (bk), we will use the notation ak � bk whenever α ≤ ak

bk
, for some positive

constant α. The notation ak � bk will mean that ak � bk and ak � bk simulta-
neously. If A is a finite subset of the integers, its cardinality will be denoted by |A|.
Throughout this paper, unless stated otherwise, all sequences will be meant to be in-

creasing and consist of positive integers. The following two definitions are intrinsic
to our discussion, so we present them before we start any investigation.

Definition 1.1 Let 1 ≤ p ≤ ∞. We say that the sequence (ak) is Lp-good for the

dynamical system (X,Σ,m, τ ), if

(1.1) lim
n→∞

1

n

n
∑

k=1

f (τ ak x) = f̄ (x)

exists almost everywhere, for all f ∈ Lp(X). The sequence (ak) is universally Lp-good,
or simply Lp-good, if and only if it is Lp-good for every dynamical system (X,Σ,m, τ ).

Definition 1.2 A sequence (ak) is called universally Lp-bad, or simply Lp-bad, if for
all ergodic dynamical systems (X,Σ,m, τ ), there is f ∈ Lp(X) such that the limit
(1.1) fails to exist for all x in a set of positive measure.

The celebrated ergodic theorem of Birkhoff [7] asserts that the sequence of pos-
itive integers is L1-good. In the decades following this discovery, it has become an
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interesting problem to characterize the classes of subsequences of integers for which
Birkhoff ’s theorem remains valid. Bourgain has brought a new insight to this issue.

In a sequence of papers [8], [9], [10], he proved that sequences such as ak = q(k),
where q is a nonconstant polynomial mapping the natural numbers to themselves,
and the sequence of primes, are Lp-good for p > 1. Related results based on his
techniques can be found in [17], [22].

Equal interest has been shown in recent years in negative results. By using a device
employed by Furstenberg [12], Bellow proved in [4] that all lacunary sequences are
Lp-bad for every 1 ≤ p < ∞. By a different type of argument, based on Bourgain’s
entropy theorem, Rosenblatt [20] completed the picture by showing that lacunary

sequences are also L∞-bad. Related results can be found in [1], too.

Sparseness seems to be one of the main ingredients which makes a sequence Lp-
bad for some 1 ≤ p < ∞. In [15] Jones and Wierdl proved using mainly the tech-
nique from [4], that a condition weaker than lacunarity,

(1.2)
ak+1

ak
> 2ϕ(k)(ln k)−1/p

, k ≥ k0

where limx→∞
ϕ(x)

ln ln x
= ∞, is sufficient to conclude that (ak) is Lp-bad.

Proving that a sequence is universally bad is only one side of the issue. Several
concepts have been introduced to measure how dramatic this failure of convergence
can be.

Definition 1.3 A sequence (ak) is called strongly sweeping out if for each ergodic

dynamical system (X,Σ,m, τ ) and each ε > 0, there exists E ∈ Σ such that m(E) < ε
and

lim sup
n→∞

AnχE(x) = 1 a.e.

where χE is the characteristic function of the set E.

If a sequence is strongly sweeping out, it can be proved that the oscillations of the
ergodic averages associated with characteristic functions of arbitrarily small norm
can occur with maximum amplitude. The existence of L∞-bad sequences which do

not have the strongly sweeping out property was shown by Rosenblatt [20]. In the
comprehensive paper [1], several criteria for being strongly sweeping out are estab-
lished and it is proved that lacunary sequences have this property. See also [20] for
other properties related to strongly sweeping out.

This paper is mainly concerned with developing a strategy which will enable us

to investigate the universally bad sequences from a different perspective. Instead of
looking at the oscillations of the ergodic averages, we can ask how fast is the supre-
mum of the first n such averages growing. The measure for this rate of growth will be

provided by the behavior of the best constants associated with some weak maximal
inequalities.

We will be particularly interested in the sequences of integers for which the as-
sociated constants grow as quickly as possible. In Section 2 we will give a class of
superlacunary sequences which have this property and try to understand why the
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same method of proof does not work for a general lacunary sequence. Part of the
frustration is eliminated in the third section, where a positive result is proved for the

sequence of powers of 2. Section 4 investigates the relations between different types
of bad behavior of sequences. In the last section we will show how we can use these
results to answer some questions about weighted averages.

2 Best Constants for Weak Maximal Inequalities

Let (ak) be an increasing sequence of positive integers. For each N ≥ 1, 1 ≤ p < ∞
and f ∈ Lp(X), define

(2.1) f ∗N (x) = max
n≤N

∣

∣

∣

1

n

n
∑

k=1

f (τ ak x)
∣

∣

∣
.

Denote by CN,p the least constant for which the following inequality is true

(2.2) m{x ∈ X : f ∗N (x) > λ} ≤
CN,p

λp
‖ f ‖

p
p

for every dynamical system (X,Σ,m, τ ), f ∈ Lp(X) and λ > 0. According to
Sawyer’s principle [21], if limN→∞ CN,p = ∞, then the sequence (ak) is universally
bad for Lp .

The next theorems address the following issue: given p and a sequence (ak), how

fast can the corresponding constants CN,p grow, as N → ∞?

Theorem 2.1 For any sequence (ak), positive integer N and 1 ≤ p < ∞, we have
that CN,p � ln N.

Proof We start by applying Hölder’s inequality

m{x ∈ X : f ∗N (x) > λ} ≤ m
{

x ∈ X : max
n≤N

( 1

n

n
∑

k=1

| f |p(τ ak x)
) 1/p

> λ
}

= m
{

x ∈ X : max
n≤N

1

n

n
∑

k=1

| f |p(τ ak x) > λp
}

≤ m
{

x ∈ X :

N
∑

k=1

1

k
| f |p(τ ak x) > λp

}

≤
1

λp

∥

∥

∥

N
∑

k=1

1

k
| f |p ◦ τ ak

∥

∥

∥

1

=
‖ f ‖

p
p

λp

(

1 +
1

2
+ · · · +

1

N

)

.

The main object of our investigation is the class of the sequences for which the
growth of the CN,p’s is maximal: CN,p � ln N . Next we will prove that this class is
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nonempty, by showing that sequences with a sufficiently high rate of growth belong
to it. The main ingredient in the proof is the following lemma, used by Bellow in [4]

to prove the Lp-badness of lacunary sequences.

