Un exemple de transformation dilatante et C^1 par morceaux de l'intervalle, sans probabilité absolument continue invariante

P. GORA

Warsaw University, Institute of Mathematics, PKIN IX p, 00-901 Warsaw, Poland

B. SCHMITT

Département de Math., UFR Sciences et Techniques, Universite de Dijon, 21000 Dijon, France

(Received 15 June 1987 and revised 22 October 1987)

Abstract. We construct a transformation on the interval [0, 1] into itself, piecewise C^1 and expansive, which doesn't admit any absolutely continuous invariant probability measure (a.c.i.p.).

So in this case we give a negative answer to a question by Anosov: is C^1 character sufficient for the existence of absolutely continuous measure?

Moreover, in our example, f' has a modulus of type $K/(|1+|\log|x||)$; it is known that a modulus of continuity of type $K/(1+|\log|x||)^{1+\gamma}$, $\gamma>0$ implies the existence of a.c.i.p..

0. Introduction

Une application f de l'intervalle [0, 1] dans lui même est dite dilatante par morceaux s'il existe une subdivision $a_0 = 0 < a_1 < \cdots < a_p = 1$ de l'intervalle [0, 1] et un réel $\rho > 1$ tels que:

- (i) la restriction f_i de f à chaque intervalle $]a_i, a_{i+1}[$ (i = 0, 1, ..., p-1) est C^1 et se prolonge en une application C^1 sur $[a_i, a_{i+1}]$.
- (ii) $|f_i'| \ge \rho$ pour i = 0, 1, ..., p-1.

De nombreux auteurs ont étudié l'existence de mesures de probabilité invariantes pour de telles applications, absolument continues par rapport à la mesure de Lebesgue λ de [0, 1] (en abrégé a.c.i.p.). Les premiers résultats concernaient des transformations particulières ([**Re**, **Pa**]). Puis, en 1972, Kosjakin et Sandler [**Ko–Sa**], et de manière indépendante Lasota et Yorke [**La–Y**] en 1973 ont prouvé l'existence d'a.c.i.p. pour des applications C^2 et dilatantes par morceaux. La question gui s'est posée alors est la suivante: le caractère C^2 est-il nécessaire pour l'existence d'a.c.i.p.?

De nombreux papiers ont affaibli cette condition: d'abord le caractère C^{1+1} [Ko], puis le caractère $C^{1+\varepsilon}$ ($\varepsilon > 0$) ([Wo, Ry, Ke]).

Ces différentes hypothèses ont en fait une formulation plus générale [Sc]; si \mathscr{P} désigne la partition finie $(a_i, a_{i+1})_{i=0,1,\ldots,p-1}$ de [0,1] et $\mathscr{P}(n)$ la partition

 $\bigvee_{i=0}^{n-1} f^{-i}(\mathcal{P})$, nous définissons les réels

$$d_n = \sup_{A^{(n)} \in \mathscr{P}^{(n)}} (\operatorname{osc}_{A^{(n)}} |f'|). \tag{1}$$

Sous la condition:

(c)
$$\sum_{n>0} d_n < +\infty,$$

l'application f admet au moins une a.c.i.p.

En particulier P. Collet [Co] montre que si le module de continuité de f' est de la forme

$$\frac{K}{(1+|\log|x||)^{1+\gamma}} \quad \gamma > 0,$$

alors f admet une a.c.i.p. La question qui se posait est de savoir si la propriété reste valable pour $\gamma=0$. Nous répondons à cette question de manière négative en présentant un exemple de transformation C^1 et dilatante par morceaux, not le module de continuité de f' est équivalent à $k/(1+|\log|x||)$ et sans a.c.i.p.. Par cet exemple, nous montrons que le module de continuité de la forme $k/(1+|\log|x||)$ est un module de continuité frontière entre les transformations C^1 et dilatantes par morceaux qui ont une a.c.i.p. et celles qui n'en ont pas.

Ce contre exemple donne également une réponse négative à la question que posait Anosov [An] de savoir si le caractère C^1 suffirait pour l'existence d'a.c.i.p. d'applications dilatantes.

1. Construction de la transformation f

1.1.

Nous utilisons d'abord le Cantor suivant, de mesure de Lebesgue nulle. Nous notons λ la mesure de Legesgue sur [0, 1], et considérons les intervalles suivants.

$$-I_1^1 =]a_1^1, b_1^1$$
[est l'intervalle centré en $\frac{1}{2}$, en longueur $\frac{1}{2}$.

- Sur chaque composante connexe du compact $K_1 = [0, 1] \setminus I_1^1$, centrés en leurs milieux respectifs, nous définissons les intervalles

$$I_2^1 =]a_2^1, b_2^1[$$
 et $I_2^2 =]a_2^2, b_2^2[$ tels que $a_2^1 < b_2^1 < a_2^2 < b_2^2$ et $\lambda(I_2^1) = \lambda(I_2^2) = \frac{1}{3}(1 - \frac{1}{2})/2.$

- Nous supposons construits les intervalles $I_p^{i_p}$ pour

$$p = 1, 2, ..., n$$
 et $i_p = 1, 2, ..., 2^{p-1}$.

