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Ancillary Results

In this chapter, we discuss various results that were used earlier and for
which good references are scarce or scattered. We work over an arbitrary base
scheme, whenever possible.

10.1 S 2 Sheaves

Definition 10.1 Let F be a quasi-coherent sheaf on a scheme X. Its annihilator,
denoted by Ann(F), is the largest ideal sheaf I ⊂ OX such that I · F = 0. The
support of F is the zero set Z(I) ⊂ X, denoted by Supp F.

The dimension of F at a point x, denoted by dimx F, is the dimension of its
support at x. The dimension of F is dim F := dim Supp F.

The set of all associated points (or primes) of a quasi-coherent sheaf F
is denoted by Ass(F). An associated point of F is called embedded if it is
contained in the closure of another associated point of F. Let emb(F) ⊂ F
denote the largest subsheaf whose associated points are all embedded points of
F. Thus F/ emb(F) has no embedded points, hence it is S 1 (10.5). Informally
speaking, F 7→ F/ emb(F) is the best way to associate an S 1 sheaf to another
sheaf.

If F is coherent then it has only finitely many associated points and Supp F
is the union of their closures.

Let Z ⊂ X be a closed subscheme. Then torsZ(F) ⊂ F denotes the Z-torsion
subsheaf, consisting of all local sections whose support is contained in Z. There
is a natural isomorphism torsZ(F) ' H0

Z (X, F).
If X has a dimension function (see the Assumptions on p.347), then we use

tors(F) ⊂ F to denote the torsion subsheaf, consisting of all local sections
whose support has dimension < dim Supp F. A coherent sheaf F is called pure
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10.1 S 2 Sheaves 371

(of dimension n) if (the closure of) every associated point of F has dimension
n. Thus pure(F) := F/ tors(F) is the maximal pure quotient of F. A scheme is
pure iff its structure sheaf is.

If Supp F is pure dimensional, then emb(F) = tors(F).
Let f : X → S be of finite type and F a coherent sheaf on X such that Fs is

pure for every s ∈ S . Then the same holds after any base change S ′ → S .
Warning. If X is pure dimensional, F is coherent and dim F = dim X, then our
terminology agrees with every usage of “torsion” that we know of. However,
the above distinction between emb(F) and tors(F) is not standard.

10.2 (Regular sequences and depth) Let A be a ring and M an A-module.
Recall that x ∈ A is M-regular if it is not a zero divisor on M, that is, if
m ∈ M and xm = 0 implies that m = 0. Equivalently, if x is not contained in
any of the associated primes of M.

A sequence x1, . . . , xr ∈ A is an M-regular sequence if x1 is not a zero
divisor on M and xi is not a zero divisor on M/(x1, . . . , xi−1)M for all i.

Let rad A denote the radical (or Jacobson radical) of A, that is, the intersec-
tion of all maximal ideals. Let I ⊂ rad A be an ideal. The depth of M along I is
the maximum length of an M-regular sequence x1, . . . , xr ∈ I. It is denoted by
depthI M. If A is Noetherian, M is finite over A and I ⊂ rad A, then all maxi-
mal M-regular sequences x1, . . . , xr ∈ I have the same length; see Matsumura
(1986, p.127) or Eisenbud (1995, sec.17).

Warning The literature is not fully consistent on the depth if M = 0 or if
I 1 rad A. While the definition of depth makes sense for arbitrary rings and
ideals, it can give unexpected results.

10.3 (Comments on depth and S m) Let F be a coherent sheaf on X. The depth
of F at x, denoted by depthx F, is defined as the depth of its localization Fx

along mx,X (as an Ox,X-module). For a closed subscheme Z ⊂ X we set

depthZ F := inf{depthz F : z ∈ Z}. (10.3.1)

If X = Spec A is affine, Z = V(I) for some ideal I ⊂ rad A and M = H0(X, F)
then depthZ F = depthI M. (This definition is for coherent sheaves only. See
Grothendieck (1968, exp.III) for quasi-coherent sheaves.)

A coherent sheaf F on a scheme X satisfies Serre’s condition S m if

depthx F ≥ min{m, codim(x,Supp F)} for every x ∈ X; (10.3.2)

see Stacks (2022, tag 033P) for details.
It is important to note that over a local scheme (x, X), being S m is not the

same as depthx F ≥ m; neither implies the other.
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372 Ancillary Results

Definition 10.4 F is Cohen–Macaulay or CM if

depthx F = dimx F for every x ∈ X. (10.4.1)

It is easy to see that if F is CM then the local rings of Supp F are pure
dimensional (Stacks, 2022, tag 00N2). In the literature, the definition of CM
frequently includes the assumption that Supp F be pure dimensional; we will
most likely lapse into this habit too.

In contrast with the S m situation (10.3), if (10.4.1) holds at closed points,
then it holds at every point of Supp F; see Matsumura (1986, 17.4).

Condition S 1 can be described in terms of embedded points.

Lemma 10.5 Let F be a coherent sheaf on a scheme X and Z ⊂ X a
closed subscheme. Then depthZ F ≥ 1 iff none of the associated points of F
is contained in Z. In particular, F is S 1 iff it has no embedded associated
points. �

The following lemma gives several characterizations of S 2 sheaves.

Lemma 10.6 Let F be a coherent sheaf and Z ⊂ Supp F a nowhere dense
subscheme. The following are equivalent.
(10.6.1) depthZ F ≥ 2.
(10.6.2) depthZ F ≥ 1 and depthZ

(
F|D

)
≥ 1 whenever D is a Cartier divisor

in an open subset of X that does not contain any associated prime of F.
(10.6.3) torsZ(F) = 0 and torsZ

(
F|D

)
= 0 whenever D is as above.

(10.6.4) An exact sequence 0→ F → F′ → Q→ 0 splits if Supp Q ⊂ Z.
(10.6.5) depthZ F ≥ 1 and for any exact sequence 0 → F → F′ → Q → 0

such that ∅ , Supp Q ⊂ Z, F′ has an associated point in Supp Q.
(10.6.6) F = j∗

(
F|X\Z

)
where j : X \ Z ↪→ X is the natural injection.

(10.6.7) H 0
Z (X, F) = H 1

Z (X, F) = 0.
(10.6.8) Let z ∈ Z be any point. Then H0

z (Xz, Fz) = H1
z (Xz, Fz) = 0.

Proof All but (4) are clearly local conditions on X. By assumption, torsZ(F) =

0. Thus, if in (4) there is a splitting locally then the unique splitting is given by
torsZ(F′) ⊂ F′. Thus (4) is also local, so we can assume that X is affine.

Conditions (2) and (3) are just restatements of the inductive definition of
depth. Assume (1) and consider an extension 0 → F → F′ → Q → 0
where Supp Q ⊂ Z. If torsZ(F′) → Q is surjective then it gives a splitting.
If not, then after quotienting out by torsZ(F′) and taking a coherent subsheaf
F′′ ⊂ F′/ torsZ(F′), we get an extension 0 → F → F′′ → Q′′ → 0 where
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10.1 S 2 Sheaves 373

torsZ(F′′) = 0. Pick s ∈ IZ that is not a zero divisor on F and F′′, but
s · (F′′/F) = 0. Then sF′′ is a nonzero submodule of F/sF supported on
Z. This proves (1)⇒ (4).

Assuming (4), we claim that torsZ(F) = 0. After localizing at a generic
point of torsZ(F), we may assume that torsZ(F) is supported at z ∈ Z. Since the
injective hull of k(z) over OX has infinite length, there is a nonsplit extension
j : torsZ(F) ↪→ G. Then the cokernel of (1, j) : torsZ(F) → F + G gives a
non-split extension of F. The rest of (5) is clear.

If depthZ F ≥ 1, then the natural map F → j∗
(
F|X\Z

)
is an injection. The

quotient is supported on Z, thus (5)⇒ (6).
Assume (6). Then F → j∗

(
F|X\Z

)
is an injection, so depthZ F ≥ 1. If

depthZ F < 2, then we can pick s ∈ IZ such that F/sF has a subsheaf Q
supported on Z. Let F′ ⊂ F be the preimage of Q. Then s−1F′ ⊂ j∗

(
F|X\Z

)
shows that (6)⇒ (1). We discuss (7) and (8) in (10.29). �

Corollary 10.7 Let F be a coherent, S 2 sheaf and G ⊂ F a subsheaf. Then G
is S 2 iff every associated point of F/G has codimension ≤ 1 in Supp F.

Proof Let Z ⊂ Supp F be a closed subset of codimension ≥ 2 and j : U :=
X \ Z ↪→ X the injection. Then j∗(G|U) ⊂ F and depthZ G < 2⇔ G , j∗(G|U)
⇔ j∗(G|U)/G ⊂ F/G is a nonzero subsheaf supported on Z. �

Corollary 10.8 Let F be a coherent, S 2 sheaf and G any coherent sheaf. Then
HomX(G, F) is also S 2.

Proof It is clear that every irreducible component of SuppHomX(G, F) is also
an irreducible component of Supp F.

Let Z ⊂ Supp F be a closed subset of codimension ≥ 2 and j : X \ Z ↪→

X the injection. Any homomorphism φ : G|X\Z → F|X\Z uniquely extends to
j∗φ : j∗

(
G|X\Z

)
→ j∗

(
F|X\Z

)
. Since F is S 2, the target equals F. We have a

natural map G → j∗
(
G|X\Z

)
, whose kernel is torsZ(G). Thus HomX(G, F) =

j∗
(
HomX(G, F)|X\Z

)
, henceHomX(G, F) is S 2. �

An important property of S 2 sheaves is the following, which can be obtained
by combining Hartshorne (1977, III.7.3 and III.12.11).