Lemma 2.2 Let t ∈ Z+ and (ak) satisfy the growth condition

ak+1

ak
≥ t + 1

for each k ∈ {1, 2, . . . ,K − 1}. Then for any finite sequence (Ik)K
k=1 of subintervals of

[0, 1] of individual length 1/t, there exists θ ∈ [0, 1) such that {akθ} ∈ Ik, for each
k ∈ {1, 2, . . . ,K}.

Proof For each k ∈ {1, 2, . . . ,K} set

Λk =

⋃

m∈Z

(Ik + m)

and let

Λ
∗
k = {θ ∈ [0, 1) : akθ ∈ Λk}.

The set Λ
∗
k consists of intervals of length 1/tak repeated periodically with period

1/ak. Because of the growth condition on (ak), it is clear that every interval from Λ
∗
k

contains some interval from Λ
∗
k+1. Hence

⋂K
k=1 Λ

∗
k 6= ∅ which finishes the proof.

We can now prove the following.

Theorem 2.3 Take a sequence (ak) satisfying the growth condition

ak+1

ak
≥ t + 1

for each k ≥ l0(t), where

(2.3) sup
t∈Z+

ln l0(t)

t
<∞.

Then (ak) has CN,p � ln N for each 1 ≤ p <∞.

Remark 2.4 Note that the sequences ak = k! and ak = [(ln k)k] satisfy the require-

ments of the theorem.

Proof We will follow pretty closely the lines of the proof of Theorem 1 from [4]. Fix
N ∈ Z+ and 1 ≤ p <∞. Take t ∈ Z+, t ≥ 3 such that

2t l0(t) < N ≤ 2t+1l0(t + 1)
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Find l0, l1, . . . , lt such that

l0 = l0(t),
l1

l0 + l1
= · · · =

lt

l0 + l1 + · · · + lt
=

1

2

and for each i ∈ {0, 1, . . . , t−1} consider the following block of consecutive integers

Bi = {l0 + l1 + · · · + li + 1, l0 + l1 + · · · + li + 2, . . . , l0 + l1 + · · · + li + li+1}.

Pick a θ according to Lemma 2.2 such that

{akθ} ∈
[ i

t
,

i + 1

t

]

for each k ∈ Bi and each i ∈ {0, 1, . . . , t − 1}. Easy computations show that li =

l0(t)2i−1, hence

Bi = {l0(t)2i + 1, l0(t)2i + 2, . . . , l0(t)2i+1}.

Now for the measure preserving transformation τ : [0, 1) → [0, 1) defined by τ (x) =

{x + θ} and for A = [0, 2
t
], we have

τ ak (x) = {x + akθ} ∈
[ t − i

t
,

t − i + 1

t

]

+
[ i

t
,

i + 1

t

]

= A

whenever x ∈ [ t−i
t
, t−i+1

t
] and k ∈ Bi . Hence

1

l0(t)2i+1

l0(t)2i+1

∑

k=1

χA(τ ak x) ≥
1

2|Bi |

∑

k∈Bi

χA(τ ak x) =
1

2

for every x ∈ [ t−i
t
, t−i+1

t
], which implies

max
n≤l0(t)2t

1

n

n
∑

k=1

χA(τ ak x) ≥
1

2

for every x ∈ [0, 1). We can conclude that

m{x ∈ [0, 1) : max
n≤N

1

n

n
∑

k=1

χA(τ ak x) ≥
1

2
} = 1.

Since

m{x ∈ [0, 1) : max
n≤N

1

n

n
∑

k=1

χA(τ ak x) ≥
1

2
} ≤ CN,p2pm(A)

it follows easily that

(2.4) CN,p ≥
t

2p+1
.
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On the other hand, since N ≤ 2t+1l0(t + 1), we must have that

log2 N ≤ t + 1 + log2 l0(t + 1) ≤ αt

for some positive constant α, by relation (2.3). Now (2.4) can be rewritten as CN,p �
ln N , which finishes the proof.

A careful analysis of the proof shows that the condition from (2.3) is optimal if
one uses this technique. In particular, the argument does not work for a general
lacunary sequence and the best result one can get in this case is CN,p � ln N

(ln ln N)p .

The explanation is that if a sequence does not grow fast enough, as in the case of
ak = 2k, then Lemma 2.2 does not provide a good control over the akθ’s, since the
intervals (Ik) are not allowed to be too small. Thus we have to drop to a sufficiently
rapidly growing subsequence of (ak), say (aki

) and apply Lemma 2.2 to control the

aki
θ’s. Still, by gaining a better control over the aki

θ’s, we lose all the control over the
remaining akθ’s. When we compute the usual averages An f (x), where f is taken to
be the characteristic function of an interval as above, we cannot use the information
coming from the terms which contain akθ, if ak is not in the chosen subsequence.

The result is, as we mentioned above, that an extra factor of ln ln N shows up in the
lower bound for CN,p .

3 The Sequence ak = 2k

The purpose of this section is to develop a technique which enables us to conclude
that CN,1 � ln N for the sequence of powers of 2. As we explained in the end of
the previous section, since (2k) does not grow fast enough, we should work with its

subsequences. If q ∈ Z+, q ≥ 2 and p = 2q, then Lemma 2.2 guarantees that for any
finite sequence of intervals (Ik)K

k=1 of individual length roughly 1/p, there is a θ such
that {2qkθ} ∈ Ik for every k ∈ {1, 2, . . . ,K}. The question is what happens with the
remaining q− 1 subsequences, in other words what is the distribution in [0, 1) of the

2qk+tθ’s, for a fixed t ∈ {1, 2, . . . , q − 1}?
In order to get the desired control, we need to work with some specific θ. Through-

out this section p, q ∈ Z+, q ≥ 2 and p = 2q. For any integers 1 ≤ a ≤ p − 2 and
1 ≤ α1 < α2 < · · · < αa+1, with αi+1 − αi ≥ 3 when 1 ≤ i ≤ a, define

θ =
1

pα1+1
+

1

pα1+2
+ · · · +

1

pα2
+ · · · +

i

pαi +1
+

i

pαi +2
+ · · · +

i

pαi+1
+ · · ·

+
a

pαa+1
+

a

pαa+2
+ · · · +

a

pαa+1
.

