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ON THE SPLITTING OF MODULES AND 
ABELIAN GROUPS 

PAUL HILL 

In a fundamental paper on torsion-free abelian groups, R. Baer [1] proved 
that the group P of all sequences of integers with respect to componentwise 
addition is not free. This means precisely that P is not a direct sum of infinite 
cyclic groups. However, E. Specker proved in [9] that P has the property 
that any countable subgroup is free. Since an infinite abelian group G is called 
Ka-free if each subgroup of rank less than Xff is free, these results are equivalent 
to: P is Ki-free but not free. Specker also proved in [9] that the subgroup 
F of P consisting of all bounded sequences of integers is, in fact, K2-free. Thus 
the continuum hypothesis, together with Specker's result, implies that F is 
free. However, without the continuum hypothesis, the freeness of F remained 
an open question until it was proved to be free by G. Nôbeling in [8]. Actually, 
Nôbeling proved the corresponding result for an arbitrary product of integers, 
not just for a countable product, and Nôbeling proved that certain subgroups 
(that he called Specker subgroups) always split out of one another. Nôbeling's 
results were generalized to modules by L. Kaup and M. Keane in [7] and 
independently by L. Fuchs and K. Rangaswamy in [2]. The following theorem 
contains an abstract version of these results and has the advantage that its 
proof is simpler than the original proof of the special case due to Nôbeling [8]. 
As will soon become apparent, our approach is different. 

THEOREM 1. Let^ be a family of R-modules (membership of which is inde
pendent of notation) closed with respect to arbitrary direct sums including the 
vacuous sum representing 0. For a Boolean ring 3!, suppose that A —* M(A) 
is a function (not necessarily onto) from the subrings of 38 to the submodules of 
an R-module P that satisfies the following conditions: 

(1) M (A) C M(B) if A QB; 
(2) M (A C\B) = M (A) r\ M(B); 
(3) M({A, B}) = (M(A), M(B)) whenever AB Ç B; the module generated 

by X and Y is denoted by (X, F), whereas, the ring generated by A and B is 
denoted by {A,B} ; 

(4) M{{%\) = Af(0) 0 Cxfor some CX £&; 
(5) M(\J Aa) = (U M(Aa)) © X , where X e &~', whenever A0 Ç Ax C . . . 

Q Aa C . . . is a chain of subrings of A leading up to A = \J Aa. 
ThenM(B) = M (A) © X for some X ^&~ if A Q B. In particular, M\SS) = 
M(0) © K where X ç f . Thus M(0S) G ^ i f M(0) Ç J r . 
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Proof. The proof is by induction on \B\, the cardinality of B. It follows from 
condition (5) that it suffices to prove the theorem in case B is a simple exten
sion of A since we can ascend from A to an arbitrary B 3 A with a chain of 
simple extensions taking unions at limit ordinals. Thus suppose that 
B = {A, x} is a simple extension of A. Next, we observe that there is no loss 
of generality in assuming that B = {A, Ax}. This, of course, is the case if 
1 Ç A or, more generally, if x Ç {A, Ax}. But if x Ç? {̂ 4, ylx}, the reason that 
there is no loss of generality in assuming that B = {A, Ax} is based on the 
fact that M({A,x}) = M({A,Ax}) ®K whereK Ç #~. In order to show that 
M({A,x}) = M ({A, Ax}) ®K, we observe that x{A,Ax} C {4, 4 * } . Hence 
by condition (3), 

M({A,x}) = M({{^,^x},x}) = <M({^4*}) f M({*})> 
and 

M({^ ,x}) /M({^ ,^x})^ ikT({x}) / i f ({x} H {A, Ax}) = M({*})/Af(0). 

Since Af({*}) = M(0) © Ĉ  by condition (4), we have that 

M({A,x}) = M({A,Ax}) ®CX, 

where Cx Ç &~. Thus the problem is reduced to the case that B = {A, Ax}, so 
we shall assume that B = {A, Ax}. The next step is the main reduction. Since 
M(B) = M({A,Ax}) = (M(A), M(Ax)), 

(*) M(B)/M(A) ^ M(Ax)/M(A H Ax) 

and 
M(B) = M (A) © X if M (Ax) = M (A H Ax) © X . 