Proposition 10.9 (Enriques–Severi–Zariski lemma) Let f : X → S be a pro-
jective morphism and F a coherent sheaf on X that is flat over S , with S 2 fibers
of pure dimension ≥ 2. Then f∗F(−m) = R1 f∗F(−m) = 0 for m � 1.

Therefore, if H ∈ |OX(m)| does not contain any of the associated points of
F, then the restriction map f∗F → ( f |H)∗(F|H) is an isomorphism. �

https://doi.org/10.1017/9781009346115.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.012


374 Ancillary Results

10.10 (Depth and flatness) Let p : Y → X be a morphism and G a coherent
sheaf on Y that is flat over X. It is easy to see that for any point y ∈ Y we have

depthy G = depthp(y) X + depthy Gp(y). (10.10.1)

Similarly, if p : Y → X is flat and F is a coherent sheaf on X, then

depthy p∗F = depthp(y) F + depthy Yp(y). (10.10.2)

In particular, if p : Y → X is flat with S m fibers and F is a quasi-coherent S m

sheaf on X then p∗F is also S m. The converse also holds if p is faithfully flat.
The assumption on the fibers is necessary and a flat pull-back of an S m sheaf

need not be S m; not even for products. Let X1, X2 be k-schemes. Then X1 × X2

is S m iff both of the Xi are S m.

10.2 Flat Families of S m Sheaves

We consider how the S m property (2.72) varies in flat families.

Theorem 10.11 (Grothendieck, 1960, IV.12.1.6) Let π : X → S be a
morphism of finite type and F a coherent sheaf on X that is flat over S . Fix
m ∈ N. Then the set of points {x ∈ X : Fπ(x) is pure and S m at x} is open in X.

This immediately implies the following variant for proper morphisms.

Corollary 10.12 5 Let π : X → S be a proper morphism and F a coherent
sheaf on X that is flat over S . Fix m ∈ N. Then the set of points {s ∈
S : Fs is pure and S m} is open in S . �

For nonproper morphisms we get the following.

Corollary 10.13 Let S be an integral scheme, π : X → S a morphism of finite
type, and F a coherent sheaf on X. Assume that F is pure and S m. Then there
is a dense open subset S ◦ ⊂ S such that Fs is pure and S m for every s ∈ S ◦.

Proof Let Z ⊂ X denote the set of points x ∈ X such that either F is not flat at
x or Fπ(x) is not pure and S m at x. Note that Z is closed in X by (10.11) and by
generic flatness (Eisenbud, 1995, 14.4).

The local rings of the generic fiber of π are also local rings of X, hence the
restriction of F to the generic fiber is pure and S m. Thus Z is disjoint from
the generic fiber of π. Therefore π(Z) ⊂ S is a constructible subset that does
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10.2 Flat Families of S m Sheaves 375

not contain the generic point, hence S \ π(Z) contains a dense open subset
S ◦ ⊂ S . �

10.14 (Nagata’s openness criterion) In many cases, one can check openness of
a subset of a scheme using the following easy to prove test, which is sometimes
called the Nagata openness criterion.

Let X be a Noetherian topological space and U ⊂ X an arbitrary subset.
Then U is open iff the following conditions are satisfied.
(10.14.1) If x1 ∈ x̄2 and x1 ∈ U then x2 ∈ U.
(10.14.2) If x ∈ U then there is a nonempty open V ⊂ x̄ such that V ⊂ U.

Assume now that we want to use this to check openness of a fiber-wise
property P for a morphism π : X → S .

We start with condition (10.14.1). Pick points x1, x2 ∈ X such that x1 ∈ x̄2.
Let T be the spectrum of a DVR with closed point 0 ∈ T , generic point

tg ∈ T , and q : T → X a morphism such that q(0) = x1 and q(tg) = x2. After
base change using π ◦ q we get Y → T . Usually one cannot guarantee that the
residue fields are unchanged under q. However, if property P is invariant under
field extensions, then it is enough to check (10.14.1) for Y → T . Thus we may
assume that S is the spectrum of a DVR.

As for (10.14.2), we can replace S by the closure of π(x). Then π(x) is the
generic point of S and then we may assume that S is regular.

We can summarize these considerations in the following form.

Proposition 10.15 (Openness criterion) LetP be a property defined for coher-
ent sheaves on schemes over fields. Assume that P is invariant under base field
extensions. The following are equivalent.
(10.15.1) Let π : X → S be a morphism of finite type and F a coherent sheaf

on X that is flat over S . Then {x ∈ X : Fπ(x) satisfies property P at x} is
open in X.

(10.15.2) The following hold, where σ : S → X denotes a section.
(a) If S is the spectrum of a DVR with closed point 0, generic point g and
P holds for σ(0) ∈ X0, then P holds for σ(g) ∈ Xg.
(b) If S is the spectrum of a regular ring with generic point g and P holds
for σ(g) ∈ Xg, then P holds in a nonempty open U ⊂ σ(S ). �

10.16 (Proof of 10.11) By (10.15), we may assume that S is affine and regular.
We may also assume that π is affine and X = Supp F.

First, we check (10.15.2.a) for m = 1. (Note that pure and S 1 is equivalent
to pure (10.1).) Let W ⊂ X be the closure of an associated prime of F. Then
the irreducible components of W ∩ X0 are associated primes of F0 by (10.22).
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Since F0 is pure, W ∩ X0 is an irreducible component of Supp F0. Hence W is
an irreducible component of Supp F. Thus Fg is also pure.

Next we check (10.15.2.a) for m > 1. Since S m implies S 1, we already know
that every fiber of F is pure. By (10.17) there is a subset Z ⊂ X of codimension
≥ 2 such that F is CM over X \ Z. Let Z ⊂ H ⊂ X be a Cartier divisor that
does not contain any of the associated primes of F0. Then F|H is flat over S
and

(
F|H

)
0 = F0|H is pure and S m−1. Thus, by induction, F|H is pure and S m−1

on the generic fiber, hence Fsg is pure and S m along H. It is even CM on X \H,
hence Fsg is pure and S m.

For (10.15.2.b) we start with m = 1. We may assume that Fsg is pure. By
Noether normalization, after passing to some open subset of S, there is a finite
surjection p : X → An

S for some n. Note that p∗F is flat over S and it is pure
on the generic fiber by (9.2), hence torsion-free. Using (9.2) in the reverse
direction for the other fibers, we are reduced to the case when X = An

S and F
is torsion-free at x := σ(g) on the generic fiber. Thus there is an injection of
the localizations Fx ↪→ Om

x,X . By generic flatness (Eisenbud, 1995, 14.4), the
quotient Om

x,X/Fx is flat over an open, dense subset S ◦ ⊂ S . Thus if s ∈ S ◦

then we have an injection F|U ↪→ Om
U . Thus every fiber Fs is torsion-free

over U ∩ π−1(S ◦). For m > 1, we follow the same argument as above using
Z ⊂ H ⊂ X and induction. �

Lemma 10.17 Let π : X → S be a morphism of finite type and F a coherent
sheaf on X that is flat over S . Assume that Supp F is pure-dimensional over S .
As in (7.26), let FlatCMS (X, F) ⊂ X be the set of points x such that Fπ(x) is CM
at x. Then, for every s ∈ S ,
(10.17.1) Supp Fs ∩ FlatCMS (X, F) is dense in Supp Fs, and,
(10.17.2) if Fs is pure, then its complement has codimension ≥ 2 in Supp Fs.

Proof We may assume that π is affine and X = Supp F. By (10.49), after
replacing X with an étale neighborhood of x, there is a finite surjection g : X →
Y where τ : Y → S is smooth.

Since g∗F is flat over S , it is locally free at a point y ∈ Y iff the restriction of
g∗F to the fiber Yτ(y) is locally free at y. The latter holds outside a codimension
≥ 1 subset of each fiber Ys. If F is pure then g∗F is torsion-free on each fiber,
so local freeness holds outside a subset of codimension ≥ 2. �

Let F be a coherent, S m sheaf on Pn. If a hyperplane H ⊂ Pn does
not contain any of the irreducible components of Supp F then F|H is S m−1,
essentially by definition. The following result says that F|H is even S m for
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general hyperplanes, though we cannot be very explicit about the meaning of
“general.”

Corollary 10.18 (Bertini theorem for S m) Let F be a coherent, pure, S m sheaf
on a finite type k-scheme and |V | a base point free linear system on X. Then
there is a dense, open U ⊂ |V | such that F|H is also pure and S m for H ∈ U.

Proof Let Y ⊂ X × |V | be the incidence correspondence (that is, the set of
pairs (point ∈ H) with projections π and π̌). Note that π is a Pn−1-bundle for
n = dim |V |, thus π∗F is also pure and S m by (10.10).

By (10.13) there is a dense open subset U ⊂ |V | such that F|H is also pure
and S m for H ∈ U. For a divisor H, the restriction F|H is isomorphic to the
restriction of π∗F to the fiber of π̌ over H ∈ |V |. �

Corollary 10.19 (Bertini theorem for hulls) Let |V | be a base point free linear
system on a finite type k-scheme X. Let F be a coherent sheaf on X with hull
q : F → F[∗∗]. Then there is a dense, open subset U ⊂ |V | such that(

F[∗∗])|H =
(
F|H

)[∗∗] for H ∈ U.