The idea is to split the finite sequence (2k)
qαa+1−1
k=qα1

into several blocks, so that the 2kθ’s
have the same behavior when restricted to a certain block. For each 0 ≤ t ≤ q − 1
and each 1 ≤ i ≤ a the (i, t) block will be the set

Bi,t = {2t pαi , 2t pαi +1, 2t pαi +2, . . . , 2t pαi+1−1} = {2qs+t : αi ≤ s < αi+1}.

The following lemmas will show that, more or less, the 2kθ’s stay very close to each
other when the 2k’s stay in a certain block Bi,t .
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Lemma 3.1 (About the Bi,0’s) For each 1 ≤ i ≤ a and αi ≤ k < αi+1, we have that
{pkθ} ∈ [ i

p
, i+1

p
].

Proof The proof follows easily once it is noted that θ is written in base p.

Lemma 3.2 (About the Bi,t ’s, t 6= 0) Take 1 ≤ t ≤ q − 1 and 1 ≤ i ≤ a. If 2t i = m
(mod p − 1) for some 0 ≤ m ≤ p − 3, then for each αi ≤ k ≤ αi+1 − 3 the following

holds

{2t pkθ} ∈
[ m

p
,

m + 1

p

]

.

Proof We begin with the observation that m cannot be 0, since p − 1 and 2t do

not share any common factor and 1 ≤ i ≤ p − 2. Note that 2t pkθ =
2t i
p

+ 2t i
p2 +

2t i
p3 + · · · (mod 1), where the remaining terms, if any, have as denominators powers

of p, (p4, p5, . . . ), while the numerators have the form 2t s, where s is at least i and at
most a. Write now 2t i = bp + c, b, c ∈ Z+, 0 ≤ c ≤ p − 1. Since 2t ≤ 2q−1 < p − 1
and i ≤ a ≤ p − 1, it follows that b < p − 1 and so 1 ≤ b + c < 2p − 2. Now

2t i = b(p − 1) + b + c, hence by hypothesis b + c = m (mod p − 1). We distinguish
two cases:

(a) If b + c = m then

2t pkθ =
2t i

p
+

2t i

p2
+

2t i

p3
+ · · · (mod 1)

=
bp + c

p
+

bp + c

p2
+

2t i

p3
+ · · · (mod 1)

=
c + b

p
+

c

p2
+

2t i

p3
+ · · · (mod 1)

=
m

p
+

c

p2
+

2t i

p3
+ · · · (mod 1).

If we denote γ1 =
m
p

+ c
p2 + 2t i

p3 + · · · , then

m

p
< γ1 <

m

p
+

c

p2
+ 2t

( i

p3
+

∞
∑

s=4

a

ps

)

<
m

p
+

c

p2
+ 2t i + 2

p3
≤

m

p
+

c

p2
+

bp + c

p3
+

p

p3

<
m

p
+

c + b + 2

p2
<

m + 1

p
.
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(b) If b + c = m + p − 1, then as above

2t pkθ =
2t i

p
+

2t i

p2
+

2t i

p3
+ · · · (mod 1)

=
bp + c

p
+

bp + c

p2
+

2t i

p3
+ · · · (mod 1)

=
c + b

p
+

c

p2
+

2t i

p3
+ · · · (mod 1)

=
m − 1

p
+

c

p2
+

2t i

p3
+ · · · (mod 1).

Similar computations show that if γ2 =
m−1

p
+ c

p2 + 2t i
p3 +· · · , then m

p
≤ γ2 <

m+1
p

.

In both cases the conclusion is that {2t pkθ} ∈ [ m
p
, m+1

p
].

Remark 3.3 The previous lemmas show that ‘almost’ all blocks are ‘almost’ well

controlled. The fact that we lack the control in the case m = p − 2 or when k ∈
{αi+1 − 2, αi+1 − 1} will prove to be unimportant.

If for a certain pair (i, t) one has 2t i = m (mod p − 1) for some 0 ≤ m ≤
p − 3, the interval Im = [ m

p
, m+1

p
] will be called the image of the block Bi,t . The next

proposition proves that for a fixed i, the blocks Bi,t with 0 ≤ t ≤ q − 1 have distinct
images, provided q is prime.

Proposition 3.4 If q is prime and p = 2q as before, then for each 1 ≤ i ≤ a, 0 ≤ t,
t ′ ≤ q − 1 with t 6= t ′, we have that

2t i 6= 2t ′ i (mod p − 1).

Proof To prove this we need the following easy result:

Lemma 3.5 Let g and h be positive integers and let d = (g, h) denote their greatest
common divisor. If l is a common divisor of 2g − 1 and 2h − 1, then l | 2d − 1.

Proof Take β1, β2 ∈ Z+ such that β1g − β2h = d. It’s not hard to see that l | 2β1g − 1
and l | 2β2h − 1, hence l | 2β2h(2β1g−β2h − 1), which gives l | 2d − 1.

We start the proof of Proposition 3.4 by supposing that p − 1 | 2t i − 2t ′ i for some
0 ≤ t ′ < t ≤ q− 1. This certainly implies that 2q − 1 | (2t−t ′ − 1)i. Since q is prime,
it follows by Lemma 3.5 that 2q − 1 | i. The contradiction comes now from the fact
that 1 ≤ i ≤ a ≤ p − 2.

For purposes that will become clear throughout the proof of Theorem 3.8, it
would be really helpful if the blocks that we are using had distinct images. Part of
this plan is easy to fulfill since by Proposition 3.4 the Bi,t ’s have distinct images when
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i is fixed and t varies. On the other hand, the images of Bi,t and B j,t ′ may not be
distinct if i 6= j. What we will prove in the following is that we can get sufficiently

many blocks Bi,t with distinct images, provided we don’t let i be too large. To be more
precise, for each 1 ≤ k ≤ a define Ak = {0 ≤ m ≤ p − 2: there exist 1 ≤ i ≤ k,

0 ≤ t ≤ q − 1 such that 2t i = m (mod p − 1)}. We will prove that |Ak| ≥
kq
8

for
each k ≤ q

log2(q)log2 log2(q)
. Note that kq is the maximum possible cardinality of Ak, so

the result is pretty sharp. For each 1 ≤ i ≤ a define

Di = {0 ≤ m ≤ p − 2 : 2t i = m (mod p − 1), for some 0 ≤ t ≤ q − 1}.

Certainly Ak =
⋃k

i=1 Di . From now on, q will be implicitly assumed to be a prime

number. Let’s first prove the following:

Lemma 3.6 For every pair of odd numbers i 6= j with i, j ≤ q
log2(q) log2 log2(q)

, we have

|Di ∩ D j | ≤ 2 log2 q.

