A PAIR OF GENERATORS
 FOR THE UNIMODULAR GROUP

Stanton M. Trott

(received June 4, 1962)

It is well known that ME_{n}, the multiplicative group consisting of n-rowed square matrices with integer entries and determinant equal to ± 1 can be generated by:
$U_{1}=\left(\begin{array}{llllll}0 & 1 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 1 & \ldots & 0 & 0 \\ & & & \ldots & & \\ 0 & 0 & 0 & \ldots & 0 & 1 \\ 1 & 0 & 0 & \ldots & 0 & 0\end{array}\right) \quad U_{2}=\left(\begin{array}{llllll}1 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & 0 & \ldots & 0 & 0 \\ & & & \ldots & & \\ 0 & 0 & 0 & \ldots & 1 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 1\end{array}\right)$
$U_{3}=\left(\begin{array}{rrrrrr}-1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 1 & 0 & \ldots & 0 & 0 \\ & & & \ldots & & \\ 0 & 0 & 0 & \ldots & 1 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 1\end{array}\right)$
$\mathrm{U}_{4}=\left(\begin{array}{llllll}0 & 1 & 0 & \ldots & 0 & 0 \\ 1 & 0 & 0 & \ldots & 0 & 0 \\ & & & \ldots & & \\ 0 & 0 & 0 & \ldots & 1 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 1\end{array}\right)$

It is also known that U_{4}, can be generated by U_{1}, U_{2}, and U_{3} (cf. [2] p. 85).

However, by a construction which is much simpler than the one just mentioned for U_{4}, it is possible to generate U_{3} by just U_{2} and U_{4}. Since U_{2} and U_{4} affect only the first

Canad. Math. Bull. vol. 5, no. 3, September 1962.
two rows and columns of any matrix which they multiply, we need discuss only the case $n=2 . U_{3}$ can be obtained from U_{2} by taking the following steps in sequence:

1. subtract column 1 from column 2
2. add column 2 to column 1
3. interchange columns 1 and 2.

Steps 2 and 3 can be effected by right multiplication by U_{2} and U_{4} respectively. Step 1 can be effected by right multiplication by $\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)$; this matrix is obtainable from U_{2}^{-1} by interchanging its rows and its columns, i.e. by right and left multiplication by U_{4}. Combining these observations, we conclude:

THEOREM 1.

$$
\begin{equation*}
\mathrm{U}_{3}=\mathrm{U}_{2} \mathrm{U}_{4} \mathrm{U}_{2}^{-1} \mathrm{U}_{4} \mathrm{U}_{2} \mathrm{U}_{4} \tag{1}
\end{equation*}
$$

The correctness of this equation can be verified by direct computation.

Hence M_{n} can be generated by U_{1}, U_{2}, and U_{4}.
When $n=2, U_{1}$ is the same as U_{4}, and in this case the group is generated by just two elements, U_{1} and U_{2}. It has been shown by D. Beldin [1] that ${ }^{n} k_{n}$ is a 2 -generator group even when $n>2$, but can m_{n} be generated by just two of U_{1}, U_{2}, U_{3}, and U_{4} ? If it can be, U_{1} and U_{2} will certainly be required, for any product of U_{2}, U_{3}, and U_{4} affects only the first two rows and the first two columns, while any product of U_{1}, U_{3}, and U_{4} has exactly n nonzero entries. However, when n is odd, both U_{1} and U_{2} have determinant equal to +1 , and if we are to generate the whole group, at least one of our generators must have determinant equal to -1 . Hence $\geqslant \rho_{n}$ cannot always be generated by just U_{1} and U_{2}.

It will be shown that when n is even, $h e_{n}$ is generated by U_{1} and U_{2}, and that when n is odd U_{1} and U_{2} generate $\Re \sim 2_{n}^{+}$, the Modular Group of n-rowed square matrices with integer entries and determinant equal to +1 . In any case U_{1} and U_{2} generate the $B_{i j}$ defined below, and the se generate
 generated by U_{2} and

$$
U=\left(\begin{array}{rrrrrr}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
& & & \ldots & & \\
0 & 0 & 0 & \ldots & 0 & 1 \\
(-1)^{n} & 0 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

The results stated in the preceding paragraph are consequences of:

THEOREM 2. For $i \neq j$, let $B_{i j}$ be the unit matrix with the zero at the intersection of the $i^{\text {th }}$ row and $j^{\text {th }}$ column $\frac{\text { replaced by }}{B \quad=U}$ Then any $B_{i j}$ can be generated by just U and $B_{21}=U_{2}$.

To prove this we need three lemmas.