Si nous notons K_n le compact

$$[0,1]$$
 $\bigvee_{p=1}^{n} \left(\bigcup_{i_p=1}^{2^{p-1}} I_p^{i_p} \right),$

 K_n possède 2^n composantes connexes; sur chacune d'entre elles, centrés en leurs milieux respectifs, nous définissons les intervalles

$$I_{n+1}^{i_{n+1}} =]a_{a_{n+1}}^{i_{n+1}}, b_{n+1}^{i_{n+1}}[,$$

$$i_{n+1} = 1, 2, \dots, 2^n$$
 tels que
$$a_{n+1}^1 < b_{n+1}^1 < a_{n+1}^2 < b_{n+1}^2 < \cdots < a_{n+1}^{2^n} < b_{n+1}^{2^n}, \quad \text{et}$$

$$\lambda (I_{n+1}^{i_{n+1}}) = \frac{1}{n+2} \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{1}{2}\right)$$

$$a_{1}^{1}$$
, b_{2}^{1} , a_{2}^{2} , b_{2}^{1} , a_{3}^{2} , b_{3}^{3} , a_{2}^{3} , b_{3}^{3} , a_{2}^{3} , b_{3}^{3} , a_{3}^{3} , $a_{$

 $f_{\mathsf{A}_0'}$

Application induite

FIGURE 1. Graphe de f_{A_0} .

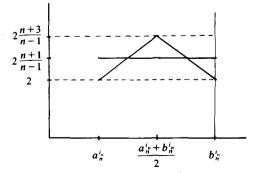


FIGURE 2. Graphe de $(f_n^{in})'$).

Les intervalles $(I_n^i)_{n\geq 1}$ sont disjoints par construction et l'ensemble $K=\bigcap_{n=1}^{\infty}K_n$ est un fermé d'intérieur vide, totalement discontinu, sans points isolés, c'est à dire un ensemble de Cantor. Par construction

$$\lambda(K_n) = (1 - \frac{1}{2})(1 - \frac{1}{3}) \cdot \cdot \cdot (1 - 1/(n+1))$$
 et donc $\lambda(K) = 0$.

1.2. Construction de l'application

Nous fixons un réel b>1 et notons J l'intervalle [0, b]. Nous construisons une application f de J dans lui-même, en définissant ses restrictions aux intervalles I_n^i et]1, b[de la façon suivante:

- (C₁) f(x) = f(1-x) pour $x \in [0, \frac{1}{2}[$.
- (C₂) $f_0 = f/_{]1,b[}$ est surjective, linéaire, croissante et applique]1, b[sur]0, b[.
- (C₃) $f_n^{i_n} = f/\int_{I_n}^{I_n}$ applique surjectivement $]a_n^{i_n}$, $b_n^{i_n}[$ dans $]a_{n-1}^{i_n}$, $b_{n-1}^{i_n}[$ pour $i_n = 1, 2, \dots, 2^{n-2};$ $f_n^{i_n}$ est C^1 et sa dérivée est ainsi définie:

$$(f_n^{i_n})'(x) = 2\frac{n+3}{n-1} + \frac{16}{(n-1)(b_n^{i_n} - a_n^{i_n})} \left(x - \frac{a_n^{i_n} + b_n^{i_n}}{2} \right) \quad \text{si}$$

$$x \in \left] a_n^{i_n}, \frac{a_n^{i_n} + b_n^{i_n}}{2} \right[,$$

$$(f_n^{i_n})'(x) = 2\frac{n+3}{n-1} - \frac{16}{(n-1)(b_n^{i_n} - a_n^{i_n})} \left(x - \frac{a_n^{i_n} + b_n^{i_n}}{2} \right) \quad \text{si}$$

$$x \in \left[\frac{a_n^{i_n} + b_n^{i_n}}{2}, b_n^{i_n} \right] .$$

- (C₄) $f_1 = f/_{]a_1^1, \underline{1}[}$ applique surjectivement $]a_1^1, \underline{1}[$ dans]1, b[; elle est C^1 et la fonction f_1' est croissante, affine et applique $]a_1^1, \underline{1}[$ sur l'intervalle]2, 8b-10[.
- (C₅) La constante b est choisie pour que C_4 soit possible et que $f'_0 > 1$. (cf, figs. 1 et 2).

LEMME 1.2. Le réel b étant fixé, vérifiant la condition C.5, il existe une unique application de J dans lui-même, verifiant les conditions C_1 , C_2 , C_3 , C_4 . Cette application est Lipschitzienne, différentiable, dilatante et surjective sur chaque morceau $[0, \frac{1}{2}[\cdot], 1[\cdot], 1[\cdot], 1[\cdot]$; elle est de plus C^1 sur chaque branche.