Proof Take i, j as above. If Di ∩ D j 6= ∅, consider 0 ≤ t , t ′ ≤ q − 1 such that

p − 1 | 2t i − 2t ′ j. Obviously t 6= t ′, otherwise p − 1 | i − j which is certainly
impossible. If t > t ′, then p − 1 | 2t−t ′ i − j and since i, j are odd, 2t−t ′ i − j 6= 0.

So 2t−t ′ i − j ≥ p − 1 and hence 2t−t ′ i ≥ p. From here we can deduce that

2t−t ′ ≥
p

i
≥

2q log2(q) log2 log2(q)

q
≥ 2q−log2 q,

which automatically gives t − t ′ ≥ q − log2 q. Similarly, if t ′ > t , then t ′ − t ≥
q − log2 q. In conclusion, Di and D j will have at most 2 log2 q elements in common.

Using the above lemma, we can prove the result we announced before.

Proposition 3.7 For every sufficiently large q and every positive integer k ≤
q

log2(q) log2 log2(q)
, we have |Ak| ≥

kq
8

.

Proof We start by noting that

|Ak| ≥

∣

∣

∣

∣

[ k−1
2

]
⋃

i=0

D2i+1

∣

∣

∣

∣

≥

[ k−1
2

]
∑

i=0

∣

∣

∣

∣

D2i+1

∖

[ k−1
2

]
⋃

j=0
j 6=i

D2 j+1

∣

∣

∣

∣

.

From the previous lemma it follows that

∣

∣

∣

∣

D2i+1

∖

[ k−1
2

]
⋃

j=0
j 6=i

D2 j+1

∣

∣

∣

∣

≥ |D2i+1| −

[ k−1
2

]
∑

j=0
j 6=i

|D2i+1 ∩ D2 j+1|

≥ q − k log2 q ≥
q

2
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for q large enough. Consequently

|Ak| ≥

[ k−1
2

]
∑

i=0

q

2
≥

kq

8
.

We have now all the machinery needed for proving the main result of this section.

Theorem 3.8 The sequence ak = 2k has the associated constant CN,1 � ln N.

Proof Take an arbitrary N ∈ Z+ and choose consecutive primes q̂N , q̄N such that

(3.1) 2q̂2
N ≤ N < 2q̄2

N .

For simplicity of notation we will denote q̂N by q. Take θ corresponding to a =

[log2 q] and αi = 2i+1 − 1. As before p = 2q and A = [0, 2
p

]. For every m ∈

Aa\{p−2}, there exist 1 ≤ i ≤ a and 0 ≤ t ≤ q−1 such that 2t i = m (mod p−1).

By Lemma 3.1 and Lemma 3.2,

{2t pkθ} ∈
[ m

p
,

m + 1

p

]

for each 2i+1−1 ≤ k ≤ 2i+2−4. As before, if x ∈ [ p−m
p
, p−m+1

p
], then {x+2t+qkθ} ∈ A

for each 2i+1 − 1 ≤ k ≤ 2i+2 − 4 and hence

1

t + q(2i+2 − 4)

t+q(2i+2−4)
∑

s=1

χA(x + 2sθ) ≥
2i+1 − 2

q + q(2i+2 − 4)
≥

1

4q
.

Note that
t + q(2i+2 − 4) ≤ q(2i+2 − 3) ≤ 2q2log2 q+1

= 4q2.

By combining the results from the last lines with Proposition 3.7 we get:

m
{

x ∈ [0, 1) : max
n≤4q2

1

n

n
∑

s=1

χA(x + 2sθ) ≥
1

4q

}

≥
1

p
(|Aa| − 1)

≥
1

p
(a

q

8
− 1) ≥

aq

16p
.

That’s where we needed Aa to be fairly large. Using the maximal inequality (2.2) with
f = χA, λ = 1/4q and N = 4q2 we find

aq

16p
≤

8q

p
C4q2,1

and so

(3.2) C4q2,1 ≥
a

128
=

[log2 q]

128
≥ γ log2(4q2)
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for some appropriate γ > 0. A classical estimate on consecutive primes (see [13])
forces q̄N ≤ 2q. This together with (3.1) proves that

lim
N→∞

log2 N

log2(2q̂2
N )

= 1.

Since CN,1 > C4q2,1, (3.2) easily implies that

lim inf
N→∞

CN,1

log2 N
> 0

which finishes the proof.

Remark 3.9 The proof of Theorem 2.3 does not work for the other Lp spaces. The

question whether CN,p � ln N for the sequence of powers of 2 when p > 1 is open.

Remark 3.10 The argument in Theorem 3.8 relies heavily on the arithmetic prop-
erties of the sequence of powers of 2, rather than on its rate of growth and we could

not extend the proof to general lacunary sequences. Whether or not CN,p � ln N
in general for a lacunary sequence remains an open question, but the next theorem
gives us some interesting related information. The probabilistic argument shows that
lacunarity provides the lowest degree of sparseness of a sequence for which we can

hope that CN,p � ln N .

Theorem 3.11 Let (σn) be a decreasing sequence of real numbers from (0, 1) with
limn→∞ nσn = ∞ and define A ∈ Z+ to be the random sequence obtained by including

each positive integer n in the set A with probability σn. Then almost surely the sequence
A has CN,p = o(ln N), for each 1 < p <∞.

Proof Let (X,Σ,m, τ ) be a dynamical system and f ∈ Lp(X). The proof will be
based on a fundamental inequality derived by Bourgain in Lemma 8.9 from [8],

which asserts that with probability one, for all N

(3.3)

∥

∥

∥

∥

1

|SN |

(

∑

n∈SN

τ n f
)

−
1

∑

n≤N σn

(

∑

n≤N

σnτ
n f

)

∥

∥

∥

∥

p

≤ cp

( ln N
∑

n≤N σn

) a(p)

Here cp is a constant which does not depend on the dynamical system, SN = A ∩
[1,N], while a(p) equals either (p − 1)/p if p ≤ 2, or 1/p if p > 2. As Bourgain
pointed out, we also have

(3.4)

∥

∥

∥

∥

sup
N

1
∑

n≤N σn

∣

∣

∣

∑

n≤N

σnτ
n f

∣

∣

∣

∥

∥

∥

∥

p

≤ c ′p‖ f ‖p.

