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Lower levels of dietary folate are associated with the development of epithelial cell tumours in
man, particularly colo-rectal cancer. In the majority of epidemiological studies blood folate or
reported folate intake have been shown to be inversely related to colo-rectal cancer risk. Folate,
via its pivotal role in C; metabolism, is crucial both for DNA synthesis and repair, and for
DNA methylation. This function is compromised when vitamin Bj, is low. Vitamin B, defi-
ciency has been shown to increase biomarkers of DNA damage in man but there is no evidence
directly linking low vitamin B, with cancer. Disturbingly, folate and vitamin B, deficiencies
are common in the general population, particularly in the underprivileged and the elderly. How
folate and/or vitamin B, deficiency influence carcinogenesis remains to be established, but it is
currently believed that they may act to decrease DNA methylation, resulting in proto-oncogene
activation, and/or to induce instability in the DNA molecule via a futile cycle of uracil mis-
incorporation and removal. The relative importance of these two pathways may become clear
by determining both DNA stability and cytosine methylation in individuals with different
polymorphic variants of key folate-metabolising enzymes. 5,10-Methylenetetrahydrofolate
reductase converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate and thereby con-
trols whether folate is employed for DNA synthesis or DNA methylation. Colo-rectal cancer
risk is decreased in subjects homozygous for a common variant (C677T) of the gene coding for
this enzyme, suggesting that DNA synthesis and repair may be ‘enhanced’ in these individuals.
Evidence from animal and human studies is presented here in support of folate acting to
maintain genomic stability through both these mechanisms.

Folate: Vitamin By,: DNA stability: DNA methylation: MTHFR: Colon cancer

Folate and colo-rectal cancer risk

Inadequate dietary folate has been implicated in the devel-
opment of several epithelial-cell cancers, including cancer
of the cervix, lung and breast (Glynn & Albanes, 1994).
However, the most convincing evidence linking low folate
intake with an increased risk of malignancy relates to colo-
rectal cancer (Prinz-Langenohl er al. 2001; Giovannucci,
2002; Potter, 2002). Cohort and case—control studies have
consistently shown an inverse relationship between colo-
rectal cancer incidence, reported intake of folate and
blood-cell folate concentrations (Benito et al. 1991;
Giovannucci et al. 1995; Giovannucci, 2002; Konings et al.
2002; Potter, 2002). Plasma and erythrocyte folate levels
are lower in colo-rectal cancer patients than in normal
subjects (Porcelli et al. 1996). Conversely, supplementation
with folic acid protects against the development of

colo-rectal neoplasia in high-risk patients with ulcerative
colitis (Lashner et al. 1997).

Folate, vitamin B;, and genomic stability

Folate has a fundamental role in DNA metabolism and
function through its ability to methylate cytosine and regu-
late gene expression, and via its role in nucleotide syn-
thesis and DNA repair (Fig. 1). It is currently believed that
folate deficiency may increase the risk of malignant trans-
formation by disrupting both these functions. 5-Methyl-
tetrahydrofolate, the major circulating form of folate,
acts as a cofactor in the conversion of homocysteine
to methionine. Methionine is subsequently metabolised to
S-adenosylmethionine, the principal methyl donor in the
majority of biochemical reactions, including cytosine
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Fig. 1. Simplified diagram showing how folate (and vitamin Bi,) are strategic cofactors in DNA methylation
and DNA synthesis and repair. TS, thymidylate synthase; THF, tetrahydrofolate; DHF, dihydrofolate; MTHFR,
5,10-methylenetetrahydrofolate reductase; MS, methionine synthase; HCY, homocysteine; SAM, S-adenosyl-

methionine; SAH, S-adenosylhomocysteine; MT, DNA methyltransferase.

methylation in DNA. DNA methylation controls gene ex-
pression. Under conditions of folate deficiency S-adenosyl-
methionine is depleted and S-adenosylhomocysteine the
product of methyltransferase activity is elevated, leading
to DNA hypomethylation (Yi et al. 2000), inappropriate
proto-oncogene activation and transcription, and malignant
transformation (Feinberg & Vogelstein, 1983; Fang et al.
1996; Fang & Xiao, 2001).