Proof By definition we have an exact sequence

0→ K → F → F[∗∗] → Q→ 0,

where dim K ≤ n − 1 and dim Q ≤ n − 2. If H ∈ |V | is general, then the
restriction stays exact

0→ K|H → F|H → (F[∗∗])|H → Q|H → 0,

dim K|H ≤ n − 2 and dim Q|H ≤ n − 3. Thus (F[∗∗])|H = (F|H)[∗∗]). �

Corollary 10.20 (Bertini theorem for S m in families) Let T be the spectrum
of a local ring, X ⊂ Pn

T a quasi-projective scheme and F a coherent sheaf on
X that is flat over T with pure, S m fibers.

Assume that either X is projective over T or dim T ≤ 1. Then F|H∩X is also
flat over T with pure and S m fibers for a general hyperplane H ⊂ Pn

T .

Proof The hyperplanes correspond to sections of P̌n
T → T . If X is projective

over T then we use (10.18) for the special fiber X0 and conclude using (10.12).
If dim T = 1 then we use (10.18) both for the special fiber X0 and the generic

fibers Xgi . We get open subsets U0 ⊂ P̌
n
0 and Ugi ⊂ P̌

n
gi

. Let Wi ⊂ P̌
n
T denote the

closure of P̌n
gi
\ Ugi . For dimension reasons, Wi does not contain P̌n

0. Thus any
hyperplane corresponding to a section through a point of U0\

(
∪iWi

)
works. �
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Example 10.21 If dim T ≥ 2 then (10.20) does not hold for nonproper maps.
Here is a similar example for the classical Bertini theorem on smoothness. Set

X := (x2 + y2 + z2 = s) \ (x = y = z = s = 0) ⊂ A3
xyz × A

2
st

with smooth second projection f : X → A2
st. Over the origin we start with the

hyperplane H00 := (x = 0), it is a typical member of the base point free linear
system |ax + by + cz = 0|.

A general deformation of it is given by Hst := x+b(s, t)y+c(s, t)z = d(s, t). It
is easy to compute that the intersection Hst∩Xst is singular iff s(1+b2+c2) = d2.
This equation describes a curve in A2

st that passes through the origin.

10.22 (Associated points of restrictions) Let X be a scheme, D ⊂ X a Cartier
divisor and F a coherent sheaf on X. We aim to compare Ass(F) and Ass(F|D).
If D does not contain any of the associated points of G then Tor1(G,OD) = 0.
Thus if 0 = F0 ⊂ · · · ⊂ Fr = F is a filtration of F by subsheaves and D does not
contain any of the associated points of Fi/Fi−1 then 0 = F0|D ⊂ · · · ⊂ Fr |D =

F|D is a filtration of F|D and Fi|D/Fi−1|D ' (Fi/Fi−1)|D. We can also choose
any of the associated points of F to be an associated point of F1, proving the
following.

Claim 10.22.1 If D does not contain any of the associated points of F, then
(a) Ass(F|D) ⊂ ∪i Ass

(
(Fi/Fi−1)|D

)
and

(b) for every x ∈ Ass(F), every generic point of D ∩ x̄ is in Ass(F|D). �

By (10.25), we can choose the Fi such that Ass(Fi/Fi−1) is a single asso-
ciated point of F for every i. Thus it remains to understand Ass(G|D) when
G is pure. Let G[∗∗] ⊃ G denote the hull of G and set Q := G[∗∗]/G. As
we have noted, if D does not contain any of the associated points of Q then
G[∗∗]|D ⊃ G|D, thus Ass(G[∗∗]|D) = Ass(G|D). Finally, since G[∗∗] is S 2, the
restriction G[∗∗]|D is S 1, hence its associated points are exactly the generic
points of D ∩ Supp G. We have thus proved the following.

Claim 10.22.2 Let D ⊂ X be a Cartier divisor that contains neither an
associated point of F nor an associated point of (Fi/Fi−1)[∗∗]/(Fi/Fi−1). Then

(a) the associated points of F|D are exactly the generic points of D∩ x̄ for all
x ∈ Ass(F), and

(b)
(
F/ emb(F)

)
|D ' (F|D)/

(
emb(F|D)

)
. �

Note that the associated points of (Fi/Fi−1)[∗∗]/(Fi/Fi−1) depend on the choice
of the Fi, they are not determined by F. For the Claim to hold, it is enough to
take the intersection of all possible sets. This set is still hard to determine, but
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in many applications the key point is that, as long as X is excellent, we need D
to avoid only a finite set of points.

The next result describes how the associated points of fibers of a flat sheaf
fit together. The proof is a refinement of the arguments used in (10.16).

Theorem 10.23 Let f : X → S be a morphism of finite type and F a coherent
sheaf on X. Then the following hold.
(10.23.1) There are finitely many locally closed Wi ⊂ X such that Ass(Fs)

equals the set of generic points of the (Wi)s for every s ∈ S .
(10.23.2) If F is flat over S then we can choose the Wi to be closed and such

that each f |Wi : Wi → f (Wi) is equidimensional.

Proof Using Noetherian induction it is enough to prove that (1) holds over a
non-empty open subset of red S . We may thus assume that S is integral with
generic point g ∈ S .

Assume first that X is integral and F is torsion-free. By Noether normaliza-
tion, after again passing to some non-empty open subset of S there is a finite
surjection p : X → Am

S . Then p∗F is torsion-free of generic rank say r, hence
there is an injection j : p∗F ↪→ Or

Am
S
. After again passing to some non-empty

open subset we may assume that coker( j) is flat over S , thus

js : p∗(Fs) = (p∗F)s ↪→ Or
Am

s

is an injection for every s ∈ S . Thus each Fs is torsion-free and its associated
points are exactly the generic points of the fiber Xs.

In general, we use (10.25) for the generic fiber and then extend the resulting
filtration to X. Thus, after replacing S by a nonempty open subset if necessary,
we may assume that there is a filtration 0 = F0 ⊂ · · · ⊂ Fn = F such that
each Fm+1/Fm is a coherent, torsion-free sheaf over some integral subscheme
Wm ⊂ X and Wm1 1 Wm2 for m1 > m2. As we proved, we may assume that
the associated points of each

(
Fm+1/Fm)

s are exactly the generic points of the
fiber (Wm)s. Using generic flatness, we may also assume that each Fm+1/Fm is
flat over S and, after further shrinking S , none of the generic points of (Wm1 )s

are contained in (Wm2 )s for m1 > m2. Then the associated points of each Fs are
exactly the generic points of the fibers (Wm)s for every m. This proves (1).

In order to see (2), consider first the case when the base (0 ∈ T ) is the
spectrum of a DVR. The filtration given by (10.25) for the generic fiber extends
to a filtration 0 = F0 ⊂ · · · ⊂ Fn = F over X giving closed integral subschemes
Wm ⊂ X. Since T is the spectrum of a DVR, the Fm+1/Fm are flat over T , hence
the associated points of F0 are exactly the generic points of the fibers (Wm)0

for every m.
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To prove (2) in general, we take the Wi ⊂ X obtained in (1) and replace
them by their closures. A possible problem arises if f |Wi : Wi → f (Wi) is not
equidimensional. Assume that Wi → f (Wi) has generic fiber dimension d and
let (Wi)s be a special fiber. Pick any closed point x ∈ (Wi)s and the spectrum
of a DVR (0 ∈ T ) mapping to Wi such that the special point of T maps to f (x)
and the generic point of T to the generic point of f (Wi). After base change to T
we see that Fs has a d-dimensional associated subscheme containing x. Thus
(Wi)s is covered by d-dimensional associated subschemes of Fs. Since Fs is
coherent, this is only possible if dim(Wi)s = d and every generic point of the
(Wi)s is an associated point of Fs. �

10.24 (Semicontinuity and depth) Let X be a scheme and F a coherent sheaf
on X. As we noted in (10.3), the function x 7→ depthx F is not lower semicon-
tinuous. This is, however, caused by the non-closed points. A quick way to see
this is the following.

Assume that X is regular and let 0 ∈ X be a closed point. By the Auslander–
Buchsbaum formula as in Eisenbud (1995, 19.9), F0 has a projective resolution
of length dim X − depth0 F. Thus there is an open subset 0 ∈ U ⊂ X such that
F|U has a projective resolution of length dim X − depth0 F. This shows that

depthx F ≥ depth0 F − dim x̄ ∀x ∈ U. (10.24.1)

That is, x 7→ depthx F is lower semicontinuous for closed points. In general,
we have the following analog of (10.11).

Proposition 10.24.2 Let π : X → S be a morphism of finite type and F a coher-
ent sheaf on X that is flat over S with pure fibers. Let 0 ∈ X be a closed point.
Then there is an open subset 0 ∈ U ⊂ X such that

depthx Fπ(x) ≥ depth0 Fπ(0) − tr-degk(π(x)) k(x) ∀x ∈ U,

where Fπ(x) is the restriction of F to the fiber Xπ(x) and tr-deg denotes the tran-
scendence degree. Hence x 7→ depthx Fπ(x) is lower semicontinuous on closed
points.