Since by the law of large numbers (see [18]) limN→∞ |SN |/
∑

n≤N σn = 1, it follows
that almost surely S2N/SN � 1. So there is a universal constant α, such that with
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probability one, for f ≥ 0

(3.5) sup
n≤N

1

|Sn|

∑

k∈Sn

f (τ kx) ≤ α sup
n=2i

i≤log2 N

1

|Sn|

∑

k∈Sn

f (τ kx).

If we denote ln N
∑

n≤N σn
by xn then obviously limn→∞ xn = 0. As a consequence of (3.3),

(3.4), (3.5) we easily get

∥

∥

∥

∥

sup
n≤N

1

|Sn|

∑

k∈Sn

τ k f

∥

∥

∥

∥

p

≤ α
∥

∥

∥
sup

n

1
∑

k≤n σk

∑

k≤n

σkτ
k f

∥

∥

∥

p

+ α

{

∑

n=2i

i≤log2 N

∥

∥

∥

∥

1

|Sn|

∑

k∈Sn

τ k f −
1

∑

k≤n σk

∑

k≤n

σkτ
k f

∥

∥

∥

∥

p

p

} 1/p

≤ αcp‖ f ‖p + α
{

∑

n=2i

i≤log2 N

(xn)pa(p)
} 1/p

‖ f ‖p

= o
(

(ln N)1/p
)

‖ f ‖p.

Remark 3.12 It is known (see for example the proof of Theorem B from [14]) that
if σn = 1/n, then almost every random sequence A(ω) contains a lacunary sub-
sequence B(ω) which has positive density in A(ω). One can similarly see that if
limn→∞ nσn = ∞, then almost every random sequence A(ω) contains a subsequence

B(ω) which has positive density in A(ω) and has some sublacunary rate of growth,
depending on σn. In any case, the rate of growth of CN,p is the same for the sequence
and its subsequence having positive relative density, which justifies the conclusion of
Remark 3.10.

Remark 3.13 The sequences from Theorem 3.11 are known to be almost surely Lp-

bad if nσn grows sufficiently slowly [14] and almost surely Lp-good if nσn grows
sufficiently fast [8].

4 The Relation Between Different Types of Bad Behavior in Ergodic
Theory

In the previous sections we discussed about two types of extreme in the bad behav-

ior of the ergodic averages along subsequences. One was measured by the strongly
sweeping out property, the other one was characterized by the maximal growth of the
sequence (CN,p)∞N=1. In the following we will show that these properties are distinct,
in the sense that there are sequences which satisfy one condition but fail to satisfy the

other one. The relation between the asymptotic behavior of the sequences (CN,p)∞N=1

for different values of p is also discussed. The first result is quite surprising: it shows
that there are strongly sweeping out sequences with arbitrarily small rate of growth
of the constants CN,p .

https://doi.org/10.4153/CJM-2004-021-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-021-x


The Best Constants in Ergodic Theory 461

Proposition 4.1 Given 1 ≤ p < ∞ and a nondecreasing function ϕ : Z+ → R with
limn→∞ ϕ(n) = ∞, there exists an increasing sequence of positive integers (bk) such

that

(i) (bk) is strongly sweeping out;
(ii) the associated constants satisfy CN,p ≤ ϕ(N), for each N large enough.

Proof Take ck = [(k − 1)ϕ1/p(k − 1)] for k large enough, so that ϕ(k − 1) is

larger than 1. If we denote ψ(k) = ck+1 − ck − 1, then obviously ψ(k) ≥ 0 and
limk→∞ ψ(k) = ∞. By [15, Corollary 2.4], there exists 0 ≤ δk ≤ ψ(k) such that the
sequence defined by bk = ck + δk is strongly sweeping out. Note that ck ≤ bk < ck+1.
Now for each dynamical system (X,Σ,m, τ ), f ∈ Lp(X), λ > 0 and N ∈ Z+ we have

m
{

x ∈ X : max
n≤N

∣

∣

∣

1

n

n
∑

k=1

f (τ bk x)
∣

∣

∣
> λ

}

≤ m
{

x ∈ X : max
n≤N

1

bn

n
∑

k=1

| f |(τ bk x) > λmin
n≤N

n

bn

}

≤ m
{

x ∈ X : max
n≤N

1

bn

bn
∑

k=1

| f |(τ kx) > λmin
n≤N

n

bn

}

≤ m
{

x ∈ X : max
m∈Z+

1

m

m
∑

k=1

| f |(τ kx) > λmin
n≤N

n

bn

}

≤
‖ f ‖

p
p

λp
max
n≤N

( bn

n

) p

<
‖ f ‖p

p

λp
max
n≤N

( cn+1

n

) p

=
‖ f ‖

p
p

λp
max
n≤N

(

[nϕ1/p(n)]

n

) p

≤
‖ f ‖

p
p

λp
ϕ(N).

We have the following immediate corollary.

Corollary 4.2 There exists a strongly sweeping out sequence with CN,p = o(ln N).

The converse is also true, but we postpone the proof until after a preliminary
discussion.

Proposition 4.3 There exists a sequence (ck) with CN,p � ln N, which is not strongly
sweeping out.

The result of Jones and Wierdl [15] used in the proof of Proposition 4.1, shows
that strongly sweeping out sequences can grow arbitrarily slowly. This is not the case
for sequences with CN,p � ln N , as Proposition 4.5 will show. We first prove the
following lemma.
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Lemma 4.4 If the sequence (ak) has CN,p � ln N for some 1 ≤ p < ∞, then for
each sequence of positive real numbers (uk) with limk→∞ uk = ∞ and each ergodic

dynamical system (X,Σ,m, τ ), there exists f ∈ Lp(X) for which

Vn f (x) =
un

n(ln n)1/p

n
∑

k=1

f (τ ak x)

fails to converge almost everywhere.

Proof Based on Sawyer’s principle, it is enough to prove the failure of the maximal
inequality for V ? f (x) = supn∈Z+

|Vn f (x)|. Take C positive such that CN,p >
ln N

C
, for

all N ∈ Z+. Choose γ = γN > 0 and g = gN ∈ Lp(X) such that

m
{

x ∈ X : max
n≤N

∣

∣

∣

1

n

n
∑

k=1

g(τ ak x)
∣

∣

∣
> γ

}

≥
‖g‖

p
p ln N

Cγ p
.

