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Abstract . 

Successful experience of applying the Chebyshev polynomials as a power 
"mathematical tool" for numerical integration and approximation tech-
niques in celestial mechanics is presented. Detailed analysis of approxi-
mation function behavior inside an integration step allows to elaborate a 
special technique for high accuracy and rapid integration of piece-wise con-
tinuous functions, modeling the Earth's ̂ shadow effect for artificial satellite 
orbits. Original software is elaborated for creating the ephemeris file si-
multaneously with the process of numerical integration. This technique is 
applied for the construction of ephemerides of natural and artificial celes-
tial bodies as well as for the compact polynomial representation of different 
geodynamic parameters. 

1· Approximation method 

Let the motion of a celestial body be described by a system of the differ-
ential equations 

Y" = F(Y',Y,t), (1) 

under initial conditions 
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y | . = o = % , Y'\t=o=Yo. (2) 

Here Y, Y' and Y " denote three-dimensional vectors of the position, velocity 
and acceleration of a body. In INCH method (Belikov, 1993) of numerical 
integration each right-hand side of the system (1) is presented as a trun-
cated Chebyshev expansion 

F ( Y ' , Y,*) = £ a m r ; ( 1 ) , *W < t < t&. (3) 
m = 0 K f l / 

Here is shifted Chebyshev polynomials, h = ί( 2 ) - ti 1) is an integration 
step, and am are coefficients which are evaluated by an itepation procedure. 
The acceleration Y"(i) is presented over an interval Γ = *2 ~ h, (Τ > h) in 
form of another truncated series 

FW = Y"(t) = £ A n r n * ( i ) , * t < t < ta. (4) 

n=0 ^ ' 

The initial conditions at the left-hand boundary of an approximation in-
terval are 

Y\t=tl=yo, y ' | t e t i = » & - (5) 

Thus the problem of the polynomial approximation is reduced to the deter-
mination of the coefficients An. The latter are presented in form of integrals 

4 3 / ™ * , < „ 4 « = KOI). (6) 
π Jo v ^ ( l — a?) * 

Here Y ; , ( x ) means a function which is defined by formula (3) over the whole 
interval T . In INCH method the value of function Y " ( x ) can be determined 
with a sufficient accuracy at an arbitrary point of the time interval T . Thus 
for calculating the integral (6) one can use the quadrature formula of the 
highest accuracy class. The resulting formula is 

f Y'}X™X}dx « αΥ"(0)Τ:(0) + βΥ"(1)Τ:(1) + a* £ Υ " ( * * ) Γ η * ( * * ) , 

JO "y Xyl Xj k=l 
(7) 

where 

.,•'+"<'*/(*+'», * = ι , 2 , . . . „ , ( 8 ) 
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By applying the quadrature formulae (7)-(9) , one can determine the whole 

set of the desired coefficients An in (4) . The value of function Y"(xk) in (7) 

is found as follows: 

M 

Y"(xk) = £ amK(zk), zk = xkT/h, h < t k < t 2 , (10) 
m = 0 

where am are the above mentioned coefficients computed by integrator 

INCH. Then, after twofold analytical integrating (4) with consideration 

of ( 5 ) , one has: 

N+l JV+2 

rim = j2 BnT:(t/n γ{Ν) = Σ συ 
n=0 n=0 

The high accuracy of the representation is proved by Powel's estimates 
establishing the closeness between the approximations by Chebyshev inter-
polating polynomial, Chebyshev truncated series and by polynomials of the 
best uniform approximation (Luke, 1975). 

2. Applications of the method 

The calculations were performed on PC Dell 486/66 computer with double 

precision (16 decimal digits of mantissa). 

2.1. CONSTRUCTION OF EPHEMERIDES OF THE MOON, SUN AND 
PLANETS 

The gravitational interaction of the Solar System bodies is modeled by 

Einstein- Infeld-Hofmann's equations, defining the orbital barycentric mo-

tion of the Sun, major planets and the Moon as non-rotating masses in 

the barycentric isotropic coordinate system (Eroshkin, Trubitsina, 1992). 

Additional perturbations in the motions are caused by the attraction of five 

most massive asteroids. The total system, consisting of 40 ordinary differ-

ential equations of the second order, forms the basis of the given model. 

39 of these equations describe the barycentric motion of the Sun, 9 major 

planets and geocentric motion of the Moon, and remaining four equations 

describe the Moon's rotation around its own center of the masses. In Table 

1 the results of the numerical testes of the problem is shown. The accuracy 

criterion for A E ephemerides is that an approximation error should be less 

than 1 millimeter at each point of approximation interval. 
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Similar tests have been conducted for constructing the specialized geo-
centric ephemerides of the Moon and Sun (AEMS) (Eroshkin, Taybatorov, 
Trubitsina, 1994). The ephemerides are optimized by accuracy and com-
pactness for practical requirements of numerical integration for some types 
of artificial satellites. 

