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Abstract. We establish a necessary and sufficient condition for the existence of a
positive solution of the integrodifferential equation

f x(t-s)dn(s) = 0,
Jo

where n is an increasing real-valued function on the interval [0, °°); that is, if and only if
the characteristic equation

-A+ f e*sdn(s) =
Jo

admits a positive root.

Consider the difference equation xn+l— xn+ £ ckxn-k = 0, where (ck)ks.() is a
*=o

sequence of non-negative numbers. We prove this has positive solution if and only if the
CO

characteristic equation — A + £ h~kck = 0 admits a root in (0,1).

For general results on integrodifferential equations we refer to the book by Burton
[1] and the survey article by Corduneanu and Lakshmikantham [2]. Existence of a
positive solution and oscillations in integrodifferential equations or in systems of
integrodifferential equations recently have been investigated by Ladas, Philos and Sficas
[5], Gyori and Ladas [4], Philos and Sficas [12], Philos [9], [10], [11].

Recently, there has been some interest in the existence or the non-existence of
positive solutions or the oscillation behavior of some difference equations. See Ladas,
Philos and Sficas [6], [7].

The purpose of this paper is to investigate the positive solutions of integrodifferential
equations (Section 1) and difference equations (Section 2) with unbounded delay. We
obtain also some results for integrodifferential and difference inequalities.

1. Integrodifferential equations. Consider the integrodifferential equation

x'(t)+\ x(t-s)dn(s) = 0, (E)
Jo

where n is an increasing real-valued function on the interval [0, °°). It will be supposed
that «(0) = 0 and that n is not identically zero on [0, °°).

By a solution of (E) we mean a continuous real-valued function x defined on the real
line U, which is differentiate on [0, o°) and satisfies (E) for all t > 0.

The characteristic equation of (E) is

-A+ f ehdn(s) = 0.
Jo
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THEOREM 1. Equation (E) has a non-negative solution which is eventually positive if
and only if the characteristic equation (*) admits a positive root.

A real-valued function h defined on IR is said to be non-negative if h(t) > 0 for every
t eU, and it is called eventually positive if there exists a T e U such that h(t) > 0 for all
f==r.

Proof of Theorem 1. If Ao>0 is a root of the characteristic equation (*), then
x(t) = e~^(t e U) is a solution of (E) with x(t) > 0 for every teU.

Assume, conversely, that (E) has a solution x such that x(t)>0 for all teU and
x(t) > 0 for every t > T, where T is a real number. Then from (E) it follows that x'(t) s 0
for t > 0 and consequently JC is decreasing on the interval [0, »).

Consider the set A of all A > 0 for which there exists a tx > 0 such that jc'(r) + Ax(f) £
0 for all l>(A. The set A is nonempty. Indeed, by taking into account the hypotheses on
n, we can see that, there is a r > 0 so that

Ao= I dn(s)>0.

Since x is decreasing on [0, <»), for every t > T, from (E) we obtain

O = jc'(f)+ f x(t-s)dn(s)>x'(t)+ f x(t-
Jo Jo

which means that Ao e A. Thus, A is nonempty. Clearly, A is a subinterval of (0, °°) with
inf A = 0. Next, we will show that A is bounded from above.

By the hypotheses on n, we can choose o > e > 0, so that

.= f dn(s)>0.

Then, by taking into account the fact that x is decreasing on [0, °°), from (E) we find
for t > a

f x(t-s)dn(s)>x'(t)+ I x(t-s)dn(s)

[J dn(s)]x(t - e) *x'(t) + [fdn(s)jx(t - e).

That is, x'(t) + Ax(t - e) < 0 for all t > o. Thus from Ladas, Sficas and Stavroulakis
[8] it follows that

x{t) > Bx{t - e) for all large t, (1)

where B = (Ae/2)2. Since x is decreasing on [0,<»), we always have B<\. In fact, we
have
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Indeed, if not, 6 belongs to A and hence there is a tg > 0 such that

x'(t) + Gx(t)<0 for f>te.

So, if we define

then we have for all t > tg

and consequently ue is decreasing on [te, °°).
Hence, for every t s tg + e, we obtain

ee('-e)x(t ~e) = ue(t - e) > ue(t) ^ ee'x(t).
Thus,

e -E) for t>tg + e,

which contradicts (1).
Now, we set A = sup A, 0<A<<». Moreover we consider an arbitrary number

/* G (0, A). Then r = A — (i e A and hence there exists a tr ^ 0 such that

x'{t) + rx(t) s 0 for all t > <r.