Proof Using Noether normalization and (10.17.1) as in (10.16), we can reduce
to the case when X = An

S for some n. Next we take a projective resolution of the
fiber Fπ(0) and lift it to a suitable neighborhood 0 ∈ U ⊂ X using the flatness
of F. �

Dévissage is a method that writes a coherent sheaf as an extension of simpler
coherent sheaves and uses these to prove various theorems. There are many
ways to do this, and different ones are useful in different contexts; see Stacks
(2022, tag 07UN) for some of them.
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Recall that Ass(F) denotes the set of associated points of a sheaf F (10.1)
and that a sheaf is S 1 iff it has no embedded points (10.5). As in (10.1),
torsZ(F) ⊂ F is the largest subsheaf whose support is contained in Z.

Lemma 10.25 (Dévissage) Let X be a Noetherian scheme, F a coherent sheaf
on X. Write Ass(F) = {wi : i = 1, . . . ,m} in some fixed order and let Wi be the
closure of wi. Assume that W j 1 Wi for i < j. Then the following hold.
(10.25.1) There is a unique filtration 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gm = F such

that each Gi/Gi−1 is a torsion-free sheaf supported on Wi. Moreover, the
natural map torsWi (F)→ Gi/Gi−1 is an isomorphism at wi.

(10.25.2) There is a non-unique refinement Gi = Gi,0 ⊂ Gi,1 ⊂ · · · ⊂ Gi,ri =

Gi+1 such that each Gi, j+1/Gi, j is a rank 1, torsion-free sheaf over red Wi.

Proof It is easy to see that we must set G1 = torsW1 (F). Then pass to F/G1

and use induction on the number of associated points to get (1).
For (2), any filtration of (Gi+1/Gi)wi whose successive quotients are k(wi)

extends uniquely to the required Gi, j. �

10.3 Cohomology over Non-proper Schemes

The cohomology theory of coherent sheaves is trivial over affine schemes
and well understood over proper schemes. If X is a scheme and j : U ↪→ X
is an open subscheme then one can study the cohomology theory of coher-
ent sheaves on U by understanding the cohomology theory of quasi-coherent
sheaves on X and the higher direct image functors Ri j∗. The key results are
(10.26) and (10.30); see Grothendieck (1960, IV.5.11.1).

Proposition 10.26 Let X be an excellent scheme, Z ⊂ X a closed subscheme
and U := X \ Z with injection j : U ↪→ X. Let G be a coherent sheaf on U.
Then j∗G is coherent iff codimW (Z ∩W) ≥ 2, whenever W ⊂ X is the closure
of an associated point w of G.

The case of arbitrary Noetherian schemes is discussed in Kollár (2017).

Proof This is a local question, hence we may assume that X is affine. By
(10.25) G has a filtration 0 = G0 ⊂ · · · ⊂ Gr = G such that each
Gm+1/Gm is isomorphic to a subsheaf of some OW∩U where w is an associ-
ated prime of G. Since j∗ is left exact, it is enough to show that each j∗OW∩U is
coherent.
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Let p : V → W be the normalization. Since X is excellent, p is finite. OV is
S 2 (by Serre’s criterion) and so is p∗OV by (9.2). Thus

j∗OW∩U ⊂ j∗
(
p∗OV |U

)
= p∗OV ,

where the equality follows from (10.6) using codimW (Z ∩ W) ≥ 2. Thus
j∗OW∩U is coherent. �

It is frequently quite useful to know that coherent sheaves are “nice” over
large open subsets. For finite type schemes this was established in (10.17).

Proposition 10.27 Let X be a Noetherian scheme. Assume that every integral
subscheme W ⊂ X has an open dense subscheme W◦ ⊂ W that is regular, or at
least CM. (For example, X is excellent.) Let F be a coherent sheaf on X.
(10.27.1) There is a closed subset Z1 ⊂ Supp F of codimension ≥ 1 such that

F is CM on X \ Z1.
(10.27.2) If F is S 1 then there is a closed subset Z2 ⊂ Supp F of codimension

≥ 2 such that F is CM on X \ Z2.

Proof We put the intersections of different irreducible components of Supp F
into Z1. Since (1) is a local question, we may thus assume that Supp F is irre-
ducible. Since an extension of CM sheaves of the same dimensional support
is CM (10.28), using (10.25) we may assume that F is torsion-free over an
integral subscheme W ⊂ X. Then F is locally free over a dense open subset
W◦ ⊂ W and we can take Z1 := W \W∗, where W∗ is the regular locus of W◦.

In order to prove (2), we may assume that X is affine. Let s = 0 be a local
equation of Z1. We apply the first part to F/sF to obtain a closed subset Z2 ⊂

Supp(F/sF) of codimension ≥ 1 such that F/sF is CM on X \ Z2. Thus F is
CM on X \ Z2. �

The next lemma is quite straightforward; see Kollár (2013b, 2.60).

Lemma 10.28 Let X be a scheme and 0→ F′ → F → F′′ → 0 a sequence of
coherent sheaves on X that is exact at x ∈ X.
(10.28.1) If depthx F ≥ r and depthx F′′ ≥ r − 1 then depthx F′ ≥ r.
(10.28.2) If depthx F ≥ r and depthx F′ ≥ r − 1 then depthx F′′ ≥ r − 1. �

10.29 (Cohomology over quasi-affine schemes) Grothendieck (1967)
Let X be an affine scheme, Z ⊂ X a closed subscheme and U := X \ Z. Here

our primary interest is in the case when Z = {x} is a closed point.
For a quasi-coherent sheaf F on X, let H0

Z(X, F) denote the space of global
sections whose support is in Z. There is a natural exact sequence

0→ H0
Z(X, F)→ H0(X, F)→ H0(U, F|U).
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This induces a long exact sequence of the corresponding higher cohomology
groups. Since X is affine, Hi(X, F) = 0 for i > 0, hence the long exact sequence
breaks up into a shorter exact sequence

0→ H0
Z(X, F)→ H0(X, F)→ H0(U, F|U)→ H1

Z(X, F)→ 0 (10.29.1)

and a collection of isomorphisms

Hi(U, F|U) ' Hi+1
Z (X, F) for i ≥ 1. (10.29.2)

The vanishing of the local cohomology groups is closely related to the depth
of the sheaf F. Two instances of this follow from already established results.
First, for coherent sheaves (10.5) can be restated as

H0
Z(X, F) = 0 ⇔ depthZ F ≥ 1. (10.29.3)

Second, (10.6) tells us when the map H0(X, F) → H0(U, F|U) in (10.29.1) is
an isomorphism. This implies that, for coherent sheaves,

H0
Z(X, F) = H1

Z(X, F) = 0 ⇔ depthZ F ≥ 2. (10.29.4)

More generally, Grothendieck’s vanishing theorem (see Grothendieck (1967,
sec.3) or Bruns and Herzog (1993, 3.5.7)) says that

depthZ F = min
{
i : Hi

Z(X, F) , 0
}
. (10.29.5)

Combined with (10.29.2–3), this shows that

Hi(U, F|U)
= 0 for 1 ≤ i ≤ depthZ F − 2. (10.29.6)

All these cohomology groups are naturally modules over H0(X,OX) and we
need to understand when they are finitely generated.

More generally, let G be a coherent sheaf on U. When is the group Hi(U,G)
a finite H0(X,OX)-module? Since X is affine, Hi(U,G) = H0(X,Ri j∗G

)
, where

j : U ↪→ X denotes the natural open embedding. Thus Hi(U,G) is a finite
H0(X,OX)-module iff Ri j∗G is a coherent sheaf. For i ≥ 1, the sheaves Ri j∗G
are supported on Z, which implies the following.

Claim 10.29.7 Assume that i ≥ 1. Then every associated prime of Hi(U,G)
(viewed as an H0(X,OX)-module) is contained in Z, and, if Z = {x}, then
Hi(U,G) is a finite H0(X,OX)-module iff Hi(U,G) has finite length. �

The general finiteness condition is stated in (10.30); but first we work out the
special cases that we use. We start with H0(U,G); here we have the following
restatement of (10.26).

Claim 10.29.8 Let X be an excellent, affine scheme, Z ⊂ X a closed subscheme,
U := X \ Z, and G a coherent sheaf on U. Assume, in addition, that Z ∩ W̄i
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has codimension ≥ 2 in W̄i for every associated prime Wi ⊂ U of G. Then
H0(U,G) is a finite H0(X,OX)-module. �

It is considerably harder to understand finiteness for H1(U,G). The follow-
ing special case is used in Section 5.4.

Claim 10.29.9 Let X be an excellent scheme, Z ⊂ X a closed subscheme,
U := X \ Z, and G a coherent sheaf on U. Assume in addition that G is S 2,
there is a coherent CM sheaf F on X and an injection G ↪→ F|U , and Z has
codimension ≥ 3 in Supp F. Then R1 j∗G is coherent.

Proof Set Q = F|U/G. Since G is S 2, it has no extensions with a sheaf whose
support has codimension ≥ 2 by (10.6), thus every associated prime of Q has
codimension ≤ 1 in Supp F. Thus Q satisfies the assumptions of (10.26) and
so j∗Q is coherent. By (10.29.4) R1 j∗

(
F|U

)
= 0, hence the exact sequence

0→ j∗G → j∗
(
F|U

)
→ j∗Q→ R1 j∗G → R1 j∗

(
F|U

)
= 0

shows that R1 j∗G is coherent. �

Not every S 2-sheaf can be realized as a subsheaf of a CM sheaf, but this can
be arranged in some important cases.

Claim 10.29.10 Assume in addition that X is embeddable into a regular, affine
scheme R as a closed subscheme, Supp G has pure dimension n ≥ 3, Z = {x} is
a closed point, and G is S 2.