Thus the theorem is already proved (inductively) for finite B since 
1-4*1 S \A\ S \B\ and \A\ < \B\ unless A = B. However, the reduction (*) 
is more significant than merely proving the theorem in case B is finite, for 
A C\ Ax is an ideal of Ax not simply a subring. As we have already observed 
from the reduction (*), the conclusion of the theorem holds if Ax is finite. 
Thus we assume that Ax is infinite. Since Ax is a Boolean ring, there exists 
an ascending chain 

0 = Co Ç Ci Ç . . . Ç Ca Ç . . . , a < X, 

of subrings of Ax such that: 
(i) \Ca\ < \Ax\ for each a < X; 

(ii) Cfi = \Ja<pCa if P is a limit ordinal less than X ; 
(iii) Ax = Ua<\Ca. 

In other words, we can reach the infinite Boolean ring Ax with a chain of 
smaller subrings. 

Since A P\ Ax is an ideal of Ax, we observe that Ca(A C\ Ax) Ç i H Ax 
and M ({A C\ Ax, Ca}) = (M(A H Ax), M(Ca)) for each a. Therefore, 

M({A H Ax, Ca+1} )/M({A H Ax, Ca} ) ^ M(Ca+1)/M(Ca+1 H {^ H 4* , C„} ), 
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and recall that \Ca\ < \Ax\ ^ \A\ g> \B\. Since 

M(ca+1) = M(ca+1 r\ {A n Ax, ca) ) © x 

for some X G S^ by the induction hypothesis, we have that 

M({A H Ax, Ca+1} ) = M({AC\ Ax, Ca) ) © X. 

Since Co = 0 and since Ax = U«<xCa, we conclude (because we have hypothe
sized, through condition (5), that nothing goes wrong at limits) that 

M (Ax) = M(A H Ax) © F, 

where Y Ç i ^ . In view of the reduction (*), this completes the proof of the 
theorem. 

The conclusion of the following corollary is essentially contained in [2] and 
[7] ; for Z-modules and for G = Z, it is Nobeling's result. 

COROLLARY 1. Let G be an R-module and, for an arbitrary index set I, let 
P = Ilz€7 Gt where Gt = G for each i Ç J. Denote by Se the Boolean ring of all 
subsets of I. For each subring A of Se, define the submodule M (A) of P by: 

M{A) = (gtchfai) : gt e G and at 6 A), 

where gichfai) denotes the function whose value is gf on at and zero elsewhere. If 
A QB, then M(B) = M (A) © Nwhere N = £ © G. In particular, M (Se) = 
^2 © G, that is, the module of all finite valued functions (with pointwise addition) 
from I to G is isomorphic to a direct sum of the module G. 

Proof. The i^-modules that can be expressed as a direct sum of the i^-module 
G will constitute the family J^ . Using Theorem 1, we need to show only that 
the function M that we have denned satisfies condition ( l ) - (5) , for it is clear 
that M(0) = 0. Likewise, it is obvious that M (B) 3 M (A) if B Z> A. Since 
M(\J Aa) = U M(Aa) for a chain A^ÇL AiÇ. . . . Ç. Aa . . . , condition (5) 
is also trivial. Condition (4) is equally trivial, for M({x}) = G since M({x)) 
represents the constant functions from the set x to G. This leaves the verifica
tion of conditions (2) and (3). If AB Ç B, then {A, B] = A + B. Thus in 
order to show that M({A,B}) = (M(A), M(B)), it suffices to show that 
g ch(a + 6) e (M(A), M(B)) if a G A, b £ B and g G G. However, 

g(ch(a + b) = g ch(a) + g ch(b) - 2g ch(ab) 

shows that g ch(a + b) G (M(A), M(B)). Finally, the condition that 
M (A C\B) = M (A) H M(B) follows from the fact an element x G M (A) 
has a unique representation, for some positive integer n, of the form 
x = XT*=i gi ch(cii) where the elements gt are distinct in G, a* G A and 
atfij = 0 if i T^ j . By definition of M(A), we know that x = S?=ig* ch(a*). 
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T h e representation with ataj = Oiîi =é j Can easily be established by induction 
on m. For example, 

gi ch(a i ) + g2 ch(a2) = gi ch(ai + aia2) + (gi + £2) ch(aia 2) 

+ g2ch(a2 + am), 

and terms having equal coefficients can then be collected to obtain the desired 
representat ion. 