Lemma 1. If $i=2,3, \ldots, n-1$, then
$B_{i+1 i}=U^{-(i-1)} B_{21} U^{i-1} ;$ and $B_{1 n}=U B_{21}^{(-1)^{n}} U^{-1}$.
Proof: Left multiplying any matrix by $\mathrm{U}^{\mathrm{i}-1}$ cyclically permutes rows, placing the $i^{\text {th }}$ row at the top, and (if n is odd) reversing the signs of the bottom i-1 rows of the new matrix. But since $i \leq n-1$, the top 2 rows have signs unchanged. B_{21} then adds the first row of this new matrix to the second. Finally $\mathrm{U}^{-(i-1)}$, by cyclically permuting the
rows, returns them to their original positions, changing the signs of just those rows affected by sign changes in the first step. The net effect on the unit matrix I is to add the $i^{\text {th }}$ row of I to the $(i+1)^{\text {th }}$, and this is how $B_{i+1 i}$ is produced. A slight modification of this argument produces the formula for $B_{1 n}$.

Lemma 2. Let $C=B_{n n-1} B_{n-1 n-2} \cdots B_{54} B_{43}$.
Then $B_{12}=C_{32}^{-1} C^{-1} B_{1 n} C^{n} B_{32} C^{-1} B_{1 n}^{-1}$.
Proof: Left maltiplication of I by $C^{-1} B_{1 n}^{-1}$ subtracts in turn the $n^{\text {th }}$ row from the first, the $(n-1)^{\text {th }}$ row from the $n^{\text {th }}$, etc., stopping with subtraction of the $3^{\text {rd }}$ row from the $4^{\text {th }}$

$$
C^{-1} B_{1 \mathrm{n}}^{-1}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & -1 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & -1 & 1 & \ldots & 0 & 0 \\
& & & & \ldots & & \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & -1 & 1
\end{array}\right)
$$

Left multiplication of $C^{-1} B_{1 n}^{-1}$ by $B_{1 n} C B_{32}$ produces by row additions the matrix

$$
\mathrm{B}_{1 \mathrm{n}} \mathrm{CB}_{32} \mathrm{C}^{-1} \mathrm{~B}_{1 \mathrm{n}}^{-1}=\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 1 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 1 & \ldots & 0 & 0 \\
& & & \ldots & & \\
0 & 1 & 0 & 0 & \ldots & 1 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

The row subtractions effected by left multiplication by $B_{32}^{-1} C^{-1}$ produce the matrix

$$
B_{32}^{-1} C^{-1} B_{1 n} C_{32} C^{-1} B_{1 n}^{-1}=\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & -1 & 1 & \ldots & 0 & 0 \\
& & & & \ldots & & \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & -1 & 1
\end{array}\right)
$$

Finally, the row additions effected by left multiplication by C remove the -1 entries from this matrix producing B_{12}.

We note that only $B_{i+1, i}(i=2,3, \ldots, n-1)$ and $B_{1 n}$ appear in this formula. Hence, using lemma 1 and the fact that U^{n} commutes with every matrix of $\geqslant \psi_{n}$, we obtain:
(2) $B_{12}=U\left(U U_{2}\right)^{n-3} U\left(U U_{2}\right)^{-(n-2)} U_{2}^{(-1)^{n}}\left(U U_{2}\right)^{n-2} U^{-1}\left(U U_{2}\right)^{-(n-3)} U_{2}^{-(-1)^{n}} U^{-1}$.

Lemma 3. If $i=2,3, \ldots, n-1$, then $B_{i+1}=$ $U^{-(i-1)} B_{12} U^{i-1}$, and $B_{n 1}=U B_{12}^{(-1)^{n}} U^{-1}$.

The proof is similar to the proof of lemma 1.
We are now ready to prove the theorem. In the following, read the indices modulo n. By lemma 1, we know that $B_{j+1, j}$ can be generated. Let $2 \leq k \leq n-1$ and suppose that $B_{j+k-1, j}$ can be generated. It is not difficult to see that
$B_{j+k, j}=B_{j+k-1, j+k}^{-1} B_{j+k, j+k-1} B_{j+k-1, j} B_{j+k, j+k-1}^{-1} B_{j+k-1, j+k}$. For the left multipliers of $B_{j+k-1, j}$ add the 1 required at $(j+k, j)$ and remove the unwanted 1 from ($j+k-1, j$). The right multipliers then correct the unwanted changes produced by the row operations.

This induction shows that any $B_{i j}$ can be generated by just U and U_{2}, as we asserted in the statement of theorem 2 .