Without loss of generality, we may assume that tr> T and hence x(t)>0 for every
t>tr. For any t, s with (>fr and 0<5 ^f - tr, we have

That is x(t - s) s e™A:(0 for f > fr and 0 < s < f - tr.
Thus, from (E) it follows that for t > tr

Jo Jo

ers dn{s)\{t).er

We claim that

f ersdn(5)<A for all t>tr. (2)
Jo

Otherwise, there exists air>tr such that

ersdn{s)>k

and therefore we have for t > fr

0 >*'(/) + [[ ersdn(s)\x{t)>x'{t)

Hence AeA which contradicts to the fact that £>A = supA. Thus (2) has been
established.
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Finally, from (2) it follows that

f ersdn{s)<X or \ e^'^ dn{s)<L

As n e (0, A) is arbitrary, we obtain

f eLdn{s)^L
Jo

So, if we define

F(A) = -A + [ e^dn(s) for A>0,
Jo

then we have F{X) < 0. On the other hand, we have F(0) = Jo dn{s) > 0. Hence, there is a
Ao e (0, A] with F(k0) = 0.

Then Ao > 0 is a root of the characteristic equation (*) and the proof of Theorem 1 is
complete.

Consider the integrodifferential inequality

y'(t)+\ y(t-s)dn(s)<0. (I)
Jo

By a solution of (I) we mean a continuous real-valued function y defined on IR, which
is differentiable on [0, o°) and satisfies (I) for all t > 0.

The proof of Theorem 1 can be used to establish the following result.

THEOREM 1'. Inequality (I) has a non-negative solution which is eventually positive if
and only if (*) admits a positive root.

Now, let us consider the equation

N'(t) = N(t)[a-j N(t-s)dn(s)j, (E)

where a- is a positive constant, and Jo dn(s) < °°. This equation can arise in a study of the
dynamics of a single-species population model; see for example J. M. Cushing [3].

By a solution of (E) we mean a continuous real valued function N defined on U,
which is differentiable on [0, °°) and satisfies (E) for every t > 0.

Equation (E) has a unique positive equilibrium No which is given by

r
a = NQ I dn(s).

Jo
[By our assumptions on n, we have 0 < Jo dn(s) <<».]

Consider the equation

-A + AU e*sdn(s) = 0. (*)
Jo
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THEOREM 2. Assume that (*) has no positive roots. Then there is no solution N of (E)
such that

N(t) > No for every teU, and N(t) > No for all large t.

Proof. Let N be a solution of (E) with N{t) > No for every t e U, and N(t) > No for
all large t.

Set

y(t) = \n(N(t)Nol) for t e U

and observe that y is a non-negative function on U which is eventually positive. The
function y satisfies

Jr°°
[eyi'~s) - 1] dn(s) = 0 for all rsO.

o

Since ew - 1 ^ w for w > 0, we get

r
Jo

Thus, y is a solution of the inequality

r
/ ( 0 + (f-5)dn(5)<0,

Jo
where n = Non.

An application of Theorem 1' completes the proof of Theorem 2.

2. Difference equations. Consider the difference equation

xn+x-xn + 2 ckxn-k = 0, (E)

where (ck)ks.() is a sequence of non-negative numbers which is not identically zero.
By a solution of (E) we mean a sequence (xn)neZ (Z is the set of all integers) which

satisfies (E) for all n > 0.
The characteristic equation of (E) is

QO

A 1 ~r /_, A, Cf( ^ U. V /

THEOREM 1. Equation (E) /JOS a non-negative solution which is eventually positive if
and only if the characteristic equation (*) admits a root in (0,1).

A sequence (hn)neZ is said to be non-negative if hn > 0 for every n e Z, and it is called
eventually positive if there exists a m e Z such that hn > 0 for all n^m.

Proof of Theorem 1. If Aoe (0,1) is a root of the characteristic equation (*), then
xn = A" (« e Z) is a solution of (E) with xn > 0 for every n e Z .