Remark. A brief analysis of the submodule M({x)) and of the reduction (*) 
in the proof of Theorem 1 makes it apparent t ha t the condition tha t N, the 
complement of M (A) in M(B), has a characteristic G-basis can be carried 
along in Corollary 1 with no difficulty; compare [7] and [8]. 

Recall t ha t a subgroup B of an abelian group G is called a basic subgroup 
if B is pure, B is a direct sum of cyclic groups, and G/B is divisible. Griffith 
[3, p . 103] points out t ha t the group P = IIxo Z has a basic subgroup. In the 
next corollary, we observe tha t any product of integers has, in fact, a dis
tinguished basic subgroup. 

COROLLARY 2. / / P is an arbitrary product of integers and if F denotes the 
subgroup consisting of those elements in P that have a finite component spectrum, 
then F is a basic subgroup of P. 

Proof. By Nobeling's result (Corollary 1 with R = Z = G), F is free. 
Fur thermore , it is routine to prove tha t F is pure in P. T h u s it suffices to show 
t h a t PIF is divisible. Let x G P and let d be an arbi t rary positive integer. We 
can write x = J^nez nch(an), where an is the support of g a t the integer n. 
Let t ing n = dqn — rn with |rw| ^ d, we see t ha t x — Xl^çz rn ch(an) is divisible 
in P by d. Since J2nez rn ch(an) is contained in F, the corollary is proved. 

T h e Ni-freeness of a product P = I I Z of integers and the freeness of F are 
unified in the result t h a t follows. 

COROLLARY 3. Let P = TLiei Zf be a product of integers (Zt = Z) and let F, 
as before, denote the elements of P that have a finite component spectrum. Any 
countable extension of F in P is free. 

Proof. W e know tha t F, itself, is free. Wri te F = ^2J^J(XJ), and let 
H = (F, C) where C is a countable subgroup of P. Let K0 = F C\ C and 
choose a countable subset J ( 0 ) of / so t ha t KQ Ç J2jej(0)(%j)> Now define 

Let K\ = F C\ Ci, and repeat infinitely the process to obtain an ascending 
sequence of countable subgroups 

C Ç C i Ç C 2 c , , , ç c n . . . 
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and subsets J(n) such that F C\ Cn Ç J2j€J(n)(%j) and Sye^c») (XJ) £ d+i« 
Now, letting D = Uw<wCre and X = Un<o>J(n), we observe that D is countable 
and D C\ F = Y,J£K{XJ)- Hence 

(F,D)=D® Z <*,>, 

a free group. Since H = (F, C) C (F, D), H is free. 

The preceding corollary leads immediately to the following result. 

COROLLARY 4. Any countable subgroup of a product of integers is contained 
in a basic subgroup. 

Proof. Let C be any countable subgroup of P = I I Z and let F be the 
elements in P that have a finite component spectrum. Since F is pure in P, 
there exists a countable extension K of F containing C that is pure in P; 
purification over F does not alter infinite cardinals. By Corollary 3, K is free. 
Obviously, P/K is divisible since P/F is divisible. Thus K is a basic subgroup 
of P containing C. 

We shall now use the freeness of F (in Corollaries 2 and 3) to obtain the 
solution to a problem raised by E. Weinberg [10] in 1963 concerning lattice 
ordered groups. 

THEOREM 2. The free abelian l-group over a free abelian group is free (as an 
unordered group). 

Proof. For an arbitrary cardinal m, let A = 2 m Z be a free abelian group 
and let A* be the free abelian /-group over A. One description of A* is the 
following. Let T represent the collection of all total orders on the group A, 
and form the cardinal product C = YlteT [+] A t, where A t denotes A endowed 
with the total order t G T. Let ô be the diagonal map of A into C; 8(a) = (at) 
where at = a for each t G T. Finally, A* is the /-subgroup of C generated by 
ô(A). Any element x G A* can be written in the form 

x = V A à(aitj) 
i i 

where aitj G A and i and j range over finite sets. Since A t is totally ordered, 
xt is one of the elements aitj for each ^-component xt of x. Thus the set {xt} teT 

is finite. Moreover, A t = A = ^m Z is free, so each xt involves only a finite 
number of integers. We conclude that the Z-components of a fixed element 

X£A*Q n [+}At= n i+ife^) 
is a finite set. Therefore, A* is free as an unordered abelian group. 