Nous renvoyons le lecteur à [Sc] pour une démonstration précise. Le caractère C^1 par morceaux provient du fait que $f'(a_n^{i_{n-1}})$ (resp. $f'(b_n^{i_{n-1}})$) et $f'(a_n^{i_{n+1}})$ (resp. $f'(b_n^{i_{n+1}})$) prennent la valeur 2.

1.3. Module de continuité de f'

Un calcul identique à celui fait dans [Sc] montre que le réel de déterminé par (1) est égal à 8/(n-1); la condition (C) n'est donc pas vérifiée. Nous pouvons dire plus et préciser le module de continuité de f'. Nous notons:

$$\omega(x) = \sup_{|y_1 - y_2| < x} |f'(y_1) - f'(y_2)|, \quad x > 0,$$

 y_1 et y_2 appartenant à une même branche de monotomie de f. Il est clair, par construction, que pour $x = \frac{1}{2}\lambda(I_n^{i_n})$, $\omega(x)$ atteint sa valeur sur une moitié de l'intervalle $I_n^{i_n}$, dès que n est assez grand. Or:

$$\frac{1}{2}\lambda\left(I_{n}^{i_{n}}\right)=\frac{1}{2^{n}n(n+1)},$$

et l'oscillation de f' sur la moitié de l'intervalle $I_{\vec{n}}^{i}$ vaut

$$2\left(2\frac{n+1}{n-1}-2\right) = \frac{8}{n-1}.$$

Il en résulte que la fonction ω est décroissante, linéaire par morceaux et passe par les points

$$\left(\frac{1}{2^n n(n+1)}, \frac{8}{n-1}\right)$$

pour n assez grand.

Il en résulte que:

$$\lim_{x \to 0} \frac{\omega(x)}{8\left(-\frac{\log x}{\log 2}\right) - 1} = 1.$$

Le module de continuité de f' est majoré par une quantité de type $(8+\varepsilon)\times(-\log x/\log 2)-1$, c'est à dire par une fonction de type $K/(1+|\log x|)$ et est équivalent à cette fonction lorsque x tend vers 0. (K étant un réel convenablement choisi.)

Nous formulons ce résultant:

LEMME 1.3. Il existe un réel K > 0 tel que le module de continuité $\omega(x)$ de f' sur chaque branche de monotonie de f est équivalente à $K/1 + |\log x|$ lorsque x tend vers 0.

2. Etude d'une application induite naturelle associée à f

2.1. Définition et propriétés de cette application induite Nous notons:

$$A_0 = [1, b]; \quad A_k = \bigcup_{i_k=1}^{2^{k-1}} I_k^{i_k};$$

 $]e_k^{i_k}, f_k^{i_k}[=f^{-1}(I_k^{i_k})\cap A_0.$

Puisque $f(K) \subset K \subset [0, 1]$, l'ensemble des points de A_0 qui reviennent en A_0 est égal à $A'_0 = A_0 \setminus f^{-1}(K)$.

L'application $f_{A_0'}$ induite par f sur A_0' est donc définie sur l'ouvert dense A_0' de A_0 . L'ensemble des points de A_0' qui retournent en A_0' en exactement (k+1) étapes est évidemment l'ensemble $B_k = f^{-1}(A_k) \cap A_0$ $(k=0,1,\ldots)$ et $A_0' = \bigcup_{k \ge 0} B_k$.

De manière plus précise, l'application f_{A_0} coïncide avec f^{k+1} sur chaque intervalle

$$\left] e_k^{i_k}, \frac{e_k^{i_k} + f_k^{i_k}}{2} \right[\; ; \quad \left] \frac{e_k^{i_k} + f_k^{i_k}}{2}, f_k^{i_k} \right[\; .$$

De plus, f_{A_0} est croissante (resp. décroissante) sur

$$\left]e_k^{i_k},\frac{e_k^{i_k}+f_k^{i_k}}{2}\right[\ ,$$

(resp.] $(e_k^{i_k} + f_k^{i_k})/2$, $f_k^{i_k}$ [), surjective, à dérivée croissante (resp. décroissante), avec:

$$f_{A_0^i}(e_k^{i_k}) = f_{A_0^i}(f_k^{i_k}) = 1,$$

$$f_{A_0^i}\left[\left(\frac{e_k^{i_k} + f_k^{i_k}}{2}\right) - \right] = f_{A_0^i}\left[\left(\frac{e_k^{i_k} + f_k^{i_k}}{2}\right) + \right] = b,$$

$$f'_{A_0^i}(e_k^{i_k}) = f'_{A_0^i}(f_k^{i_k}) = 2^n.$$

Les deux graphes de f_{A_0} sur

$$e_k^{i_k} \cdot \frac{e_k^{i_k} + f_k^{i_k}}{2}$$
, et $e_k^{i_k} \cdot \frac{e_k^{i_k} + f_k^{i_k}}{2}$, $f_k^{i_k}$,

sont symétriques par rapport à la droite $x = (e_k^{i_k} + f_k^{i_k})/2$.