Now

m
{

x ∈ X : max
n≤N

∣

∣

∣

1

n

n
∑

k=1

g(τ ak x)
∣

∣

∣
> γ

}

≤ m

{

x ∈ X : max
n≤N

∣

∣

∣

∣

un

n(ln n)1/p

n
∑

k=1

g(τ ak x)

∣

∣

∣

∣

> γ min
n≤N

un

(ln n)1/p

}

≤
D‖g‖

p
pmaxn≤N

ln n
(un)p

γ p

where D is the best constant in the inequality

m{x ∈ X : V ? f (x) > λ} ≤ D
‖ f ‖

p
p

λp
.

Hence D ≥ 1
C

(ln N) minn≤N
(un)p

ln n
for each N . An easy argument shows that

limN→∞(ln N) minn≤N
(un)p

ln n
= ∞ which proves that D = ∞.

We can now easily prove the following.

Proposition 4.5 A sequence (ak) for which CN,p � ln N cannot satisfy ak = o(k ln k).

Proof Take an arbitrary dynamical system (X,Σ,m, τ ). Suppose by contradiction
that ak = o(k ln k) and define uk = ( k ln k

ak
)1/p. Then, using the notation from
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Lemma 4.4 and Hölder’s inequality, we get for each positive λ and each f ∈ Lp(X)

m{x ∈ X : V ? f (x) > λ} ≤ m

{

x ∈ X : sup
n

(un)p

n ln n

n
∑

k=1

| f |p(τ ak x) > λp

}

≤ m
{

x ∈ X : sup
n

1

an

an
∑

k=1

| f |p(τ kx) > λp
}

≤
‖ f ‖

p
p

λp
.

On the other hand, since limk→∞
uk

k(ln k)1/p = 0, it follows easily that Vn f (x) con-

verges to 0 almost everywhere for L∞ functions. As usual, almost everywhere con-

vergence on a dense class together with the maximal inequality gives almost ev-
erywhere convergence for all Lp functions. But this contradicts Lemma 4.4, since
limk→∞ uk = ∞.

The result of Proposition 4.5 turns out to be optimal in the following sense:

Proposition 4.6 There exists a sequence (ak) � k ln k with CN,p � ln N for each

1 ≤ p <∞.

Proof The sequence will be constructed by putting together sets Hk, k ≥ 1, each Hk

being a finite union of sets: Hk =
⋃2k−1−1

i=0 Hk,i . We will start the inductive construc-
tion of the Hk’s by first taking H1 = {2, 3, 4, 5}. Assume we have constructed H1

through Hk−1. In order to construct Hk we need to define its components Hk,i . The

set Hk,0 will be placed at the right of the set Hk−1 and will consist of the first 22k−1

such integers congruent to 0 (mod 2k−1). After the completion of the set Hk,i , the

set Hk,i+1 will be placed at the right of Hk,i and will consist of the first 22k−1+i such
integers congruent to i (mod 2k−1). The construction of Hk will end when i reaches
the value 2k−1 − 1. By this procedure we get a sequence that will be denoted by (ak).

Note that |Hk| = 22k

− 22k−1

for each k ≥ 2, hence LN = |
⋃N

k=1 Hk| = 22N

for each
N ≥ 1.

We first prove that the constant CN,p corresponding to (ak) satisfies CN,p � ln N .
It will suffice to show that CLN ,p � 2N . In order to underestimate the value of CLN ,p

we use only the information from the set HN . We will work with X = [0, 1), A =

AN = [0, 1
2N−1 ), θ =

1
2N−1 and τ (x) = {x + θ}. Obviously for each element h ∈ HN,i ,

hθ =
i

2N−1 (mod 2N−1), hence if x ∈ [ 2N−1−i
2N−1 ,

2N−1−i+1
2N−1 ] we get that τ hx ∈ A. If we

define

EN,i =

N−1
⋃

k=1

Hk ∪
i

⋃

j=0

HN, j
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then it’s easy to see that |EN,i | = 2 |HN,i |. Consequently, we have for each x in

[ 2N−1−i
2N−1 ,

2N−1−i+1
2N−1 ],

1

|EN,i |

|EN,i |
∑

k=1

χA(τ ak x) ≥
1

2|HN,i |

∑

ak∈HN,i

χA(τ ak x) =
1

2
.

This together with the fact that |EN,i | ≤ LN leads to

m
{

x ∈ [0, 1) : max
n≤LN

1

n

n
∑

k=1

χA(τ ak x) ≥
1

2

}

= 1.

From here we easily get

CLN ,p ≥
1

2pm(A)
=

2N

2p+1

which finishes the first part of the proof.
To see that ak � k ln k, note first that by construction

(4.1)

N
∑

k=1

(|Hk| − 2k−1)2k−1 ≤ aLN
≤

N
∑

k=1

|Hk|2
k−1.

Using the fact that

N
∑

k=1

|Hk| 2k−1
=

N
∑

k=1

(22k

− 22k−1

)2k−1 + 2

we easily get

(4.2) (22N

− 22N−1

)2N−1 ≤

N
∑

k=1

|Hk| 2k−1 ≤ 22N

2N−1.

By combining (4.1) with (4.2) we find that

(4.3) lim
N→∞

aLN

LN log2 LN
=

1

2
.

For each 1 ≤ l ≤ LN+1 − LN , aLN +l is in the block HN+1, hence

aLN +l ≤ aLN
+ 2N l

≤ LN log2 LN + 2N l (for N large enough, from (4.3))

= (LN + l) log2 LN ≤ (LN + l) log2(LN + l).

This together with (4.3) immediately gives that ak � k ln k. By using the same kind
of argument one can also prove that ak � k ln k.
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We can use this construction to prove Proposition 4.3.

Proof Let A = (ak) be the sequence constructed in Proposition 4.6. For each N ∈ Z+

let AN = |{k : ak ≤ N}|. By using standard arguments, one can easily deduce that

(4.4) AN �
N

ln N
.

Our next goal is to construct another sequence (bk), having the same asymptotic
density as (ak), its support disjoint from the support of (ak) and which is L∞-good.
The sequence (ck) resulting from gluing together (ak) and (bk) will have the desired
properties. A short analysis of the proof of Proposition 8.2 from [8], shows that the

result remains true if we choose σn =
1

ln n
, for n ≥ 2. According to this proposition,

the random sequence D = (dk) obtained by including each positive integer n in
the set D with probability σn =

1
ln n

is almost surely Lp-good for every p > 1, in
particular for p = ∞. By the law of large numbers

lim
N→∞

DN
∑N

n=2 σn

= 1

for almost every ω in the induced probability space Ω. Here DN = DN (ω) =

|{k : dk ≤ N}|. Since

(4.5) lim
N→∞

ln N

N

N
∑

n=2

1

ln n
= 1

it follows that

(4.6) lim
N→∞

DN ln N

N
= 1 a.e. ω.