As we have mentioned, a torsion-free abelian group is called Ka-free if each 
subgroup of rank less than X* is free. By a theorem of Pontryagin, No-freeness 
implies Ki-freeness. However, it is well-known that Ki-freeness does not imply 
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X2-freeness. In particular, a group can be Xi-free without being free. Indeed, 
it is known (see, for example, [3, p . 101]) t ha t any product of integers is 
Xi-free, bu t an infinite product of integers is never X2-free. 

Lit t le, if anything, seems to have been established concerning the implica
tions of X2-freeness. In fact, we have been without an example of an X2-free 
group t ha t is not free. (Added in proof: Phillip Griffith has now con
structed such groups.) The question of the existence of such a group is of 
part icular interest in connection with the discussion of the result of Nôbeling, 
for Specker [9] proved in 1950 t ha t the group of bounded sequences of integers 
is X2-free. We shall present a general method of constructing X2-free groups 
t h a t are not free. T h e key to the construction of the desired X2-free groups is 
a recent generalization of Pontryagin 's theorem for countable torsion-free 
groups. W e shall s ta te and refer to this result as Theorem A. 

T H E O R E M A (Hill [6]). If the torsion-free abelian group G is the union of a 
countable ascending sequence 

Hi ç H2 ç . . . ç Hn C . . . 

of pure subgroups Hni then G is free provided that Hn is free for each n. 

T h e preceding theorem leads to the following result, which is of considerable 
interest in its own right. 

T H E O R E M 3. Let [ibe a limit ordinal of cardinality not exceeding Xi. If 

•is an ascending chain of free subgroups of G, indexed by the ordinals less than JU, 
such that 

(i) F$ = U a < ^ « if 13 is a limit less than ju, 
(ii) G = U a < / « , 

(iii) | .Fa | ^ Xi for each a, 
then G is free provided that Fa+i/Fa is Hi-free for each a < /*. 

Proof. If fx is cofinal with co, it follows from Theorem A tha t G is free since Fa 

is necessarily pure in G due to the fact t ha t the groups Fa+1/Fa are torsion free. 
Thus , we may assume tha t /x is cofinal with 12, the first uncountable ordinal. 
W e claim t h a t there is no loss of generality in assuming t ha t /x = 12. Since jLt is 
cofinal with 12, to val idate this claim we need only show tha t Fp/Fa is Xi-free 
whenever a < f3 < /x. Suppose tha t Fp/Fa is not Xi-free and t ha t (3 is the 
smallest ordinal satisfying a < (3 < /JL such t ha t Fp/Fa is not Xi-free. Since an 
extension of an Xi-free group by an Xi-free group is Xi-free, /3 cannot be 
isolated because, in this case, Fp/Fa is an extension of Fp-i/Fa by Fp/Fp-i 
each of which is Xi-free. T h u s suppose t ha t /3 is a limit, and let A/Fa be a 
subgroup of Fp/Fa of finite rank. Then A/Fa C F7/Fa for some y < fi, and 
therefore A/Fa is free since F7/Fa is Xi-free. Since A/Fa is free, Pontryagin ' s 
theorem implies t ha t Fp/Fa is Xi-free. Since we have shown tha t there is no 
loss of generality in assuming t ha t p = 12, we shall make tha t assumption. 
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Note that under the hypotheses on the groups Fa, the cardinality of 
G = Ua<fiFa does not exceed Xi. Let 

G = [g0, gl, • . • , gay • • •]«</!• 

Since Fa is free, for each a < /z, we can write Fa = X*€/(«)(#«,*)• 
Suppose that r is a countable ordinal and that we already have developed 

a chain 

AQç:A1ç:...ç:AaQ..., a < r, 

of countable, pure subgroups of G such that the following conditions are satisfied. 
(1) Aa Çii -Fa for every a < r. 
(2) If a is isolated, Aa = J^iej(a)(xa,i) where J (a) is a subset of 1(a). 
(3) If 0 < r is a limit, ^ = U«</3 ^4«. 
(4) If y < a < r, t h e n y l a n F7 = ZzG/a(7)(x7)i) with Ja(y) a subset of I(y). 
(5) g7 G i4a+i i f 7 < a + l < r and if gy G F a + i . 
(6) (F7, ^4a) is pure in G if a < r and 7 < a. 
We wish to find a countable, pure subgroup AT of G containing Aa for all 

a < r such that conditions ( l ) - (6) remain valid when r + 1 replaces r. There 
are, as usual, two cases to distinguish. We shall first dispose of the easy one. 