Définition. Une application h de classe C^3 , définie sur un intervalle de \mathbb{R} , à valeurs dans \mathbb{R} est à Schwartzien négatif si:

$$Sh = \frac{h'''}{h'} - \frac{3}{2} \left(\frac{h''}{h'}\right)^2 \le 0.$$

PROPOSITION 2.1. L'application f_{A_0} est à Schwartien négatif sur chacune de ses branches de monotonie.

Cette proposition résulte du fait que l'application f est quadratique sur chaque intervalle I_n^i (conditions C_3 et C_4) ou linéaire sur]1, b[, donc à Schwartzien négatif sur ces intervalle, que $f_{A_0^i}$ coïncide avec un itéré de f sur chaque branche de monotonie

$$\left| e_k^{i_k}, \frac{e_k^{i_k} + f_k^{i_k}}{2} \right| \quad \text{ou} \quad \left| \frac{e_k^{i_k} + f_k^{i_k}}{2}, f_k^{i_k} \right|,$$

et que la propriété de Schartzien négatif est stable par itération (cf, [Co, Ec]).

2.2. Etude de quelques propriétés de l'opérateur de Perron-Frobenius Nous rappelons que λ désigne la mesure de Lebesgue du segment [1, b] et nous notons λ_{A_0} la mesure de probabilité $\lambda_{A_0} = \lambda/(b-1)$ sur ce segment.

Nous notons L^1_{λ} ([1, b]) l'espace des fonctions définies sur [1, b], intégrables au sens de Lebesgue par rapport à la mesure λ , muni de sa norme usuelle $\| \cdot \|_1$.

Si h appartient à L^1_{λ} ([1, b]), $\mu = h \cdot \lambda$ est la mesure définie sur [1, b], de densité h par rapport à λ ; enfin $\mu \circ f_{A_0}$ est la mesure définie sur [1, b] par:

$$\mu \circ f_{A_0}(B) = \mu(f_{A_0}^{-1}(B)),$$

pour tout borélien B de [1, b].

L'application f_{A_0} étant non singulière pour λ , pour tout h appartenant à L_{λ}^1 ([1, b]), la mesure $(h \cdot \lambda) \circ f_{A_0}$ est absolument continue par rapport à la mesure de Lebesque λ ; nous pouvons définir l'opérateur P dit de Perron Frobenius, défini sur L_{λ}^1 ([1, b]) par:

$$Ph(x) = \frac{d[(h \cdot \lambda) \circ f_{A_0'}]}{d\lambda}(x), \quad \forall h \in L^1_{\lambda}([1, b]). \tag{2}$$

Il est connu que cet opérateur a pour expression:

$$Ph(x) = \sum_{y \in f_{A_0}^{-1}\{x\}} \frac{h(y)}{|f'_{A_0}(y)|}.$$

Nous rappelons les principales propriétés de P dans la

Proposition 2.2.

- (i) $\int_{[1,b]} h(x) d\lambda(x) = \int_{[1,b]} Ph(x) d\lambda(x)$ pour toute fonction positive h de L^1_{λ} (1, b).
- (ii) Si g appartient à L_{λ}^{∞} ([1, b]), on a:

$$\int_{[1,b]} g \circ f_{A_0} h(x) \ d\lambda(x) = \int_{[1,b]} g(x) Ph(x) \ d\lambda(x).$$

Cette proposition implique que P est un opérateur markovien sur L^1_{λ} ([1, b]), dont l'opérateur adjoint P^* est défini sur L^{∞}_{λ} ([1, b]) par:

$$P^*g=g\circ f_{A_0'}.$$

En particulier, la tribu des sous-ensembles invariants de P coïncide avec la tribu \mathcal{I} des sous-ensembles boréliens de [1, b] invariants par f_{A_0} .

D'autre part, la densité h d'une a.c.i.p. pour f_{A_0} , est un point fixe fixe de l'opérateur P. C'est à l'étude de ces points fixes que nous allons nous consacrer dans la suite de ce travail.

2.3. L'espace fonctionnel \mathcal{D}_0

Définition. Une fonction τ définie sur le segment [1, b] appartient à \mathcal{D}_0 si elle est soit identiquement nulle, soit positive et convexe sur [1, b].

Les résultats que nous rappelons maintenant, relatifs à \mathcal{D}_0 et à l'opérateur de Perron Frobenius P associé à f_{A_0} sont adaptés de manière simple de résultats dus à M. Misiurewicz ([Mi, par. 4]). Nous notons \mathcal{F} la topologie de la convergence uniforme sur les compacts de] 1, b[sur l'ensemble des fonctions continues sur]1, b[.

Les démonstrations des lemmes suivants figurent dans [Mi]

LEMMA 2.1. Une fonction τ définie et C^2 sur]1, b[appartient à \mathcal{D}_0 si et seulement s'il existe un difféomorphisme C^3 , à Schwartzien négatif, g, défini sur un intervalle ouvert J à valeurs dans]1, b[, tel que: $\tau = 1/|g' \circ (g^{-1})|$.