Then H1(U,G) has finite length. Thus, if X is of finite type over a field k,
then H1(U,G) is a finite dimensional k-vector space.

Outline of proof X plays essentially no role. Let Y ⊂ R be a complete intersec-
tion subscheme defined by dim R−n elements of Ann G. Then Y is Gorenstein,
we can view G as a coherent sheaf on Y \{x}, and Hi(X\{x},G) = Hi(Y \{x},G).
Thus it is enough to prove vanishing of the latter for i = 1. By (10.29.11) there
is an embedding G ↪→ Om

Y\{x}, hence (10.29.9) applies. �

Claim 10.29.11 Let U be a quasi-affine scheme of pure dimension n and G a
pure, coherent sheaf on U of dimension n. Assume that either U is reduced, or
U is Gorenstein at its generic points.

Then G is isomorphic to a subsheaf of Om
U for some m.

Outline of proof Assume that such an embedding exists at the generic points.
Then we have an embedding G ↪→ Om

U over some dense open set U◦ ⊂ U. Pick
s ∈ OU invertible at the generic points and vanishing along U \U◦. Multiplying
by sr for r � 1 gives the embedding G ↪→ Om

U .
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The remaining question is, what happens at the generic point. The existence
of the embedding is clear if U is reduced.

In general, we are reduced to the following algebra question: given an
Artinian ring A, is every finite A-module M a submodule of Am for some m?
Usually, the answer is no. However, local duality theory (see, for instance,
Eisenbud (1995, secs.21.1–2)) shows that every finite A-module is a submodule
of ωm

A for some m. Finally, A is Gorenstein iff A ' ωA. �

Much of the next result can be proved using these methods, but local duality
theory works better, as in Grothendieck (1968, VIII.2.3).

Theorem 10.30 Let X be an excellent scheme, Z ⊂ X a closed subscheme,
U := X \ Z, and j : U ↪→ X the open embedding. Assume in addition that X
is locally embeddable into a regular scheme. For a coherent sheaf G on U and
n ∈ N the following are equivalent.
(10.30.1) Ri j∗G is coherent for i < n.
(10.30.2) depthu G ≥ n for every point u ∈U such that codimū(Z ∩ ū) = 1. �

10.4 Volumes and Intersection Numbers

We have used several general results that compare intersection numbers and
volumes under birational morphisms.

Definition 10.31 (Lazarsfeld, 2004, sec.2.2.C) Let X be a proper scheme of
dimension n over a field and D a Mumford R-divisor on X. Its volume is

vol(D) := lim
m→∞

h0(X,OX(bmDc))
mn/n!

.

Numerically equivalent divisors have the same volume, and, for D =
∑

diDi,
the volume is a continuous function of the di; see Lazarsfeld (2004, 2.2.41–44).
If D is nef then vol(D) = (Dn) (11.52).

Proposition 10.32 Let p : Y → X be a birational morphism of normal, proper
varieties of dimension n. Let DY be a p-nef R-Cartier R-divisor such that
DX := p∗(DY ) is also R-Cartier. Then
(10.32.1) vol(DX) ≥ vol(DY ), and
(10.32.2) if DX is ample then equality holds iff DY ∼R p∗DX .
Furthermore, let H be an ample divisor on X. Then
(10.32.3) I(H,DX) � I(p∗H,DY ) (with I(∗, ∗) as in (5.13)), and
(10.32.4) equality holds iff DY ∼R p∗DX .
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Proof Write DY = p∗DX − E where E is p-exceptional. By assumption −E is
p-nef, hence E is effective by (11.60). Thus vol(DX) = vol(p∗DX) ≥ vol(DY ),
proving (1). Parts (2) and (4) are special cases of (10.39), but here is a more
direct argument.

Set r = dim
(
p(Supp E)

)
. For any R-Cartier divisors Ai on X, the intersection

number
(
p∗A1 · · · p∗A j · E

)
vanishes whenever j > r. Thus, if j > r then(

p∗H j · Dn− j
Y

)
=

(
p∗H j · (p∗DX − E)n− j) =

(
p∗H j · p∗Dn− j

X
)

=
(
H j · Dn− j

X
)
,

and for j = r we get that(
p∗Hr · Dn−r

Y
)

=
(
Hr · Dn−r

X
)

+
(
p∗Hr · (−E)n−r).

Thus we need to understand
(
p∗Hr · (−E)n−r). We may assume that H is very

ample. Intersecting with p∗H is then equivalent to restricting to the preimage of
a general member of |H|. Using this r-times (and normalizing if necessary), we
get a birational morphism p′ : Y ′ → X′ between normal varieties of dimension
n − r and an effective, nonzero, p-exceptional R-Cartier R-divisor E′ such that
−E′ is p′-nef and p′(E′i ) is 0-dimensional. Thus, by (10.33),

(
p∗Hr · (−E)n−r) =

(−E′)n−r < 0 which proves (3–4).
If DX is ample then we can use this for H := DX . Then

(
Hr · Dn−r

X
)

=
(
Dn

X
)

and we get (2). �

Lemma 10.33 Let p : Y → X be a proper, birational morphism of normal
schemes. Let E be an effective, nonzero, p-exceptional R-Cartier R-divisor
such that p(E) is 0-dimensional and −E is p-nef. Set n = dim E.

Then −(−E)n+1 =
(
−E|E

)n
> 0.

Proof Assume that there is an effective, nonzero, p-exceptional R-Cartier R-
divisor F such that p(F) = p(E), −F is p-nef and −(−F)n+1 > 0. Note that
E, F have the same support, namely p−1(p(E)

)
, thus E−εF is effective for 0 <

ε � 1. Thus −(−E)n ≥ −(−εF)n by (10.34) applied to N2 = −E,N1 = −εF.
Such a divisor F exists on the normalization of the blow-up Bp(E)X. Let

Z → X be a proper, birational morphism that dominates both Y and Bp(E)X.
We can apply the above observation to the pull-backs of E and F to Z. �

Lemma 10.34 Let N1,N2 be R-Cartier divisors with proper support on an
n + 1-dimensional scheme. Assume that there exists an effective divisor with
proper support D such that D ∼R N1 − N2 and the Ni|D are both nef. Then
(Nn+1

1 ) ≥ (Nn+1
2 ).
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Proof (Nn+1
1 ) − (Nn+1

2 ) = D ·
∑n

i=0 N i
1Nn−i

2 =
∑n

i=0
(
N1|D

)i(N2|D
)n−i. �

The next results compare the volumes of different perturbations of the
canonical divisor.

Lemma 10.35 Let X be a normal, proper variety of dimension n, and D an
effective R-divisor such that KX + D is R-Cartier, nef and big. Let Y be a
smooth, proper variety birational to X. Then
(10.35.1) vol(KY ) ≤

(
KX + D

)n, and
(10.35.2) equality holds iff D = 0 and X has canonical singularities.

Proof Let Z be a normal, proper variety birational to X such that there are
morphisms q : Z → Y and p : Z → X. Write

KZ ∼R q∗KY + E and KZ ∼R p∗(KX + D) − p−1
∗ D + F, (10.35.3)

where E is effective, q-exceptional and F is p-exceptional (not necessarily
effective). Thus

q∗KY ∼R p∗(KX + D) − p−1
∗ D + F − E. (10.35.4)

Write F − E = G+ − G− where G+,G− are effective and without common
irreducible components. Note that G+ is p-exceptional, therefore

H0(Z,OZ
(
bmp∗(KX + D) + mG+c

))
= H0(Z,OZ

(
bmp∗(KX + D)c

))
, so

H0(Z,OZ
(
bmp∗(KX + D) − p−1

∗ (mD) + mG+ − mG−c
))

= H0(Z,OZ
(
bmp∗(KX + D) − p−1

∗ (mD) − mG−c
))
.

This implies that

vol(KY ) = vol
(

p∗(KX + D) − p−1
∗ D + G+ −G−

)
= vol

(
p∗(KX + D) − p−1

∗ D −G−
)

≤ vol
(

p∗(KX + D)
)

= vol(KX + D) = (KX + D)n.

Furthermore, by (10.39) equality holds iff p−1
∗ D + G− = 0, that is, when D = 0

and G− = 0. In such a case (10.35.4) becomes q∗KY ∼R p∗KX + G+ and G+ is
effective. Thus a(E, X) ≥ a(E,Y) for every divisor E by (11.4.3), hence X has
canonical singularities. �

A similar birational statement does not hold for pairs in general, but a variant
holds if Y is a resolution of X. We can also add some other auxiliary divisors;
these are needed in our applications.
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Lemma 10.36 Let X be a normal, proper variety of dimension n and ∆ a
reduced, effective R-divisor on X. Let A be an R-Cartier R-divisor and D an
effective R-divisor such that KX + ∆ + A + D is R-Cartier, nef and big. Let
p : Y → X be any log resolution of (X,∆). Then
(10.36.1) vol(KY + p−1

∗ ∆ + p∗A) ≤
(
KX + ∆ + A + D

)n and
(10.36.2) equality holds iff D = 0 and (X,∆) is canonical.