Assume, conversely, that (E) has a solution (xn)neZ which is non-negative and
eventually positive. Let m ^ 0 be an integer such that xn > 0 for n s: m. Then from (E) we
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obtain for every n^m,

= xn+\ ~ Xn + Zj Ckxn-k = -̂ n + 1 ~ Xn + ZJ CkXn-k
*=0 k=0

Jfc=n+1 k=0

That is

n

xn+i - xn + 2 c**,,-* < 0 for every n > m.

Thus from Theorem 1 in Ladas, Philos and Sficas [7] it follows that there is a
A e (0,1) such that

Set

F(X) = A - 1 + 2) A-*c* for A e [A, 1].

We have F(A) ̂  0. On the other hand, we observe that

F(l)=f,ck>0.

Thus, there exists a A" e [A, 1) with F(A) = 0. Then i e (0,1) is a root of the
characteristic equation and the proof of Theorem 1 is complete.

Consider the difference inequality

oo

Z ^ o . (i)

By a solution of (I) we mean a sequence {yn)nez that satisfies (I) for all n ̂  0.
The proof of Theorem 1 can be used to establish the following result.

THEOREM 1'. Inequality (I) has a non-negative solution which is eventually positive if
and only if (*) admits a root in (0,1).

Now, let us consider the difference equation

AUi ~K = Nn(a - i ckNn_X (E)

where a is a positive constant and E ck < °°.
* o
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By a solution of (E) we mean a sequence (Nn)neZ which satisfies (£) for all n > 0.
Equation (E) has a unique positive equilibrium N* given by

k=0

[By our assumptions, we have 0< T, ck <°°.l

Consider the equation
oo

A - 1 + N* 2 A-*c* = 0. (*)
*=o

THEOREM 2. /Issume f/iaf (*) has no roots in (0,1). Then there is no solution (Nn)neZ

of (E) such that

Nn s N* for every n e Z, awd Nn > N* for all large n.

Proof. Let (Nn)neZ be a solution of (E) with Nn > N* for every neZ, and Nn > N*
for all large n. Set

y»=%-l for n e Z .

Then we observe that (yn)nez is a non-negative sequence which is eventually positive.
This sequence satisfies

kyn-k = 0 for all n > 0 .

Thus, we get

* = 0

That is, the sequence (yn)neX is a solution of the difference inequality

k=0

where ck = N*ck for k >0. An application of Theorem 1' completes our proof.

Consider now the equation

Nn+l = Nn(c- bNn - 2 ckNn_X (E*)

where c>\ and b>0 are constants, and (ck)k&0 is a sequence of non-negative real
oo

numbers which is not identically zero and such that E ck<«>. By a solution of (E*) we
k=a

mean a sequence (Nn)neZ which satisfies (E*) for all n ^ 0 .
We call such solutions (Nn)neZ of (E*), which satisfy the condition below, positive

solutions:
Nn>0 for «<0 and Nn>0 for n>0.
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Equation (E*) has a unique positive equilibrium N* which is given by

k=0

THEOREM 3. Any positive solution of (E*) is bounded.

Proof. We show that every positive solution (Nn)neZ of (E*) is bounded for all n > 0 .
To see this observe that

< ( c - l ) - W V n , for all « > 0 . (i)

If Nn—> +°°, as n-»°°, then (i) implies

Nn+l-Nn<0 for all large n.

Since Nn —> °°, there is m e Z such that, for all n > m we have bNn > c — 1. If there exists
no>m such that

Nno>Nna+i>...>Nno+k>... ,

then lim A/n <°° and the solution (Nn)nS.n will be bounded.
We suppose now the existence of n0 such that

so that this implies the absurdity

Hence, there exists a constant M > 0 such that

0<Nn<M, for all « > 0 .

REMARK. When the equation (E*) has a positive solution such that Nn ^N* (n e Z)
and Nn >N* for all large n, then the characteristic equation (*) has a root in (0,1) and
has no root greater or equal to one.

Indeed, we set yn = Nn — N* in (E*) and, together with

we obtain

yn+x ~yn = ~bN*yn - N* 2 ckyn.k - by2 -yn2 ckyn_k. (Eo)

From (Eo) we have
oo

,<0, Vn>0. (E,)
*=o
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According to Theorem 1' (since yn >0) the characteristic equation

A - 1 + N* 2 ckk-k = 0 («)

has a root in (0,1).
Furthermore, if A > 1, then

0 < A - 1 = N* 2 CfcA"* < 0

which is absurd.
So, the equation (*) has no root A > 1.
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