LEMME 2.2. (i) Si τ et ψ appartiennent à $\mathcal{D}_0(J)$ et sont de classe C', $\tau + \psi$ possède la même propriété.

(ii) \mathcal{D}_0 est fermé dans l'ensemble \mathscr{C} (]0, 1[) pour la topologie \mathscr{T} .

En utilisant la Proposition 2.1, les Lemmes 2.1 et 2.2 et les résultats de [Mi] relatifs à une transformation n'ayant qu'un nombre fini de branches, nous obtenons la proposition suivante:

PROPOSITION 2.3. Soit une fonction C^2 sur]1, b[. Soit H la fermeture de l'enveloppe convexe de l'ensemble $(P^n\tau)_{n\geq 0}$. Alors:

- (a) $si \ \tau \in \mathcal{D}_0$, alors $H \subset \mathcal{D}_0$;
- (b) tout élément de H est continu sur]1, b[;
- (c) H est compact pour la topologie \mathcal{F} .

- (d) $H \subset L^1_{\lambda}$ (]1, b[);
- (e) les topologies \mathcal{F} et L^1 coïncident sur H.

Nous notons alors: $A_n = n^{-1} \sum_{i=0}^{n-1} P_i$, opérateur sur L^1_{λ} ([1, b]) et la fonction 1 identiquement égale à 1 sur]1, b[.

Il résulte de la Proposition 2.3 que l'on peut extraire de la suite $(A_n 1)_{n\geq 0}$, une sous-suite $(A_{n_1} 1)$ qui converge dans les topologies L^1 et \mathcal{F} vers une fonction g appartenant à \mathcal{D}_0 .

Il en résulte que g est un point fixe de l'opérateur P, donc une densité d'a.c.i.p. pour f_{A_0} .

LEMME 2.2. Toute valeur d'adhérence de la suite $(A_n 1)_{n\geq 0}$ pour la topologie \mathcal{F} (ou L^1) est soit identiquement nulle soit de borne inférieure strictement positive sur]1, b[.

La démonstration de ce lemme résulte du fait que ces valeurs d'adhérence sont non négatives, convexes d'après la Proposition 2.3, et points fixes de l'opérateur P.

Il nous reste à analyser chacun des deux cas invoqués dans ce lemme.

2.4. Etude des a.c.i.p. de f_{A_0}

1 er cas. Nous supposons que $(A_n 1)_{n\geq 0}$ possède une valeur d'adhérence identiquement nulle (pour les topologies \mathcal{T} ou L^1).

PROPOSITION 2.4. Si la suite $(A_n 1)_{n\geq 0}$ possède une valeur d'adhérence pour la topologie \mathscr{C} (ou L^1) identiquement nulle, nous avons:

$$A_n h \xrightarrow{L^1} 0, \quad \forall h \in L^1_{\lambda}([1, b]).$$

Démonstration. Supposons qu'il existe une fonction g non identiquement nulle dans L^1_{λ} ([1, b]) telle que Pg = g. Nous notons L le support de g.

La mesure $g.\lambda$ étant invariante par f_{A_0} , le sous-ensemble L l'est également. Si $L^1_{\lambda}(L)$ désigne l'ensemble des fonctions boréliennes à support dans L, Lebesgue intégrables pour la restriction λ de la mesure de Lebesgue à L, il résulte de (2) que P agit sur $L^1_{\lambda}(L)$.

La restriction de P à $L^1_{\lambda}(L)$ est également markovienne et admet g comme point fixe. Il résulte du théorème ergodique de Hopf (cf [Ne] que:

$$A_n h \xrightarrow[L^1]{\lambda + p + s} g. \frac{E^{\mathcal{I}} h}{E^{\mathcal{I}} g}, \quad \forall h \in L^1_{\lambda}(L).$$

 $(E^{\mathcal{I}}$ désigne l'espérance conditionnelle pour la tribu \mathcal{I} des invariants). En particulier:

$$A_n 1_L \xrightarrow{\lambda \cdot p \cdot s} g. \xrightarrow{E^{\mathscr{I}} 1_L} . \tag{4}$$

Par hypothèse, il existe une sous-suite (n_i) d'entiers telle que $(A_{n_i}.1)$ converge pour la topologie \mathcal{T} vers 0. L'opérateur P étant markovien, donc positif, il en résulte:

$$A_{n_i} 1_L \xrightarrow{\lambda + p + s} 0. \tag{5}$$

Il résulte de (4) et (5) que g = 0 $\lambda \cdot p \cdot s$. Ceci démontre la proposition.

COROLLAIRE 2.1. Si la suite $(A_n 1)_{n\geq 0}$ possède une valeur d'adhèrence pour \mathcal{F} identiquement nulle, f_{A_0} n'adment pas d'a.c.i.p.

2ème cas. Nous supposons que $(A_n 1)_{n\geq 0}$ possède une valeur d'adhérence g pour \mathcal{T} telle que: $\inf_{11.bl} g > 0$.