Proof There are p-exceptional, effective divisors Fi such that

KY + p−1
∗ ∆ ∼R p∗(KX + ∆ + D) − p−1

∗ D − F1 + F2. (10.36.3)

As in (10.35), we get that

H0(Y,OY
(
bmp∗(KX + ∆ + A + D) − p−1

∗ (mD) − mF1 + mF2c
))

= H0(Y,OY
(
bmp∗(KX + ∆ + A + D) − p−1

∗ (mD) − mF1c
))
, and

vol(KY + p−1
∗ ∆ + p∗A) = vol

(
p∗(KX + ∆ + A + D) − p−1

∗ D + F2 − F1
)

= vol
(
p∗(KX + ∆ + A + D) − p−1

∗ D − F1
)
≤ vol

(
p∗(KX + ∆ + A + D)

)
= vol(KX + ∆ + A + D) = (KX + ∆ + A + D)n.

Furthermore, by (10.39), equality holds iff p−1
∗ D + F1 = 0, that is, when D = 0

and F1 = 0. Thus (10.36.3) becomes KZ + p−1
∗ ∆ ∼R p∗(KX + ∆) + F2, where

F2 is effective. This says that (X,∆) is canonical. �

Essentially the same argument gives the following log canonical version.

Lemma 10.37 Let X be a normal, proper variety of dimension n, ∆ a reduced,
effective R-divisor on X and A an R-Cartier R-divisor on X. Let q : X̄ → X be
a proper birational morphism, Ē the reduced q-exceptional divisor, ∆̄ := q−1

∗ ∆,
and D̄ an effective R-divisor on X̄ such that KX̄ + ∆̄ + Ē + D + q∗A is R-Cartier,
nef and big. Let p : Y → X be any log resolution of singularities with reduced
exceptional divisor E. Then
(10.37.1) vol(KY + p−1

∗ ∆ + E + p∗A) ≤
(
KX̄ + ∆̄ + Ē + D̄ + q∗A

)n and
(10.37.2) equality holds iff D̄ = 0 and (X̄, ∆̄ + Ē) is log canonical. �

We have also used the following elementary estimate.

Lemma 10.38 Let p : Y → X be a separable, generically finite morphism
between smooth, proper varieties. Then vol(KY ) ≥ deg(Y/X) · vol(KX).

Proof This is obvious if vol(KX) = 0, hence we may assume that KX is big.
Pulling back differential forms gives a natural map p∗ωX → ωY . This gives an
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injection ωr
X ⊗ p∗ωY ↪→ p∗

(
ωr+1

Y
)
. Since p∗ωY has rank deg(Y/X) and KX is

big, H0(X, ωr
X ⊗ p∗ωY

)
grows at least as fast as deg(Y/X) · H0(X, ωr

X
)
. �

The following result describes the variation of the volume near a nef and big
divisor. The assertions are special cases of Fulger et al. (2016, thms.A–B).

Theorem 10.39 Let X be a proper variety, L a big R-Cartier divisor, and E an
effective divisor. The following are equivalent.
(10.39.1) vol(L − E) = vol(L), and
(10.39.2) H0(OX(bmL − mEc)

)
= H0(OX(bmLc)

)
for every m ≥ 0.

If L is nef then these are further equivalent to
(10.39.3) E = 0.

Note that (3)⇒ (2)⇒ (1) are clear, but the converse is somewhat surprising.
It says that although the volume measures only the asymptotic growth of the
Hilbert function, one cannot change the Hilbert function without changing the
volume. For proofs, see Fulger et al. (2016, thms.A–B).

10.5 Double Points

We used a variety of results about hypersurface double points. For the rest of
the section, we work with rings R that contain 1

2 . In this case, all the definitions
that we have seen are equivalent to the ones given below. If 1

2 < R, there are
differing conventions, especially if char R = 2.

The following results on normal forms, deformations, and resolutions of
double points are well known, but not easy to find in one place.

Definition 10.40 A quadratic form over a field k is a degree 2 homogeneous
polynomial q(x1, . . . , xn) ∈ k[x1, . . . , xn]. The rank of q is defined either as the
dimension of the space spanned by the derivatives

〈
∂q
∂x1
, . . . , ∂q

∂xn

〉
, or as the rank

of Hess(q) :=
(

∂2q
∂xi∂x j

)
, or as the number of variables in any diagonalized form

q = a1y2
1 + · · · + ary2

r where ai ∈ k×. More abstractly, if V is a k-vector space,
we can think of q as an element of the symmetric square of its dual S 2(V∗).

Definition 10.41 Let (S ,m) be a regular local ring with residue field k such
that char k , 2. We can identify m2/m3 with S 2(m/m2). Thus, for any g ∈ m2,
we can view its image in m2/m3 as a quadratic form.

Let Y be a smooth variety over a field of characteristic , 2 and X =

(g = 0) ⊂ Y a hypersurface. Given a point p ∈ X, we let rankp X denote
the rank of the image of g in m2

p/m
3
p.
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We say that p ∈ X is a double point if rankp X ≥ 1, a cA point if rankp X ≥ 2,
and an ordinary double point if rankp X = dimp X. An ordinary double point
is also called a node, especially if dim S = 2.

If y1, . . . , yn are étale coordinates on Y then Hessy(g) =
(

∂2g
∂yi∂y j

)
. Since the

rank is lower semicontinuous, {p ∈ Sing X : rankp X ≥ r} is open in Sing X for
every r. For us the most interesting case is r = 2. The relative version is then
the following.

Claim 10.41.1 Let f : Y → S be smooth and X ⊂ Y a relative Cartier divisor.
Then {p ∈ X : p is cA (or smooth) on X f (p)} ⊂ X is open. �

This implies that if X → S is proper and Xs has only cA-singularities (and
smooth points) outside a closed subset Zs ⊂ Xs of codimension ≥ m for some
s ∈ S then the same holds in an open neighborhood s ∈ S ◦ ⊂ S .

Corollary 10.42 Let π : X → S be a flat and pure dimensional morphism.
Then the set of points {x : Xπ(x) is demi-normal at x} is open in X.

Proof Being S 2 is an open condition by (10.12). An S 1 scheme is geometri-
cally reduced iff it is generically smooth and smoothness is an open condition.
Thus being S 2 and geometrically reduced is an open condition.

It remains to show that having only nodes in codimension 1 is also an open
condition. If all residue characteristics are , 2, this follows from (10.41.3)
since having only cA-singularities in codimension 1 is an open condition.

See Kollár (2013b, 1.41) for nodes in characteristic 2. �

Let f be a function on Rn that has an ordinary critical point at the origin. The
Morse lemma says that in suitable local coordinates y1, . . . , yn we can write f
as ±y2

1 ± · · · ± y2
n; see Milnor (1963, p.6) and Arnol′d et al. (1985, vol.I.sec.6.2)

for differentiable and analytic versions. Algebraically, the best is to work with
formal power series. We prove a form that also works if char(R/m) = 2.

Lemma 10.43 (Formal Morse lemma with parameters) Let (R,m) be a com-
plete local ring and G ∈ R[[x1, . . . , xn]]. Assume that G = q + H, where q is a
quadratic form with reduction modulo m denoted by q̄ such that
(10.43.1) dim

〈
∂q̄/∂x1, . . . , ∂q̄/∂xn

〉
= n, and

(10.43.2) H ∈ (x1, . . . , xn)3 + mR[[x1, . . . , xn]].
Then there are local coordinates y1, . . . , yn such that
(10.43.3) yi ≡ xi mod (x1, . . . , xn)2 + mR[[x1, . . . , xn]], and
(10.43.4) G = q(y1, . . . , yn) + b for some b ∈ m.
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Proof Let us start with the case when R = k is a field. Set x2,i := xi. Assume
inductively (starting with r = 2) that there are local coordinate systems
(xs,1, . . . , xs,n) for 3 ≤ s ≤ r such that

xs,i ≡ xs−1,i mod (x1, . . . , xn)s−1 and
G ≡ q(xr,1, . . . , xr,n) mod (x1, . . . , xn)r+1.

Next we choose xr+1,i := xr,i + hr,i for suitable hr,i ∈ (x1, . . . , xn)r. Note that

q(xr+1,1, . . . , xr+1,n) = q(xr,1, . . . , xr,n) +
∑

ihr,i
∂q
∂xi

mod (x1, . . . , xn)2r.

(We use this only modulo (x1, . . . , xn)r+2.) Since q is nondegenerate,∑
i
∂q
xi

(x1, . . . , xn)r = (x1, . . . , xn)r+1.

Thus we can choose the hr,i such that

G − q(xr+1,1, . . . , xr+1,n) ∈ (x1, . . . , xn)r+2.

In the limit we get (x∞,1, . . . , x∞,n) as required.
Applying this to k = R/m, we can assume from now on that

G − q(x1, . . . , xn) ∈ mR[[x1, . . . , xn]].

Working inductively (starting with r = 1), assume that there are local
coordinate systems (ys,1, . . . , ys,n) for 3 ≤ s ≤ r such that

ys,i ≡ ys−1,i mod ms−1R[[x1, . . . , xn]] and
G ≡ q(yr,1, . . . , yr,n) mod m + mrR[[x1, . . . , xn]].

Next we choose yr+1,i := yr,i +cr,i for suitable cr,i ∈ mrR[[x1, . . . , xn]]. Note that

q(yr+1,1, . . . , yr+1,n) = q(yr,1, . . . , yr,n) +
∑

icr,i
∂q
∂xi

mod m2rR[[x1, . . . , xn]].

(We use this only modulo mr+1R[[x1, . . . , xn]].) Since q is nondegenerate,∑
i
∂q
∂xi

mrR[[x1, . . . , xn]] = (x1, . . . , xn)mrR[[x1, . . . , xn]].