We need to modify the sequence (dk) in order to make it disjoint from (ak). For each
ω, let B = (bk) be the sequence obtained by removing all the terms of (dk) which lie

in A. If as before BN = BN (ω) = |{k : bk ≤ N}|, then by the law of large numbers

lim
N→∞

1

BN

N
∑

n=2
n /∈A

1

ln n
= 1 a.e. ω.

Since
N

∑

n=2

1

ln n
≥

N
∑

n=2
n /∈A

1

ln n
≥

N
∑

n=2

1

ln n
−

AN
∑

n=2

1

ln n

using (4.4) and (4.5) we obtain

(4.7) lim
N→∞

BN ln N

N
= 1 a.e. ω.
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We start now the deterministic part of the argument. Pick an ω for which both (4.6)
and (4.7) hold. Moreover, we can make our choice such that the corresponding

(dk) = (dk(ω)) is L∞-good. The claim is that the sequence (bk(ω)), which for the
future will be denoted by (bk), is L∞-good, too. To see this, note first that for each
dynamical system (X,Σ,m, τ ), f ∈ L∞(X) and positive integer N we have

1

N

N
∑

k=1

f (τ dk x) −
DN − BN

N
‖ f ‖∞ ≤

1

N

N
∑

k=1

f (τ bk x)

≤
1

N

N
∑

k=1

f (τ dk x) +
DN − BN

N
‖ f ‖∞

then use (4.6) and (4.7).

Let now C = {ak : k ∈ Z+} ∪ {bk : k ∈ Z+} and enumerate C as an increasing
sequence (ck). We will show in the following that CN,p � ln n for the sequence (ck).

Note first that for each positive function f and each positive integer n

(4.8)

1

n

n
∑

k=1

f (τ ck x) =
1

n1

n1
∑

k=1

f (τ ak x)
n1

n
+

1

n2

n2
∑

k=1

f (τ bk x)
n2

n

≥
1

n1

n1
∑

k=1

f (τ ak x)
n1

n

where n1 = |{k : ak ≤ cn}|, n2 = |{k : bk ≤ cn}|. From (4.4) and (4.7) we can
assume the existence of positive constants γ, δ such that for each n ∈ Z+

(4.9) γ ≤
n1

n2
≤ δ.

Since n = n1 + n2 it follows that

(4.10)
δ

δ + 1
≥

n1

n
≥

γ

γ + 1
.

Using (4.8) and (4.9) we have for each positive integer N and each positive f

m
{

x ∈ X : max
n≤N

1

n

n
∑

k=1

f (τ ck x) > λ
}

≥

m
{

x ∈ X : max
n1≤

γ
γ+1

N

1

n1

n1
∑

k=1

f (τ ak x) > λ
γ + 1

γ

}

.

Now, the fact that CN,p � ln N for (ck) follows immediately from the analogous result
for (ak).
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To prove that (ck) is not strongly sweeping out we proceed as in [20]. Note first
that for each E ∈ Σ, the following limit exists almost everywhere

lim
n→∞

1

n

n
∑

k=1

χE(τ bk x) = f ?(x).

Moreover, by the dominated convergence theorem,
∫

X
f ?(x) dm(x) = m(E). From

(4.10) we can now write

lim sup
n→∞

1

n

n
∑

k=1

χE(τ ck x) = lim sup
n→∞

( n1

n

1

n1

n1
∑

k=1

χE(τ ak x) +
n2

n

1

n2

n2
∑

k=1

χE(τ bk x)
)

≤
δ

δ + 1
+

1

γ + 1
f ?(x) a.e.

By integration we find

∫

X

lim sup
n→∞

1

n

n
∑

k=1

χE(τ ck x) dm(x) ≤
δ

δ + 1
+

1

γ + 1
m(E).

Since the measure of E can be made arbitrarily small, the sequence (ck) cannot be
strongly sweeping out.

We close this section with an analysis of the relation between bad behavior of
sequences with respect to different Lp spaces.

Theorem 4.7 If a given sequence (ak) has CN,p � ln N for some 1 < p < ∞, then
CN,p ′ � ln N for all 1 ≤ p ′ <∞.

Proof Assume CN,p � ln N . Take arbitrary 1 ≤ p ′ < p < p ′ ′ < ∞ and choose
θ ∈ (0, 1) such that

1

p
=

θ

p ′
+

1 − θ

p ′ ′
.

For each positive integer N , consider the operator TN defined for each f ∈ L1(X)

by TN f (x) = f ?N (x), where f ?N was introduced in (2.1). Obviously, for each
1 ≤ q < ∞, (CN,q)1/q is nothing else than the weak (q, q) norm of the operator
TN : Lq → L?q , where L?q is the weak Lq space. The strong (q, q) norm of TN defined as
sup‖ f‖q≤1 ‖TN f ‖q is always at least as large as the weak (q, q) norm. Using this and

Marcinkiewicz interpolation theorem [6] applied to TN , we deduce the existence of a
constant ρ independent of N such that

(CN,p)1/p ≤ ρ(CN,p ′)θ/p ′

(CN,p ′′)1−θ/p ′′

.

This can be rewritten as
( CN,p

ln N

) 1/p

≤ ρ
( CN,p ′

ln N

) θ/p ′
( CN,p ′ ′

ln N

) 1−θ/p ′′

.

Since by Theorem 2.1
CN,p ′

ln N
� 1 and

CN,p ′′

ln N
� 1, it follows immediately that CN,p ′ �

ln N and CN,p ′′ � ln N .
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Remark 4.8 From Theorem 4.7 we cannot conclude anything about the L∞ behav-
ior of the sequence (ak). Interpolation is also not useful when we try to get informa-

tion about the growth of the CN,p’s for p > 1, knowing that CN,1 � ln N . These
issues are interesting in the light of the constructions from [19], [5] of sequences
which are Lp-good for values of p larger then p0 and Lp-bad for values of p smaller
then p0, where 1 ≤ p0 ≤ ∞.