Utilisant à nouveau le théorème ergodique de Hopf pour l'opérateur markovien P sur L^1_{λ} ([1, b]), il vient:

$$A_{n}h \xrightarrow{\lambda \cdot p \cdot s} g \cdot \frac{E^{\mathscr{G}}h}{E^{\mathscr{G}}g}, \quad \forall h \in L^{1}_{\lambda}(1, b).$$
 (6)

PROPOSITION 2.5. Si la suite $(A_n 1)_{n \in \mathbb{N}}$ a une valeur d'adhérence g pour \mathcal{T} strictement positive, alors pour tout h appartenant à L^1_{λ} ([1, b]), non négatif, non identiquement nul, la suite $(A_n h)_{n \geq 0}$ possède une limite strictement positive dans L^1_{λ} ([1, b]).

Démonstration. Nous notons Q la partition modulo 0 de [1, b] constitué par les intervalles ouverts de monotonie de f_{Ab} et

$$Q^{(n)} = \bigvee_{i=0}^{n-1} f_{A_0^i}^{-i}(Q) = f^{-n+1}(Q).$$

Les atomes de $Q^{(n)}$ sont les intervalles de monotonie de $f_{A_0}^{(n)}$; sur chacun d'entre eux, $f_{A_0}^n$ possède la propriété du Schwartzien négatif et est surjective.

L'opérateur itéré n ième de P, P^n , a pour expression:

$$P^{n}h(x) = \sum_{y \in f_{A_{0}^{n}}(x)} \frac{h(y)}{|(f_{A_{0}}^{n})'|(y)}, \quad \forall h \in L_{\lambda}^{1}([1, b]).$$

Il en résulte que si A est un atome de $Q^{(n)}$

$$P^{n}1_{A}(x) = \frac{1}{|(f_{Ab}^{n})'(y)|}, \text{ où } y = (f_{Ab/A}^{n})^{-1}(x).$$

Il résulte du Lemme 2.1 que $P^n \mathbf{1}_A(x)$ appartient à \mathcal{D}_0 et son support est $[1, \mathbf{b}]$. Les suites $(A_m \mathbf{1}_A)_{m \in N}$ et

$$\left(\frac{1}{m-n}\sum_{i=n}^{m-n+1}\right)P^{i}1_{A}$$

ont même limite pour la topologie L^1 (ou pour la toplogie \mathcal{F}); d'après la Proposition 2.3, cette limite appartient à \mathcal{D}_0 , et vaut $g \cdot E^{\mathcal{F}} P^n 1_A / E^{\mathcal{F}} g$ d'après (6). Appliquant à $P^n 1_A$ le Lemme 2.2 on en déduit que cette limite est de borne inférieure strictement positive.

Nous notons $\mathscr{A} = \bigcup_{n \in \mathbb{N}} \{1_A; A \in Q^{(n)}\}$. L'application f_{A_0} étant dilatante, le sous-espace vectoriel span \mathscr{A} engendré par \mathscr{A} est donc dense dans L_{λ}^1 ([1, b]), pour la topologie L^1 .

Par ailleurs, si nous désignons par A_{∞} l'opérateur défini sur L_{λ}^{1} ([1, b]) par:

$$A_{\infty}h = gE^{\mathcal{J}}h/E^{\mathcal{J}}g, \quad \forall h \in L^{1}_{\lambda}([1, b]), \tag{7}$$

c'est un opérateur continu pour la norme L^1 . A tout élément non négatif $h \neq 0$ de L^1_{λ} ([1, b]), on peut associer une suite $(k_m)_{m \in \mathbb{N}}$ d'éléments non négatifs de span \mathcal{A} ,

telle que:

$$k_m \xrightarrow{L^1} h$$
.

Nous avons:

$$A_{\infty}(k_m) \xrightarrow[m \to +\infty]{L^1} A_{\infty}(h).$$

Chaque terme $A_{\infty}(k_m)$ appartient à \mathcal{D}_0 et est de borne inférieure strictement positive sur [1, b].

La limite $A_{\infty}(h)$ est donc non négative, non identiquement nulle d'apprès (7), et vérifie l'inégalité de convexité sur un ensemble de mesure pleine (il suffit d'utiliser une sous suite convergent $\lambda \cdot p \cdot s$); c'est par ailleurs un point fixe de l'opérateur P. On en déduit que $A_{\infty}(h)$ est strictement positive $\lambda \cdot p \cdot s$. On en déduit les corollaires suivants:

COROLLAIRE 2.2. Toute a.c.i.p. pour f_{A_0} , si elle existe, est équivalente à la mesure de Lebesgue sur [1, b].

COROLLAIRE 2.3. Si $f_{A_0^i}$ admet une a.c.i.p. ν , elle est ergodique, unique et: $A_{\infty}h = [g/\lambda(g)]\lambda(h)$ quelque soit h appartenant à $L^1_{\lambda}([1,b])$.