Case 1. r is a limit ordinal: In this case, we simply define AT = \Ja<TAa as 
condition (3) dictates. Since Aa Ç Fa Ç FT if a < r, we observe that A T ÇZ FT. 
Conditions (2) and (5) are not relevant since r is a limit ordinal. Condition (6) 
follows because purity is an inductive property. Furthermore, condition (4) 
is satisfied for a = r if we set JT(y) = Uy<fi<TJfi(y)- Finally, AT is countable 
since r is countable, and AT is pure because AT is the union of a chain of pure 
subgroups. 

Case 2. r — 1 exists: For simplicity of notation, let a- = r — 1 and let 

B = {A„,[gy\y<Tr\FT). 

Then B is a countable subgroup of FT. We are searching for a countable, pure 
subgroup C of FT containing B such that conditions (2), (4) and (6) are satis
fied. We shall first show the existence of C (a countable, pure subgroup of 
FT containing B) that satisfies condition (6) individually. Toward this end, 
we recall from [5, Theorem 1] that given a countable group B of G and a 
countable collection of subgroups Gt of G that there exists a countable sub
group C of G containing B such that 

(P) (Gt, C)/Gi C\ (Gi9 GJ/Gi 

is pure in (Gu G5)/Gi for all i and j . For our collection {Gt}, we shall take the set 

a countable collection. Upon setting d = Hy and Ĝ - = G, we obtain from the 
purification property (P) the purity of (Hy, C) in G if 7 S v because Hy is 
pure in G. Also observe that if Gt = 0 and Gj = G, the conclusion of (P) is 
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t h a t C is pure in G. We have produced a countable, pure subgroup C of G 
containing B such t ha t condition (6) is satisfied for a ^ r if we set AT = C. 
However, C is not our final choice of A T since we do not know tha t conditions 
(2) and (4) are satisfied. 

We now choose, inductively, sequences {In(r)} and {In(y)}f for y < r, of 
countable subsets of I(T) and I(y), respectively, so t ha t 

iein(T) 

and 

cn r\ Fy c ^ (xy.t) c cw+i n F7, 
*€/n(7) 

where C = Ci C C2 £ . . . ^ Cw Ç . . . is an ascending sequence of countable, 
pure subgroups of FT such tha t condition (6) is satisfied for AT = Cn. If we 
(finally) define AT = U Cn and let / ( r ) = U 7„(r) and JT(y) = U J „ ( Y ) , 
then A T is a countable, pure subgroup of FT satisfying all the conditions ( l ) - ( 6 ) 
(when r + 1 replaces r ) . 

The conclusion now is t ha t there exists a chain 

A0 Ç A1 Q . . . C ^4tt Ç . . . , « < M = Q, 

of countable, pure subgroups of G such t ha t conditions (1)—(6) are satisfied 
for any countable a, wi thout regard to r. Note t ha t condition (5) implies t h a t 
G = Ua<nAa, and condition (3) states t ha t Gp = Ua<pAa if 0 is a countable 
limit ordinal. Since A0 C F0 and since F0 is free, A0 is free. T h u s in order t o 
show t h a t G is free, it suffices to show tha t Aa+1/Aa is free for each countable a. 
Fur thermore , we know tha t 

Aa+1/(Aa+1 H Fa) ^ (Aa+1, Fa)/Fa C Fa+1/Fa 

is free because Fa+i/Fa is Xi-free. Hence, it is enough to prove t h a t 
(Aa+i H Fa)/Aa is free. If a is isolated, we have tha t {Aa+1 C\ Fa)/Aa C Fa/Aa 

is free because Aa is a direct summand of Fa by condition (2). Therefore, 
assume tha t a is a limit ordinal. Then the group (Aa+i C\ Fa)/Aa is the union 
of its subgroups {Aa+i C\ Fy, Aa)/Aa with y < a. These subgroups are pure 
(even in G/Aa) according to condition (6) because 