Folic acid is essential for the synthesis of purines and
the pyrimidine nucleoside thymidine. dUMP is converted
to TMP by thymidylate synthase using 5,10-methylene-
tetrahydrofolate as a methyl donor. If folate is low dUMP
may accumulate, inducing uracil misincorporation into
DNA in place of thymine. DNA repair enzymes act to
remove misincorporated uracil from the DNA strand,
causing a temporary breakage in the DNA molecule that
is sealed by DNA ligase. However, if folate is continually
limited, uracil misincorporation and repair may occur
repeatedly in a ‘catastrophic’ or ‘futile’ repair cycle causing
frequent breakage of the DNA molecule, chromosomal
damage and malignant transformation (Reidy, 1987; Blount
& Ames, 1994). Moreover, purine biosynthesis is nega-
tively affected by low folate (10-formyltetrahydrofolate),
similarly reducing the availability of nucleotides for DNA
synthesis and repair (Fig. 1).

A deficiency in vitamin B, would be expected to
induce DNA instability in the same way as folate defi-
ciency. Both 5-methyltetrahydrofolate and vitamin B, are
required for the methylation of homocysteine to methio-
nine by methionine synthase (Fig. 1). When vitamin B,
is limiting 5-methyltetrahydrofolate is not metabolised
to tetrahydrofolate, which in turns reduces the availability
of 5,10-methylenetetrahydrofolate in the methylation of
dUMP to dTMP for DNA synthesis and repair. Similarly,
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failure of 5-methyltetrahydrofolate to act in the remethyl-
ation of homocysteine to methionine limits the produc-
tion of S-adenosylmethionine, which in turn may result
in DNA hypomethylation and proto-oncogene activation.
While there is no direct evidence linking vitamin B,
deficiency with genomic instability in human cells in vitro
(Fenech, 2001a), vitamin B;, deficiency does increase
DNA damage in man. Endogenous micronuclei frequency
(as an indicator of chromosomal damage) is negatively
associated with serum vitamin B, (Fenech, 1997), and
can be markedly reduced by vitamin B, supplementation
(Fenech et al. 1998). Although the geno-protective effect
of vitamin Bj, in these studies is reported to act inde-
pendently of folate (Fenech, 1997; Fenech et al. 1998),
there is little evidence of a relationship between vitamin
B> and cancer, and this issue will not be discussed
further.

Data from in vitro experiments and in vivo rodent and
human studies support the theory that folate (and where
appropriate vitamin B;,) deficiency can act to induce
genomic instability and carcinogenesis. This proposition is
discussed in the remainder of the present review.

Folate deficiency and altered DNA methylation

Methylation of genes at specific locations in the DNA
molecule either stops or reduces the rate of transcription.
In this way site-specific DNA methylation controls gene
expression and function. Alterations or disruption either
to global or site-specific DNA methylation may increase
malignant transformation. Changes in S-adenosylmethio-
nine : S-adenosylhomocysteine ratio and subsequent global
DNA hypomethylation are associated with tumour pro-
gression and multiplicity in the Min mouse model of colon
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cancer (Sibani efr al. 2002). Aberrant DNA methylation is
one of the most common molecular changes in human
cancers. Global DNA hypomethylation is frequently found
in human tumours and is an early event in carcinogenesis,
while hypermethylation of the promoter region of certain
tumour suppressor genes may accelerate the carcinogenic
process (Fang & Xiao, 2001; Johanning et al. 2002).