It is not hard to show that the $B_{i j}$ generate $\eta \ell_{n}^{+}$. Hence U and U_{2} generate $7 / \ell_{n}^{+}$, which is a subgroup of index 2 in $7 / F_{n}$. U has determinant equal to -1 and hence is not in $\% \hat{\psi}_{n}^{+}$. It follows that U and $U 2$ generate $\% \psi_{n}$.

Since, when n is even, $U=U_{1}$, we see that, in that case, \prod_{n} is generated by U_{1} and U_{2}. It can in fact be shown that U_{1} and U_{2} always generate the $B_{i j}$. To do this it is only necessary to modify slightly the statements and proofs of lemmas 1 and 3 of theorem 1. The modifications required are obvious, and the proofs are actually somewhat simpler. Thus \geqslant / ℓ_{n}^{+}is generated by U_{1} and U_{2}.

It is of some interest to express U_{1}, U_{3}, and U_{4} in terms of U and U_{2}, and to state U in terms of the others.

Right multiplication by U_{3} changes the sign of the first column, and $U_{3}^{2}=I$. Hence $U_{1}=U U_{3}^{n}$ and $U=U_{1} U_{3}^{n}$.

We already have U_{3} in terms of U_{2} and U_{4} (cf. formula (1)), so that the only remaining task is to obtain an expression for U_{4} in terms of U and U_{2}. It is not difficult to verify that

$$
U_{4}=\left(\prod_{i=3}^{n}\left(B_{i \quad i-1} B_{i-1} B_{i}^{-1} B_{i \quad i-1}\right)\right) U
$$

The $B_{i j}$ in this expression are of the forms treated in lemmas 1 and 3. Hence U_{4} can be expressed in terms of B_{12}, B_{21}, and U :

$$
U_{4}=\left(U^{-1} B_{21} B_{12}^{-1} B_{21}\right)^{n-2} U^{n-1}
$$

B_{21} is U_{2}, and B_{12} is given by formula (2).

What generating relations are suitable to define $\geqslant f_{n}$ in terms of U and U_{2} ? Coxeter and Moser, ([2] p.85) show that the group defined by

$$
R_{1}^{2}=R_{2}^{2}=R_{3}^{2}=E,\left(R_{1} R_{2}\right)^{3}=\left(R_{1} R_{3}\right)^{2}=Z, Z^{2}=E
$$

where E denotes the identity and

$$
R_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad R_{2}=\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right), \quad R_{3}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

is Me_{2}.
Since

$$
R_{1}=U, R_{2}=U U_{2}^{-1} U U_{2} U, R_{3}=U_{2} U U_{2}^{-1} U U_{2} U
$$

and

$$
\mathrm{U}=\mathrm{R}_{1}, \quad \mathrm{U}_{2}=\mathrm{R}_{3} \mathrm{R}_{2}
$$

$\%$ has the equivalent abstract definition

$$
\begin{equation*}
U^{2}=\left(U_{2}^{-1} U U_{2} U\right)^{6}=E, U_{2}^{-1} U U_{2} U U_{2}^{-1}=U U_{2} U U_{2}^{-1} U U_{2} U \tag{3}
\end{equation*}
$$

Letting $U U_{2} U=W^{-1}$, (3) is more attractively written:

$$
U^{2}=\left(W U_{2}\right)^{6}=U U_{2} U W=E, \quad U_{2} W U_{2}=W U_{2} W .
$$

The question which naturally suggests itself is:
what group is defined by the relations:

$$
\begin{equation*}
U^{2 n}=\left(W U_{2}\right)^{6}=E, \quad U_{2} W U_{2}=W U_{2} W, \tag{4}
\end{equation*}
$$

where $\mathrm{W}^{-1}=\mathrm{B}_{12}$ and is given by formula (2) ?

If U and U_{2} are the n-rowed square matrices defined earlier, the period of U is n or $2 n$ according as n is even or odd, so that $U^{2 n}=E$. Words in U_{2} and its transpose, W^{-1}, affect only the first two rows and columns of any matrix in $\% / \rho_{\mathrm{n}}$. Hence the other relations are also valid in $\% \%_{\mathrm{n}}$. It follows that $\%_{\mathrm{n}}$ is a factor group of the group in question, but whether the relations (4) suffice to define $77 f_{\mathrm{n}}$ is unknown.

REFERENCES

1. Beldin, D. - Thesis, Reed College, 1957.
2. Coxeter, H.S. M. and Moser, W.O.J. - Generators and Relations for Discrete Groups, Springer-Verlag, 1957.

University of Toronto
and
University of Tasmania