(Aa+1 H Fy, Aa)/Aa = (Fy, Aa)/Aa C\ Aa+1/Aa, 

the intersection of two pure subgroups of the torsion-free group G/Aa. Since 

(Aa+1 r\ Fy, Aa)/Aa ^ {Aa+i C\ Fy)/(Aa r\ Fy) ç Fy/(Aa H Fy), 

condition (4) implies t ha t (Aa+1 C\ Fy, Aa)/Aa is free if 7 < a. Theorem A 
implies t ha t (Aa+1 C\ Fa)/Aa is free, and the proof of Theorem 1 is finished. 

COROLLARY 5. Let G be the union of a chain 

Fo £ F\ C . . . C Fa £ • • . , a < /x = coy, 
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of free subgroups Fa, indexed by the initial segment of ordinals less than some 
limit ordinal ju, such that F$ = \Ja<pFa when /3 is a limit ordinal. If \G\ ^ Ki 
and if G/Fa is a subgroup of a product of integers for each a, then G is free. 

Proof. If the chain is countable, apply Theorem A. In this case, the condition 
on the cardinality of G is not necessary and it suffices to assume that G/Fa is 
torsion free. If the chain is uncountable, there is no loss of generality in 
assuming that |/x| = Ki since \G\ ^ Xi. Since a product of integers is Xi-free, 
it follows that Fa+1/Fa Ç G/Fa is Xi-free. Thus the corollary follows directly 
now from Theorem 3. 

We are now prepared to prove our existence theorem for nonfree, K2-free 
groups. 

THEOREM 4. There exist Xi-free abelian groups that are not free of cardinality 
K2 

Proof. Suppose that 

^o Q F1 C . . . Ç Fa Ç . . . , a < /x, 

is a chain of abelian groups satisfying the following conditions. 
(1) Ffi = Ua<pFa if /3 < M is a limit. 
(2) Fa is free of cardinality Ki for each a < /x. 
(3) M ^ Ki. 
(4) Fa+i/Fa is Ki-free but not free. 

If M is a limit ordinal, define F^ = \Ja<flFa. By Theorem 3, F^ is free. Since 
|M| = Ki, Fy, retains the cardinality Ki. Thus we can continue the development 
of the above chain of free groups through limit ordinals (of cardinality not 
exceeding Ki). Now suppose that n — 1 exists. Choose A = A^ to be an Ki-
free group of cardinality Ki that is not free; such groups reside in a countable 
product of integers. Let F^ be a free abelian group of cardinality Ki and let 
<j> : FM -» A be an epimorphism. We can identify iv_i with the kernel of <j> 
(since Ker <£ cannot be countable), and obtain FJF^\ •= A. Thus we can also 
continue to develop the above chain of free groups when \x is isolated. The 
conclusion is that there exists a chain of free abelian groups 

indexed by the ordinals a of cardinality at most Ki, such that 
(i) Ffi = Ua<pFa if j8 is a limit, 

(ii) |i5^| = Ki for each a, 
(iii) Fa+1/Fa is Ki-free but not free for each a. 

As we shall presently see, the direct limit of the chain of free groups satisfying 
conditions (i)-(iii) is X2-free but not free. 

Let G = U|ai<x2^a- The group G cannot be free, for in that case, by an 
argument similar to the proof of Lemma 1.45 in [3] (with Ki replacing Ko), Fa 

would be a direct summand of G for some a, which is impossible since Fa+1/Fa 
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is not free. However, every subgroup H of G of cardinality Ki is contained in 
Fa for some a and, therefore, is free. 

In conclusion, we mention two general problems of interest concerning 
X2-free groups. First, how close to a free group can a group (of cardinality K2) 
be without being free? For example, in the construction that we have given 
above, what is the significance of letting Fa+1/Fa be Ni-separable (the existence 
of which is given by the Hill-Griffith construction [4; 3, p. 105])? Secondly 
how far from a free group can an K2-free group be? For example, is it possible 
for an N2-free group of cardinality K2 to have a subgroup H of cardinality Ki 
such that G/H is divisible? 
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