It has long been established that extreme methyl
depletion alters genomic methylation. For example, global
genomic DNA hypomethylation is induced in rats fed
a methyl-deficient diet (deficient in methionine, choline,
folic acid and vitamin B;,), and mRNA for the specific
proto-oncogenes c-myc, c-fos and c-Ha-ras is elevated
(Wainfain & Poirier, 1992). However, the effect of folate
deficiency alone on DNA methylation varies markedly
according to the tissue under investigation, the rodent
model and the treatment regimen employed. Rats fed a
folate-depleted diet for 4 weeks exhibit hypomethylated
DNA in the liver (Balaghi & Wagner, 1993), while folate
deficiency appears specifically to favour hypomethylation
of p53 exons 6 and 7 from rat colon mucosa. Moreover,
folate supplementation can reverse chemically-induced
hypomethylation in exon 8 of the p53 proto-oncogene
(Kim et al. 1996). However, two studies in rats have
reported that folate deficiency does not induce hypomethyl-
ation, either in total cellular DNA or site-specific methyl-
ation in hepatic c-myc or colonic p53 (promoter and
exon 6-7; Kim et al. 1995; Sohn et al. 2003), even though
colonic mucosal folate concentrations are markedly de-
pleted (Sohn ef al. 2003). Additionally, in rats the methyl-
ation of hepatic, blood and colonocyte DNA-cytosine is
not influenced by folate status (Duthie et al. 2000c).

The evidence demonstrating a role for folate deficiency
in the modulation of either global or gene-specific DNA
methylation in man is equally inconsistent. DNA hypo-
methylation (measured in colon tissue) and low folate
status are associated with an increased risk of colo-rectal
neoplasia (Pufulete et al. 2003a). Few studies have
measured DNA methylation in normal colo-rectal mucosa,
although a recent study suggests that genomic DNA methyl-
ation in this tissue is inversely associated with folate status
(Pufulete er al. 2003b). DNA hypomethylation is induced
in lymphocytes isolated from healthy post-menopausal
women with subclinical folate deficiency (mean plasma
folate 9-3nmol/l compared with 19-5nmol/l at baseline)
following supplementation with folic acid at 56 nug/d for
5 weeks and 111ug/d for 4 weeks, and is reversible
following intervention with folate at 286516 pg/d (Jacob
et al. 1998). These effects on methylation have been
confirmed in a study of elderly women consuming a
moderately-folate-depleted diet (Rampersaud er al. 2000).
In contrast, in subjects with normal folate status, lympho-
cyte genomic DNA methylation is unaffected by folate
status, and supplementation with folate does not alter
methylation status (Fenech et al. 1998). This finding has
been confirmed in a recent placebo-controlled study in
which healthy subjects were supplemented with folic acid
(1-2mg/d) for 12 weeks (GB Basten, MH Hill, N Vaughan,
SJ Duthie and HJ Powers, unpublished results). Global
DNA methylation remains unchanged throughout the study
period (Fig. 2).
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Fig. 2. The effect of folate supplementation on global cytosine
methylation (A) and endogenous uracil misincorporation (B) in
human lymphocytes in vivo. Volunteers were given 1-2mg folic
acid/d (n 28) or placebo (n 33) for 12 weeks. Uracil was measured
in isolated lymphocytes by single-cell gel electrophoresis (Duthie &
Hawdon, 1998). Global DNA methylation was determined by
measuring the incorporation of C33Hs groups into DNA (Balaghi &
Wagner, 1993). Values are medians (—), interquartile ranges and
outliers, represented by vertical bars, at week 0 (@) or week 12
(0). Median value was significantly lower than the corresponding
value at week 0: *P<0-05.

Gene-specific DNA hypermethylation occurs during
tumour development (Jones & Laird, 1999). A recent
in vitro study to determine the impact of folate deficiency
on global gene expression in a human naso-pharyngeal
carcinoma cell line (KB) has shown that mRNA from only
eight genes (sampled from >2000) are altered by folate
deficiency, with three genes being up regulated and five
genes being down regulated (Jhaveri et al. 2001). DNA
from one of the down-regulated genes, H-cadherin, a
protein that maintains cell-to-cell adhesion and tissue
structure, is hypermethylated. Dysfunction of H-cadherin
has been implicated in tumorigenesis (Takeichi, 1993).
Folate and methyl deficiencies also increase site-specific
DNA methylation (hypermethylation) within the p53 gene
in rat liver (Pogribny et al. 1995) and de novo methylation
of the p16 tumour suppressor gene promoter (Pogribny &
James, 2002). Hypermethylation of p/6 is an early pre-
neoplastic event that precedes tumorigenesis (Pogribny &
James, 2002).

While an increased risk for cancer might be explained
by DNA hypermethylation with subsequent silencing of
tumour suppressor genes (Esteller ef al. 1999), the role of
low folate levels in this mechanism is still unclear.