Soit $A \in \mathcal{J}$ tel que $\lambda(A) \neq 0$, d'après la Proposition 2.5., $A_{\infty}1_A$ est strictement positive sur]1, b[et

$$g \cdot \frac{E^{\mathcal{J}} 1_A}{E^{\mathcal{J}} g} = g \cdot \frac{1_A}{E^{\mathcal{J}} g} = A_{\infty} 1_A (\lambda \cdot p \cdot s), \quad \text{d'après (6)}.$$

On en déduit que nécessairement $1_A =]1, b[\lambda \cdot p \cdot s]$

La tribu \mathcal{J} des invariants est donc λ .triviale, c'est à dire ν triviale d'après le Corollaire 2.2.

Notons maintenant k la densité de l'a.c.i.p. ν ; d'après ce qui précède et le théorème ergodique de Hopf, nous avons:

$$k = A_{\infty} k^{\lambda \cdot p \cdot s} g / \lambda(g).$$

L'unicité de l'a.c.i.p. en résulte. La propriéte:

$$A_{\infty}h = \frac{g}{\lambda(g)} \cdot \lambda(h)$$

est évidemment une simple conséquence du théorème ergodique de Hopf.

3. L'application f n'admet pas d'a.c.i.p.

Nous représentons l'application f, à partir de son induite f_{A_0} et d'une construction par tours d'un étage, de base B_k , de premier étage $A_k = f(B_k)$, ce que nous représentons comme suit.

Nous avons:

$$\begin{cases}
f^{-1}(A_k) = B_k \cup A_{k+1} \\
f^{-1}(A'_0) = B_0 \cup A_1.
\end{cases}$$
(8)

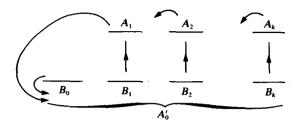


FIGURE 3

Nous reprenons succintement des résultats démontrés dans [Sc].

LEMME 3.1. Une a.c.i.p. pour f s'induit en une a.c.i.p. pour f_{A_0} .

Un calcul standard montre que:

$$\lambda(B_k) = \frac{2(b-1)\lambda_0\lambda_1}{k(k+1)},\tag{9}$$

où λ_0 est l'inverse de la pente de f_0 (condition C_2) et $\lambda_1 = 1/2(b-1)$.

Soit alors μ une a.c.i.p. pour f et $\nu = \mu_{A_0}/\mu(A_0)$. D'après le Lemme 3.1, nous savons que ν est une a.c.i.p. pour f_{A_0} .

En utilisant (7), il est aisé de voir que:

$$\mu(A_k) = \mu(A'_0) \cdot \sum_{i \ge k} \nu(B_i), \text{ et donc}$$

$$\mu([0, b]) = \mu(A'_0) \left[\nu(B_0) + \sum_{k \ge 1} k \cdot \nu(B_k) \right]. \tag{10}$$

PROPOSITION 3.1. L'application f n'admet pas d'a.c.i.p.

Nous utilisons les résultats du paragraphe 2. Les Propositions 2.3 et 2.4 signifient qu'ou bien f_{A_0} n'admet pas d'a.c.i.p. ou bien que sa densité g, appartient à \mathcal{D}_0 , est strictement positive et $\inf_{\{1,b\}} g > 0$.

Si f_{A_0} n'admet pas d'a.c.i.p., d'après le Lemme 3.1, f n'admet pas d'a.c.i.p.

Si f_{A_0} admet une a.c.i.p. ν , de densité g, les relations (9) et (10), ainsi que la stricte positivité de $\inf_{[1,b]} g$ impliquent la proposition. On peut remarquer que dans ce cas, l'application f admet une mesure invariante σ -finie.

Remarque. Nous terminons cet article par l'étude d'un endomorphisme C^1 du cercle S^1 sans a.c.i.p. Nous savons en effet, de manière générale qu'une application dilatante de classe $C^r(r \ge 2)$ d'une variété différentiable M, compacte, connexe admet une mesure invariante, normalisée, absolument continue par rapport à la mesure riemanienne, dont la densité est de classe C^{r-1} [Kr1]. Par r=1, l'ensemble des applications dilatantes, de classe C^1 , définies sur M, admettant une a.c.i.p. forme un ensemble de première catégorie dans l'ensemble des applications dilatantes de classe C^1 sur M, muni de la C^1 topologie [Kr2].

Ce résultat montre de manière non constructive qu'il existe des transformations dilatantes de classe C^1 sur M, sans a.c.i.p. Nous proposons ici la construction d'une telle applications sur S^1 .

Nous représentons son graphe, (figure 4) que nous explicitons.

Sur l'intervalle $[0, \frac{1}{4}]$, g coïncide avec l'application f construite au paragraphe 1. Sur $[\frac{3}{4}, 1]$, le graphe de g est translaté du graphe sur $[0, \frac{1}{4}]$ par la translation $\frac{3}{4}$ i.

Sur l'intervalle $\left[\frac{1}{4}, \frac{1}{2}\right]$, le graphe de g est celui de la parabole $x \to 8x^2 + 2x$ translaté de $\frac{1}{4}i + j$.