Thus we can choose the cr,i such that

G − q(yr+1,1, . . . , yr+1,n) ∈ m + mr+1R[[x1, . . . , xn]].

In the limit we get (y∞,1, . . . , y∞,n) as required. �

In (1.27), we used various results on resolutions of double points of surfaces
that contain a pair of lines and double points of 3–folds that contain a pair
of planes. The normal forms can be obtained using the method of (10.43),
but we did not follow how linear subvarieties transform under the (non-linear)
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coordinate changes used there. However, in the next examples, one can be quite
explicit about the coordinate changes and the resolutions.

10.44 (Ordinary double points of surfaces) Let S :=
(
h(x1, x2, x3) = 0

)
⊂ A3

be a surface with an ordinary double point at the origin that contains the pair
of lines (x1x2 = x3 = 0). Then h can be written as

h = f (x1, x2, x3)x1x2 − g(x1, x2, x3)x3.

Since the quadratic part has rank 3, then f (0, 0, 0) , 0 and we can write g =

x1g1 + x2g2 + x3g3 for some polynomials gi. Thus

h = f
(
x1 − f −1g1x3

)(
x2 − f −1g2x3

)
−

(
g3 + f −1g1g2

)
x2

3.

Here g3 + f −1g1g2 is nonzero at (0, 0, 0) and we can set

y1 := x1 − f −1g1x3, y2 := f
(
x2 − f −1g2x3

)(
g3 + f −1g1g2

)−1 and y3 := x3

to bring the equation to the normal form S = (y1y2 − y2
3 = 0). The pair of lines

is (y1y2 = y3 = 0).
Now we consider three ways of resolving the singularity of X. First, one can

blow up the origin 0 ∈ A3. We get B0A
3 ⊂ A3

y × P
2
s defined by the equations

{yis j = y jsi : 1 ≤ i, j ≤ 3}. Besides these equations, B0S is defined by y1y2 −

y2
3 = s1s2 − s2

3 = y1s2 − y3s3 = s1y2 − y3s3 = 0.
One can also blow up (y1, y3). We get B(y1,y3)A

3 ⊂ A3
y × P

1
u1u3

defined by the
equation y1u3 = y3u1. Besides this equation, B(y1,y3)S is defined by y1y2 − y2

3 =

u1y2 − u3y3 = 0.
These two blow-ups are actually isomorphic, as shown by the embedding

A3
y × P

1
u1u3

↪→ A3
y × P

2
s :

(
(y1, y2, y3), (u1:u3)

)
7→

(
(y1, y2, y3), (u2

1:u2
3:u1u3)

)
restricted to B(y1,y3)S . The same things happen if we blow up (y2, y3).

10.45 (Ordinary double points of 3-folds) Let X :=
(
h(x1, . . . , x4) = 0

)
⊂ A4

be a hypersurface with an ordinary double point at the origin that contains the
pair of planes (x1x2 = x3 = 0). Then h can be written as

h = f (x1, . . . , x4)x1x2 − g(x1, . . . , x4)x3.

The quadratic part has rank 4 iff f (0, . . . , 0) , 0 and x4 appears in g with
nonzero coefficient. In this case, we can set yi := xi for i = 1, 2, 3 and y4 :=
f −1g to bring the equation to the normal form X = (y1y2 − y3y4 = 0). The
original pair of planes is (y1y2 = y3 = 0).
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Now we consider three ways of resolving the singularity of X. First, one can
blow up the origin 0 ∈ A4. We get B0A

4 ⊂ A4
y × P

3
s , defined by the equations

{yis j = y jsi : 1 ≤ i, j ≤ 4}, and p : B0X → X by the additional equations

y1y2 − y3y4 = s1s2 − s3s4 = yis3−i − y js7− j = 0 : i ∈ {1, 2}, j ∈ {3, 4}.

The exceptional set is the smooth quadric (s1s2 = s3s4) ⊂ P3 lying over the
origin 0 ∈ A4.

One can also blow up (y1, y3). Then B(y1,y3)A
4 ⊂ A4

y × P
1
u1u3

is defined by the
equation y1u3 = y3u1. Besides this equation, B(y1,y3)X is defined by y1y2−y3y4 =

u1y2 − u3y4 = 0. The exceptional set is the smooth rational curve E ' P1
u1u3

lying over the origin 0 ∈ A4.
Note furthermore that the birational transform P∗24 of the plane P24 := (y2 =

y4 = 0) is the blown-up plane B0P24, but the birational transform P∗14 of the
plane P14 := (y1 = y4 = 0) is the plane (y1 = u1 = 0). The latter intersects
E at the point (u1 = 0) ∈ E, thus

(
P∗14 · E) = 1. Since P∗14 + P∗24 is the pull-

back of the Cartier divisor (y4 = 0), it has 0 intersection number with E. Thus(
P∗24 · E) = −1.

By direct computation, the rational map p : A4
y × P

3
s d A

4
y × P

1
u given by

p1 : (y1, . . . , y4, s1: · · · :s4) 7→ (y1, . . . , y4, s1:s3) gives a morphism p1 : B0X →
B(y1,y3)X. Similarly, we obtain p2 : B0X → B(y2,y3)X and an isomorphism

p1 × p2 : B0X ' B(y1,y3)X ×X B(y2,y3)X.

Finally, set S := (y3 = y4) ⊂ X. By the computations of (10.44), the pi restrict
to isomorphisms pi : B0S ' B(yi,y3)S . Thus p−1S = B0S ∪ E and B0S is the
graph of the isomorphism p2 ◦ p−1

1 : B(y1,y3)S ' B(y2,y3)S .

10.6 Noether Normalization

10.46 (Classical versions) Noether’s normalization theorem says that if X is
an affine (resp. projective) k-variety of dimension n then it admits a finite
morphism to An

k (resp. Pn
k).

We aim to generalize this to arbitrary morphisms. For the projective case,
let X ⊂ PN

S be projective over S and n = dim Xs for some s ∈ S . Choose
a linear subspace Ls ⊂ P

N
s of dimension N − n − 1 that is disjoint from Xs.

(This is always possible if k(s) is infinite, otherwise we may need to take a
high enough Veronese embedding first.) Lifting Ls to PN

S and projecting from
it gives the following.

Claim 10.46.1 Let p : X → S be a projective morphism and n = dim Xs for
some s ∈ S . Then there is an open neighborhood s ∈ S ◦ ⊂ S such that p|X◦ can
be factored as
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p|X◦ : X◦ finite // Pn
S ◦

// S ◦. �

In general, we have the following weaker local version.

Claim 10.46.2 Let p : X → S be a finite type morphism and x ∈ X a closed
point. Then there is an open neighborhood x ∈ X◦ ⊂ X and an open embedding
X◦ ↪→ X∗, where p∗ : X∗ → S is projective of relative dimension ≤ dim Xs.

Proof Set d := dim Xs and pick g1, . . . , gd ∈ Ox,X that generate an mx,X-
primary ideal. They give a rational map X d Ad

S ↪→ Pd
S that is quasi-finite

on some x ∈ X◦ ⊂ X. We then take X◦ ⊂ X∗ such that X∗ → Pd
S is finite. �

Next we give two examples showing that in (10.46.2) one cannot choose X◦

such that X◦ → Ad
S is finite, not even when S is local. After that we discuss

an étale local version for finite type morphisms due to Raynaud and Gruson
(1971). Arbitrary morphisms are discussed in (10.52); these results work best
for morphisms of complete local schemes.

Example 10.47 We give an example of a morphism of pure relative dimension
one p : X → S from an affine 3-fold X to a smooth, pointed surface s ∈ S that
cannot be factored as

p : X finite // A1 × S // S ,

not even over a formal neighborhood of s. Such examples are quite typical and
there does not seem to be any affine version of Noether normalization over
base schemes of dimension ≥ 2.

Let S denote the localization (or completion) of A2
st at the origin and

consider the affine scheme

X :=
(
(x3 + y3 + 1)(1 + tx) + sy = 0

)
⊂ A2

xy × S .

Then π : X → S is a flat family of curves. We claim that there is no finite
morphism of it onto A1 × S .

Assume to the contrary that such a map g : X → A1 × S exists. Then g can
be extended to a finite morphism ḡ : X̄ → P1 × S .

Here X̄(0,0) is a compactification of X(0,0), hence a curve of genus 1.
For t , 0, the line (1 + tx = s = 0) gives an irreducible component of X̄(0,t)

that is a rational curve. As t → 0, the limit of these rational curves is a union
of rational, irreducible, geometric components of X̄(0,0), a contradiction.
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Example 10.48 In A4
xyst consider the surface X := (x − sy2 = y − tx2 = 0).

Projection to A2
xy is birational with inverse (x, y) 7→ (s, t) = (x/y2, y/x2). The

projection to A2
st is quasi-finite.

Consider the projection π : A4
xyst → A

3
zst given by z = x + y. We claim that

the closure of its image contains the z-axis. Indeed, for any c, the curve

t 7→
(
t, c − t, t

(c−t)2 ,
c−t
t2

)
lies on X and its projection converges to (c, 0, 0) as t → ∞.

It is easy to see that the same happens for every perturbation of π. In fact,
given (x, y) 7→

(
a(s, t)x+b(s, t)y+c(s, t)

)
, the closure of the image of X contains

the z-axis whenever a(0, 0) , 0 , b(0, 0).

The next result of Raynaud and Gruson (1971) shows that Noether normali-
zation works étale locally. The version given in Stacks (2022, tag 052D) states
the first part, but following the proof gives the additional information about the
choices.