Folate deficiency, DNA synthesis and repair

In vitro, folate deficiency negatively affects intracellular
DNA nucleotide precursor pools (James et al. 1994) and
dose-dependently increases uracil misincorporation, chro-
mosomal breakage (measured as micronuclei frequency)
and chromosomal abnormalities in human lymphocytes
(Duthie & Hawdon, 1998; Crott et al. 2001a). Moreover,
proliferation is abnormal in these cells and they are unable
to repair oxidative DNA damage efficiently (Duthie &
Hawdon, 1998). Similar detrimental effects (increased
DNA strand breakage, uracil misincorporation and altered
DNA base excision repair) are observed in immortalised
human colonocytes grown under folate-deficient conditions
(Duthie et al. 2000b). Folate deficiency has also been
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shown to increase mutagenesis and malignant transforma-
tion in cultured rodent cells (Branda et al. 1997; Melnyk
et al. 1999).

Folate deficiency similarly alters nucleotide synthesis,
genomic stability and DNA repair in animal models. In
splenic lymphocytes isolated from folate-deficient rats
DNA strand breakage is increased and intracellular NAD,
the substrate for poly(ADP ribose) polymerase, is depleted,
indicating up-regulation of DNA repair activity (James &
Yin, 1989; James er al. 1992). DNA strand breakage is
increased progressively within exons 5-8 of the tumour
suppressor gene p53 in folate-deficient rat colon. Con-
versely, supplementation with folate markedly increases
pS3 integrity (Kim et al. 2000). In these experiments DNA
strand breakage is correlated with colonic mucosal folate
levels (Kim et al. 2000). Uracil misincorporation is
increased in the liver of rats fed a combined methyl-
deficient diet (folate-, methionine- and choline-free diets;
Pogribny et al. 1997) and in the liver of partially-hepat-
ectomised rats treated with methotrexate (to reduce thymine
synthesis; Blount & Ames, 1994). A similar increase in
uracil misincorporation (2-3-fold) and DNA strand break-
age occurs in lymphocytes isolated from rats fed only a
folate-deficient diet for 8 weeks (Duthie et al. 2000a).

Folate status influences genomic stability in man. Uracil
misincorporation is elevated in bone marrow cells from
subjects with megaloblastic anaemia (as a result of severe
folate deficiency), while thymidine levels are considerably
depleted (Wickramasinghe & Fida, 1994). Bone marrow
and blood DNA from folate-deficient splenectomised
subjects (erythrocyte folate <140ng/ml) contain eight to
nine times more uracil and there are three times as many
micronucleated reticulocytes and erythrocytes compared
with subjects with normal (>140ng/ml) erythrocyte folate
(Blount et al. 1997). Furthermore, supplementation with
folic acid (5 mg/d for 8 weeks) markedly decreases uracil
misincorporation and micronuclei frequency. These data
support the hypothesis that folate deficiency can induce
genomic instability in man, and that intervention with
folate, under these conditions, can reverse this process.

However, the impact of folate on DNA stability in
individuals who do not have frank folate deficiency is less
clear. Folate status does not influence endogenous micro-
nuclei frequency in young adults with normal blood folate
levels (Fenech et al. 1998). Moreover, while supplemen-
tation with folate and vitamin B, (3-5 times the rec-
ommended dietary intake for each vitamin for 12 weeks
followed by 10 times the recommended dietary intake for
a further 12 weeks) decreases micronuclei frequency by
25% in subjects in the high 50th percentile for this
biomarker; this decrease is associated only with elevated
blood vitamin B, levels and not erythrocyte folate levels.
However, it has recently been shown that supplementing
healthy volunteers with folic acid (1-2 mg/d) for 3 months
significantly (P<0-05) reduces endogenous uracil levels
in isolated lymphocytes (Fig. 2). This positive effect of
folate on DNA stability is specific against uracil mis-
incorporation, as DNA strand breakage and total cytosine
methylation remain unchanged (Fig. 2; GB Basten, MH
Hill, N Vaughan, SJ Duthie and HJ Powers, unpublished
results).
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Folate, colo-rectal cancer and genetic susceptibility