5 Divergence of Weighted Sums

Let T be a positively dominated contraction of Lp(X), 1 < p < ∞ and let (xk) be an
r-Besicovitch sequence, where r > q and 1

p
+ 1

q
= 1. Baxter and Olsen proved in [3]

that

lim
n→∞

1

n

n
∑

k=1

xkTk f (x)

exists a.e. for all f ∈ Lp(X). On the other hand if T is a Dunford-Schwartz operator,
the result holds for 1 ≤ p ≤ ∞ and for r ≥ q (see [16]). It was not clear in
these papers whether the restriction r ≥ q was really necessary or just an artifact of

the proof. The following theorem constructs a counterexample, hence showing that
duality cannot be broken.

Theorem 5.1 Let (X,Σ,m, τ ) be an ergodic dynamical system. For each 1 ≤ p <∞
and each r < q, where q is the conjugate exponent of p, there exist a function f ∈ Lp(X)

and a sequence (xk) of positive numbers with the following two properties:

(i) limn→∞
1
n

∑n
k=1 xr

k = 0 (hence (xk) is r-Besicovitch).

(ii) The averages 1
n

∑n
k=1 xk f (τ kx) fail to converge almost everywhere.

The proof will be based on the following version of Lemma 1 from [23], which
relates weighted averages like those from Theorem 5.1 with the weighted sums of
Lemma 4.4. We include the proof for completeness.

Lemma 5.2 Take (ak) an increasing sequence of integers, (tk) an increasing sequence
of positive reals, (dk) and (gk) sequences of positive real numbers. Define Dn =

∑n
k=1 dk

and Gn =
∑n

k=1 gk. Assume the following are true:

(i) supn
gnDn

dnGn
= c <∞.

(ii)
gn

dn
is nonincreasing.

(iii) limn→∞ Gn = ∞

If 1
Dntn

∑n
k=1 dk f (τ ak x) → 0 almost everywhere then 1

Gntn

∑n
k=1 gk f (τ ak x) → 0 al-

most everywhere.
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Proof The proof will follow closely the lines of Wierdl’s argument. Define Bn f (x) =
∑n

k=1 dk f (τ ak x), while B0 = 0. Then

1

Gntn

n
∑

k=1

gk f (τ ak x) =
1

Gntn

n
∑

k=1

gk

dk
dk f (τ ak x) =

1

Gntn

n
∑

k=1

gk

dk
(Bk − Bk−1)

=
1

Gntn

n−1
∑

k=1

Bk(
gk

dk
−

gk+1

dk+1
) +

gnBn

Gndntn

=
1

Gntn

n−1
∑

k=1

Bk

tkDk
tkDk(

gk

dk
−

gk+1

dk+1
) +

Bn

Dntn

gnDn

Gndn
= (?).

We write for 1 < m < n

(∗) =
1

Gntn

m−1
∑

k=1

+
1

Gntn

n−1
∑

k=m

+
Bn

Dntn

gnDn

Gndn

= (1) + (2) + (3).

Choose m so large that Bk

tkDk
< ε for each k ≥ m, then let n1 be so large that if

n > n1 then (1) < ε. For n > n1 we get

|(1) + (2) + (3)| < ε + ε
1

Gntn

n−1
∑

k=m

tkDk(
gk

dk
−

gk+1

dk+1
) + cε

≤ ε + ε
1

Gn

n−1
∑

k=1

(
gk

dk
−

gk+1

dk+1
)Dk + cε

= (c + 1)ε + ε
1

Gn

n
∑

k=1

gk

dk
(Dk − Dk−1) − ε

Dngn

dnGn

< (c + 1)ε +
ε

Gn

n
∑

k=1

gk

= (c + 2)ε

Proof of Theorem 5.1 We denote by (ak) the sequence constructed in Proposition
4.6. Take r < t < q and define the sequence (xk) as having value di = (ln i)1/t

if k = ai and 0 otherwise. Note that (xk) satisfies condition (i) from Theorem 5.1.
Define also

uk =

∑k
i=1 di

k(ln k)1/q
and tk =

k ln k
∑k

i=1 di

.
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It will suffice to show that Mn f (x) =
1

n ln n

∑n
k=1 f (τ ak x)dk fails to converge almost

everywhere for some f ∈ Lp(X). Since uk → ∞, we know from Lemma 4.4 that there

is an f0 ∈ Lp(X) for which Vn f0(x) diverges on a positive measure set. Note that

Mn f0(x) =
1

tn

∑n
k=1 dk

n
∑

k=1

f0(τ ak x)dk.

If by contradiction Mn f0(x) converged almost everywhere, then an easy approxima-

tion argument using L∞ functions, shows that the limit would have to be 0 almost
everywhere. But then by Lemma 5.2 applied to f = f0, ak = ak, dk = dk, tk = tk and
gk = 1,

Vn f0(x) =
1

ntn

n
∑

k=1

f0(τ ak x) =
un

n(ln n)1/p

n
∑

k=1

f0(τ ak x)

would also have to converge to 0 almost everywhere. The contradiction is now obvi-

ous.

Remark 5.3 Theorem 5.1 is interesting because of its connections with the return
times theorem. This latter result was proved in [11] for conjugate exponents, but it is

still unknown whether duality can be broken in this case.

We close this section with an application of the techniques developed in Section 3.
In [2] it is proved that the weighted sums 1

Ln

∑n
k=1 f (τ ak x) may diverge for some f ∈

L1(X) and some sequence (ak), whenever Lk is an expression in which the logarithmic

form is expanded, like Lk = ln k, Lk = ln(k) ln ln(k), etc. In the end of [2] it is asked
whether we can choose ak = 2k in this theorem and still get a negative result. The
answer is yes, as provided by the following:

Theorem 5.4 Let (Lk) be any of the sequences we mentioned above. For each ergodic
dynamical system (X,Σ,m, τ ), there exists f ∈ L1(X) with the property that the aver-
ages

1

Ln

n
∑

k=1

f (τ 2k

x)

fail to converge almost everywhere.

Proof All the elements of the proof are contained in the proof of Proposition 3.13
from [2] and in Section 3. The argument is quite computational so we omit it.

Remark 5.5 If in the above theorem we choose (Lk) to be a sequence which is
o(k ln k), then we get a slightly weaker result, which on the other hand has an im-

mediate proof, based on Lemma 4.4 and Theorem 3.8.
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