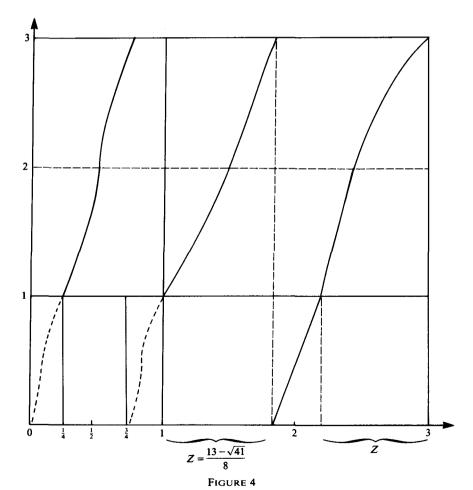
Sur l'intervalle $\left[\frac{1}{2}, \frac{3}{4}\right]$, c'est la même parabole transformée par translation et rotation.

Sur l'intervalle [1, 1+z], le graphe de g est celui de la parabole $x \to ax^2 + 2x$ translaté, a et z vérifiant les conditions:

$$\begin{cases} (ax^2+2x)_{x=z}=2\\ (2-2z)(2ax+2)_{x=z}=1. \end{cases}$$

Sur l'intervalle [3-z, 3], c'est le même parabole transformé par translation et rotation.

Enfin, sur l'intervalle [1+z, 3-z], g est linéaire telle que g(1+z)=0 et g(3-z)=1.



La preuve de la non existence d'a.c.i.p. est la même que celle donnée pour f, en induisant sur l'intervalle [1, 3]; une petite difficulté provient du fait que sur l'intervalle $\left[\frac{1}{4}, \frac{3}{4}\right]$, l'application est seulement C^1 , mais 1/f' étant convexe, elle a les mêmes propriétés qu'une fonction à Schartzien négatif.

Acknowledgment. B. Schmitt tient à remercier pour leur hospitalité les organisateurs de 'XVIIIe semestre on dynamical systems and ergodic theory' qui a eu lieu au Centre Banach à Varsovie, et durant lequel ce travail a été effectué.

REFERENCES

- [An] D. Anosov. Geodesic flows on closed Riemann manifolds with negative curvature. Proc. Steklov Institute of mathematics no. 90 (1967). Translated by: Amer. Math. Soc.: Providence, Rhode Island, 1969
- [Co] P. Collet. Preprint. Ecole Polytechnique. Centre physique théorique: Palaiseau.
- [Co-Ec] P. Collet & J. P. Eckman. Iterated Maps on the Interval as Dynamical Systems. Birkhäuser: 1980.
- [Ke] G. Keller. Generalized bounded variation and applications to piecewise monotonic transformations. Z. Warscheinlichkeitstheorie 69 (1985), 461-478.
- [Ko] Z. Kowalski. Invariant measures for piecewise monotonic transformations. Ins. Proc. 4th Winter-School on Prob. Karpacz, Poland, 1975. pp. 77-94. Lect. Notes Math. 472, Springer; Berlin-Heidelberg-New-York, 1975.
- [Ko-Sa] A. A. Kosjalin & E. A. Sandler. Ergodic properties of a certain class of piecewise smooth transformations of a segment (in Russian). Izvestija Vyssih Ucebryh Zaredinu, Matematika 3 (1972), 32-40.
- [Kr1] K. Kryzewski. On expanding mappings. Bull. Acad. Pol. Sci. Série Sciences Mathématiques, Astronomiques et Physiques 19 (1971), 23-24.
- [Kr2] K. Kryzewski. A remark on expanding mappings. Coll. Math. 41 (1979), 291-295.
- [La-Y] A. Lasota & J. A. Yorke. On the existence of invariant measures for piecewise monotonic transformations. *Trans. Amer. Math. Soc.* 186 (1973), 481-488.
- [Mi] M. Misiurewicz. Absolutely continuous measures for certain maps of an interval. Publications mathématiques de l'IHES 53 (1981)
- [Ne] J. Neveu. Bases Mathématiques du Calcul des Probabilités Masson et Cie: Paris, 1964.
- [Pa] W. Parry. On the β-expansion for real numbers. Acta. Math. Acad. Sc. Hungar. 11 (1960), 401-416.
- [Re] A. Renyi. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sc. Hungar. 8 (1957), 477-493.
- [Ry] M. Rychlik. Invariant measures for piecewise monotonic, piecewise $C^{1+\varepsilon}$ transformations. Preprint Warsaw University.
- [Se] B. Schmitt. Condition d'existence d'une mesure de probabilité absolument continue par rapport à la mesure de Lebesgue, invariants pour une transformation dilatante de l'intervalle. Préprint de l'Université de Bourgogne.
- [Wo] S. Wong. Some metric properties of piecewise monotonic mappings of the unit interval. Trans. Amer. Math. Soc. 246 (1978).