It had been anticipated that the relative importance of
the two previously mentioned mechanisms in the aetiology
of folate deficiency and malignant transformation would
become apparent by determining DNA stability and cyto-
sine methylation in individuals with specific polymorphisms
in critical folate-metabolising genes. Methylenetetrahydro-
folate reductase (MTHFR) is an important regulatory
enzyme in the metabolism of folate. MTHFR converts
5,10-methylenetetrahydrofolate irreversibly to 5-methyl-
tetrahydrofolate, the principal circulating form of folate
and the methyl donor in the remethylation of homocysteine
to methionine. This key protein, therefore, controls whether
folate is employed for DNA synthesis or DNA methyl-
ation. The most common variant of the MTHFR gene is
located at nucleotide 677 (C677T) and causes a valine for
alanine substitution in the protein that is associated with
increased thermolability and decreased enzyme activity
(Frosst et al. 1995). Heterozygotes (CT) or homozygotes
(TT) have a markedly reduced in vitro enzyme activity
(65 and 30% of the wild type (CC) respectively; Frosst
et al. 1995). Homozygosity is associated with changes in
the normal distribution of blood folates and homocysteine.
Erythrocytes from individuals homozygous for the TT
variant have decreased 5-methylfolate levels with a con-
comitant increase in formylfolate derivatives (Bagley &
Selhub, 1998). Similarly, plasma folate is decreased and
homocysteine elevated in TT subjects (Jacques et al. 1996;
Narayanan et al. 2004). The frequency of homozygosity
for the C677T variant of the MTHFR gene varies between
geographic areas and by ethnic origin, but is generally
reported as approximately 12% in northern Europe and in
white populations in North America (Bailley & Gregory,
1999).

Evidence is now emerging as to how DNA stability and
carcinogenesis are affected by polymorphisms in the
MTHEFR gene. Impaired MTHFR activity might be expected
to increase cancer risk as a result of reduced 5-methyl-
tetrahydrofolate levels, with associated DNA hypomethyl-
ation and proto-oncogene activation (Fig. 3). However,
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Fig. 3. Schematic diagram highlighting the pivotal role that the
5,10-methylenetetrahydrofolate reductase (MTHFR) protein plays
in genomic stability and the potential imbalance that polymorph-
isms in the gene may cause. (a), Thymidine synthesis; (b), purine
synthesis; (c), DNA methylation. THF, tetrahydrofolate; HCY, homo-
cysteine: SAM, S-adenosylmethionine; SAH, S-adenosylhomo-
cysteine.
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homozygosity for the C677T variant is actually associated,
at least in the majority of studies, with a decrease in colo-
rectal cancer risk (Chen et al. 1996; Ma et al. 1997; Sharp
& Little, 2004). Individuals homozygous for the variant
(TT) generally have a reduced risk of developing colo-
rectal cancer compared with heterozygotes or wild type
(the relative risks are generally in the range 0-45-0-9), at
least in subjects with normal plasma folate levels (Sharp
& Little, 2004). The relationship between MTHFR geno-
type and risk of colon cancer appears to be profoundly
influenced by diet and environment, with low folate and
methyl donor status and high alcohol intake (which
adversely affects folate metabolism) either negating the in-
verse association or increasing risk (Sharp & Little, 2004).
The discovery that this polymorphism in the MTHFR gene
in fact decreases colon cancer risk is surprising, given that
impaired MTHFR enzyme activity and low blood folate
would, based on current epidemiological evidence, be
expected to increase risk of malignancy. However, low
MTHFR activity may increase plasma 5,10-methylene-
tetrahydrofolate, which as discussed earlier is crucial in the
production of thymidine and purines for DNA synthesis
and repair, and thereby may actually enhance DNA stabi-
lity by preventing uracil misincorporation and chromo-
somal breakage (Fig. 3).