T A B L E 1. Maximum residuals between the ephemeride AE94 and 
DE200/LE200 over 50 year span 

Object Residuals Approx.interval (days) Polyn.degree 

(mm) A E ( L E / D E ) A E ( L E / D E ) 

Mercury 52 8(8) 12(11) 

Venus 7 32(32) 11(11) 

E-M barycenter 10 16(16) 12(14) 

Mars 18 32(32) 8(9) 

Jupiter 16 32(32) 8(8) 

Saturn 59 32(32) 7(7) 

Uranus 31 32(32) 7(7) 

Neptune 33 32(32) 5(5) 

Pluto 14 32(32) 5(5) 

Geocentr.Moon 5 8(4) 14(11) 

Sun 0.034 32(32) 12(14) 

Earth 9 16 12 

2.2. ARTIFICIAL SATELLITE NUMERICAL EPHEMERIDES 

The numerical tests were conducted for GPS satellite orbit (Taybatorov, 

Trubitsina, 1992). The results of both numerical integration over the time 

interval of 7 days and polynomial approximation for GPS satellites are pre-

sented in Table 2. As the reference ("exact") solution in "Integration" part 

of Table 2 the results of numerical integration are taken, obtained on com-

puter ELBRUS-1CB with a longer mantissa (24 decimal digits). In the part 

of Table 2, titled as "Polynomial representation", the maximum deviations 

of the ephemeris position components from the numerical integration re-

sults are given, where Q denotes the ephemerides file size, 6t is additional 

computer time for ephemeride file construction procedure, M, N, T, h are 

defined in (3) - (4) . 
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T A B L E 2. Comparison of integration and compact polynomial leptesentation pro-
cedures foi GPS satellites numerical ephemerides for (7 days arc) 

Integration M h(days) A R (m) Δ λ (sec) Aß (sec) 

7 0.05 0.35e-3 O.lle-3 0.49e-4 

Polynomial Ν T(day) A R (m) Δ λ (sec) Aß (sec) 6t Q(Kb) 

Approximation 14 0.05 O.lle-7 0.23e-8 0.25e-8 4% 49.3 

14 0.15 0.51e-4 0.42e-6 0.31e-6 2% 16.2 

3· Numerical integration of piecewise-continuous functions 
in satellite dynamics 

If we need to take into account the solar pressure in problems of satellite 

dynamics we deal with piecewise-continuous functions. The characteristics 

of the numerical integration for such a problem were investigated on a 

model, simulating the disturbing motion of Lageos with taking into account 

the direct solar pressure and passing a satellite the Earth's shadow. 

Three methods are compared with varying basis parameters: RA(15) 

(Everhart, 1985), INCH(9), INCHE(9) (Belikov, 1993). All the conclusions 

are made by comparison of the differences between the forward and back-

ward solutions for one day time interval with four gap points. 

The earlier elaborated method INCHE(9) (Belikov, 1993) is tested for 

the case with discontinuities. In this procedure the bisection principle is 

used to find the appropriate length of a variable step in the neighborhood 

of discontinuity. The high accuracy of solution is reached in this procedure 

at the expense of significant increasing CPU time due to a lot of step 

subdivisions. It is not convenient for practical application. 

In this connection special procedure for an optimal subdivision of an 

integration step is elaborated at present work, in which the property of 

Chebyshev approximation to reach the maximum approximation error in 

the neighborhood of a gap (Gibbs phenomenon) is used for the optimal 

choice of an integration step. This modified INCHE method shows its es-

sential time reducing, when solving the numerical problems for piecewise-

continuous functions with sufficient accuracy. The results are summarized 

in Table 3, where Nstep is number of intergation steps, Nforce is number of 

calls of force subroutine (computer time measure). 
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T A B L E 3. Comparison of the efficiency of the different numerical integra-
tion software in solving the system of differential equations with piecewise 
continuous functions 

Method 4 A R (m) Δ λ (sec) Nstep Nforce 

RA(15) 

0 

l.e-9 

l.e-5 

0.34e-7 

0.30e-3 

0 .32e+l 

0.65e-8 

0.11e-4 

0.12e+0 

0.34e-8 

0.28e-4 

0.34e+0 

194 

183 

190 

2974 

2809 

2914 

INCHE(9) 

0 

l.e-9 

l.e-5 

0.23e-7 

0.56e-6 

0.46e-6 

0.93e-8 

0.33e-9 

0.18e-7 

0.59e-8 

0.58e-7 

0.36e-7 

149 

1060 

1060 

2886 

22769 

22769 

INCHE(9) 

modified 

l.e-9 

l.e-5 

0.33e-7 

0.33e-7 

0.11e-7 

0.12e-7 

0.58e-8 

0.25e-7 

231 

238 

5664 

5570 
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