Data on the influence of the MTHFR C677T poly-
morphism on global or site-specific DNA methylation
status is inconsistent. Global DNA methylation status
in lymphocytes isolated from approximately 200 healthy
subjects is similar for all genotypes, and independent of
folate status (Narayanan er al. 2004). In contrast, global
DNA hypomethylation has been reported in leucocytes
from nine TT individuals compared with ten subjects
with the CC genotype (Choi et al. 1999; Stern et al. 2000),
yet methylation at exon 5-8 of the p53 gene is similar
for all variants (Choi et al. 1999). The results of a larger
study have shown that genomic DNA methylation in
peripheral blood mononuclear cells is lower in TT com-
pared with CC individuals when plasma folate concen-
trations are low (Friso et al. 2002). 5-Methylcytosine levels
are lower in normal human colon, breast and lung tissue
from CT and TT individuals (Paz er al. 2002). Contrary
to expectations, this relationship between genotype and
global DNA methylation is not apparent in primary tumour
samples from the same subjects. Moreover, the level of
CpG island hypermethylation in specific tumour suppressor
genes is similar for all three MTHFR variants (Paz et al.
2002).

In contrast, in vitro and in vivo studies have consistently
found that DNA stability (measured using a variety of bio-
markers) is unaffected by genotype. The ability of lympho-
cyte DNA in vitro to resist uracil misincorporation and
chromosomal damage is comparable for all genotypes
(Crott et al. 2001a,b). In vivo, endogenous DNA strand
breakage, sister chromatid exchange and micronuclei
formation in blood cells is similar for all MTHFR C677T
variants (Zijno et al. 2003). Moreover, endogenous uracil
misincorporation in lymphocyte DNA from healthy control
subjects is unaffected by C677T genotype, and is inde-
pendent of folate status and smoking habit (Narayanan
et al. 2004).
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Thus, there is little support for the hypothesis that the
C677T MTHFR variant reduces the risk of malignancy by
increasing the availability of 5,10-methylenetetrahydro-
folate for thymidine and purine synthesis, decreasing uracil
misincorporation into DNA and thereby increasing geno-
mic stability, which is disappointing. However, necessarily
the majority of data has been collected in studies using
surrogate tissues such as peripheral blood lymphocytes,
and the effect genotype on uracil misincorporation and
DNA stability in the human colon remains unknown.
Moreover, the influence that other dietary micronutrients
such as vitamin Bg and riboflavin have on MTHFR
activity, DNA stability and cancer risk has not been estab-
lished (McNulty ef al. 2002; Moat et al. 2003).

As discussed previously, MTHFR activity (and colo-
rectal cancer risk) is profoundly influenced by folate status.
A recent human study investigating the associations
between the C677T MTHFR polymorphism, smoking and
folate status on colonic dysplasia has reported some startl-
ing findings (Ulvik ez al. 2001). Folate status and genotype
act to modulate the procarcinogenic effect of smoking. In
smokers with the T allele (both CT and TT individuals)
low folate intake is associated with an increased risk of
developing high-risk adenomas. This finding could be
explained by the induction of DNA hypomethylation by
low folate and reduced enzyme activity (see earlier, p. 574).
However, high folate status and smoking in subjects with
the homozygous wild-type genotype (CC) also increases
the risk of malignancy, presumably by accelerating the
growth of already initiated (by smoking) colon epithelial
cells (Ulvik et al. 2001). While this complex study could
be criticised for lacking statistical power after stratifying
subjects according to genotype, folate status and smoking
habit, data from animal models also show that folate can
act either to reduce malignant transformation or to accel-
erate carcinogenesis. This differential effect is critically
dependent on the time of intervention and the model
system employed. Rats treated with the colon carcinogen
azoxymethane and made folate deficient have markedly
fewer aberrant crypt foci (an early indicator of malignant
transformation) in the colon than control animals (Le Leu
et al. 2000). Similarly, folate given before establishment
of neoplastic foci lowers the number of colonic aberrant
crypt foci and adenomas in a mouse model of familial
colo-rectal cancer combined with a deletion in mismatch
repair (Apc+/—Msh2—-/—mice; Song et al. 2000). Con-
versely, when administered after the development of
neoplastic lesions in the same model elevated folate acts
to increase formation of intestinal adenomas (Song et al.
2000).

Thus, folate may be protective against initiation of
carcinogenesis, but may act to accelerate progression of
the cancer in pre-existing neoplastic cells.

Is it possible to set an RDA for folate and vitamin B,
to ensure optimum DNA stability?

Deficiencies in micronutrients that are either required as
cofactors for DNA metabolism and repair (like folate and
vitamin Bj,) or form an integral part of the DNA molecule
(like Zn) may have as destructive an effect on DNA as
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radiation or chemical carcinogens (Ames, 2001). This
situation has led to the concept of creating a RDA to
ensure optimum genomic stability in man (Ames, 2001;
Fenech, 2001b; for review, see Fenech, 2003). Currently,
RDA for vitamins and minerals are based on the pre-
vention of acute overt deficiencies. A RDA allowing
optimum genomic stability would require redefinition
based on the prevention of cancer (Fenech, 2003). It is
clear that folate (and vitamin B,,) is crucial for normal
DNA metabolism and repair and for controlling appro-
priate gene expression, and that deficiencies in both B
vitamins cause genomic instability in vitro and in vivo. Is it
possible to determine what level of B vitamins may be
optimal for preventing damage to DNA by further exam-
ining data from experimental studies? Uracil misincorpora-
tion and DNA strand breakage are negatively correlated
with folic acid levels, and decrease dose-dependently in
cultured human lymphocytes and colonocytes supplemen-
ted with increasing concentrations of folic acid (Duthie &
Hawdon, 1998; Duthie et al. 2000b). Both biomarkers of
DNA damage are minimised after in vitro intervention
with 100 nm-folic acid (Duthie & Hawdon, 1998; Duthie
et al. 2000b). Similarly, uracil misincorporation and micro-
nuclei frequency are at their lowest in cultured human
lymphocytes supplemented with 120 nm-folic acid (Crott
et al. 2001a,b). In a placebo-controlled human study inter-
vention with folic acid (700 ng) and vitamin By, (2:5ug)
for several months has been found to reduce lymphocyte
micronuclei frequency by 25% (Fenech et al. 1998). In a
recent review of data from human trials Fenech (2003) has
proposed that genomic instability can be minimised when
plasma folate is >34 nm, erythrocyte folate is >700nm and
vitamin B, is >300pM. Studies using a decrease in
micronuclei frequency as an indicator of enhanced geno-
mic stability indicate that a RDA of 700 ug/d for folic
acid and 7pg/d for vitamin B, would be sufficient to
‘ensure’ genomic stability in young adults (Fenech, 20015).
Increasing folate intake can markedly decrease endogenous
uracil misincorporation in lymphocyte DNA from volun-
teers taking 1:2 mg folic acid/d for 3 months (GB Basten,
MH Hill, N Vaughan, SJ Duthie and HJ Powers, unpub-
lished results). It remains to be established whether a lower
intake of folate would have a similar beneficial effect.

The earlier data suggest that genomic stability can be
improved by increasing intake of folate (and vitamin B,),
above the current RDA, and it is likely that this increase
can only be achieved through supplementation or food
fortification. This method might also have additional bene-
fits in terms of decreased incidence of neural-tube defects,
heart disease and ageing-associated degenerative disorders
such as cognitive impairment.

Summary

In addition to exogenous and endogenous mutagens and
carcinogens, inappropriate nutrition can induce DNA
damage and ultimately cancer.

Data from human observational and supplementation
studies, animal models and in vitro cell-culture experi-
ments strongly support a role for folate in maintaining
genomic stability, acting either through its ability to
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maintain normal DNA synthesis and repair or through its
ability to control gene expression via DNA methylation.
Currently, the relative importance of these pathways is
unknown.

Risk from cancer appears to be influenced by poly-
morphisms in key folate-metabolising genes, although the
mechanism of cytoprotection remains elusive. However,
while it is clear that folate protects against DNA damage
and initiation of carcinogenesis, recent data from several
animal experiments and one human population study
suggest that high folate intakes may be detrimental to
individuals with specific genetic polymorphisms who also
smoke, by accelerating progression of cancer. This dis-
turbing finding, together with the data from human
intervention studies suggesting that the dietary intake of
folate required to optimise DNA stability is substantially
higher than the current RDA, obviously raises important
safety and ethical concerns in the debate over the potential
benefits to human health of mandatory fortification of
certain foods with folate.
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