Theorem 10.49 Let f : X → S be a finite type morphism. Pick s ∈ S , a
closed point x ∈ Xs and set n = dimx Xs. Then there is an elementary étale
neighborhood (2.18) π : (x′, X′)→ (x, X) such that f ◦ π factors as

(x′, X′)
g
→ (y,Y)

τ
→ (s, S ), (10.49.1)

where g is finite, g−1(y) = {x′} (as sets), τ is smooth of relative dimension n,
and k(y) = k(s).

Moreover, pick c ∈ N and x1, . . . , xn ∈ mx,Xs that generate an mx,Xs -primary
ideal. Then we can choose (10.49.1) such that there are y1, . . . , yn ∈ my,Ys

satisfying g∗syi ≡ π
∗
s xi mod mc

x′,X′s
for every i. �

If Xs is generically geometrically reduced, then we can choose yn+1 ∈ mx,Xs

with specified residue modulo mc
x′,X′s

and which embeds the generic fiber of
Xs → Ys into A1

k(Ys)
. Lifting it to X′ and setting Y ′ := A1

Y gives the following
birational version of Noether normalization.

Corollary 10.50 Let f : X → S be a finite type morphism. Pick s ∈ S and
a closed point x ∈ Xs. Assume that Xs is generically geometrically reduced
and of pure dimension n. Then there is an elementary étale neighborhood
π : (x′, X′)→ (x, X) such that f ◦ π factors as

(x′, X′)
g′
→ (y′,Y ′)

τ′

→ (s, S ), (10.50.1)
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where g′ is finite, (g′)−1(y′) = {x′} (as sets), g′s : X′s → Ys × A
1 is birational, τ′

is smooth of relative dimension n + 1, and k(y′) = k(s).
Moreover, pick c ∈ N and x1, . . . , xn+1 ∈ mx,Xs that generate an mx,Xs -

primary ideal. Then we can arrange that there are y1, . . . , yn+1 ∈ my,Ys

satisfying g′s
∗yi ≡ π

∗
s xi mod mc

x′,X′s
for every i. �

Corollary 10.51 Let f : X → S be a finite type morphism of pure relative
dimension n. Pick s ∈ S and a closed point x ∈ Xs such that k(x) = k(s).
Assume that S is normal and f is flat at the generic points of Xs. Assume also
that embdimx pure(Xs) ≤ n+1. Then there is an elementary étale π : (x′, X′)→
(x, X) such that (10.50.1) further factors as

(x′, X′)
g′
→ (y′,D′) ↪→ (y′,Y ′)

τ′

→ (s, S ), (10.51.1)

where, D′ ⊂ Y ′ is a relative Cartier divisor, g′ is birational, g′s : X′s → D′s is
birational and induces a local isomorphism pure(X′s)→ D′s at x′.

Proof Since embdim(pure(Xs) ≤ n+1, we can choose x1, . . . , xn+1 ∈ mx,Xs that
generate the ideal of x ∈ pure(Xs). Applying (10.50) with c = 2 guarantees that
pure(X′s)→ D′s is a local isomorphism at x′.

D′ is a relative Cartier divisor by (4.4) and then (10.54) implies that g′ is a
local isomorphism at the generic points of X′s. Thus g′ is birational. �

Informally speaking, (10.51) says that partial normalizations of flat defor-
mations of hypersurfaces describe all deformations over normal base schemes.
For double points this approach leads to a complete answer (10.68). More
substantial applications are in de Jong and van Straten (1991).

Next we turn to local morphisms of Noetherian local schemes

10.52 (Noether normalization, local version) Let f : (x, X) → (s, S ) be a
morphism of local, Noetherian schemes. We would like to factor f as

f : (x, X)
p
→ (s′, S ′)

q
→ (s, S ), (10.52.1)

where p has “finiteness” properties and q has “smoothness” properties. Let
us start with the case when k(x) ⊃ k(s) is a finitely generated field exten-
sion. Pick any transcendence basis ȳ1, . . . , ȳn of k(x)/k(s) and lift these back to
y1, . . . , yn ∈ OX . We can then take S ′ to be the localization of An

S at the generic
point of the fiber over s ∈ S . Thus we have proved the following.

Claim 10.52.2 Let f : (x, X)→ (s, S ) be a local morphism of local, Noetherian
schemes such that k(x) ⊃ k(s) is a finitely generated field extension. Then
we can factor f as f : (x, X)

p
→ (s′, S ′)

q
→ (s, S ), where k(x)/k(s′) is a finite
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field extension, q is the localization of a smooth morphism and q−1(s) = s′ (as
schemes). �

For Henselian schemes, we can do better. Pick ȳ ∈ k(x) that is separable over
k(s′) with separable, monic equation ḡ(ȳ) = 0. If OX is Henselian then we can
lift ȳ to y ∈ OX such that y satisfies a separable, monic equation g(y) = 0. We
can now replace S ′ with the Henselization of OS ′ [y]/(g(y)) at the generic point
of the central fiber, and obtain the following.

Claim 10.52.3 Let f : (x, X)→ (s, S ) be a local morphism of local, Henselian,
Noetherian schemes such that k(x)/k(s) is a finitely generated field extension.
Then we can factor f as f : (x, X)

p
→ (s′, S ′)

q
→ (s, S ), where p is finite,

k(x)/k(s′) is a purely inseparable field extension, q is the localization of a
smooth morphism and q−1(s) = s′ (as schemes). �

Combining these with (10.53) gives the following.

Claim 10.52.4 Let f : (x, X) → (s, S ) be a local morphism of local, complete,
Noetherian schemes. Then we can factor f as f : (x, X)

p
→ (s′, S ′)

q
→ (s, S ),

where k(x)/k(s′) is a purely inseparable field extension, q is formally smooth,
faithfully flat, regular and q−1(s) = s′ (as schemes). �

Putting these together we get the following.

Claim 10.52.5 Let f : (x, X) → (s, S ) be a local morphism of local, complete,
Noetherian schemes such that k(x)/k(s) is separable. Set n := dim Xs.

Then we can factor f as

f : (x, X)
p
→

(
(s′, 0), Ân

S ′
) π
→ (s′, S ′)

q
→ (s, S ),

where p is finite, k(x) = k(s′, 0) = k(s′), π is the coordinate projection, q−1(s) =

s′ (as schemes), q is the localization of a smooth morphism if k(x)/k(s) is
finitely generated and formally smooth, faithfully flat and regular in general.

Proof By (10.52.4), we have q : (s′, S ′)→(s, S ) such that k(x) = k(s′).
Since OXs has dimension n, there are t̄1, . . . , t̄n ∈ OXs that generate an ideal
that is primary to the maximal ideal. Lift these back to t1, . . . , tn ∈ OX .
These define p : (x, X)→

(
(s′, 0), Ân

S ′
)
. By construction, OX/

(
mS , t1, . . . , tn

)
'

OXs/
(
t̄1, . . . , t̄n

)
is finite over k(s′). Thus p is finite. �

Notation 10.52.6 Let R be a complete, local ring and Y = Spec R. We write
Ân

Y := Spec R[[x1, . . . , xn]]. Note that Ân
Y is not the product of Ân with Y in any

sense. If X → Y is a finite morphism then Ân
X ' X ×Y Â

n
Y .
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10.53 (Residue field extensions) Let (s, S ) be a Noetherian, local scheme
and K/k(s) a field extension. By Grothendieck (1960, 0III .10.3.1), there is a
Noetherian, local scheme (x, X) and a flat morphism g : (x, X) → (s, S ) such
that g∗ms,S = mx,X (that is, the scheme fiber g−1(s) is the reduced point {x}) and
k(x) ' K.

If K/k(s) is a finitely generated separable extension then we can choose
g : (x, X) → (s, S ) to be the localization of a smooth morphism. In particular,
if S is normal then so is X.

Combining Grothendieck (1960, 0III .10.3.1) and Stacks (2022, tag 07PK)
shows that if K/k(s) is an arbitrary separable extension, then we can choose
g : (x, X)→ (s, S ) to be formally smooth. If S is complete then g is also regular.
In particular, if S is normal then so is X.

Note that infinite inseparable extensions do cause problems in the above
arguments. One difficulty is that they can lead to non-excellent schemes; see
Nagata (1962, p.206).

10.54 (Openness for isomorphism) Let g : (x, X) → (s, S ) be a local mor-
phism of local, Noetherian schemes and g : G → F a map of coherent sheaves
on X. Assume that F is flat over S . Then g is an isomorphism iff gs is an iso-
morphism, and gs is injective iff g is injective and coker g is flat over S . See
Matsumura (1986, 22.5) or Kollár (1996, I.7.4.1) for proofs. Applying this to
the structure sheaf of a scheme and its image, we get the following.

Claim 10.54.1 Let π : X → Y be a finite morphism of S -schemes. Assume
that X is flat over S . Then π is an isomorphism (resp. closed embedding) in
a neighborhood of a fiber Xs iff πs : Xs → Ys is an isomorphism (resp. closed
embedding).

10.7 Flatness Criteria

Let g : X → S be a morphism and F a coherent sheaf on X. We are mainly
interested in those cases when F is flat over S with pure fibers of dimension d
for some d. In practice, we already know that F|U is flat for some dense open
subset U ⊂ X and we aim to find conditions that guarantee flatness.

Note that such a result is possible only if F|U determines F. Thus we at least
need to assume that none of the associated point of F are contained in Z.

10.55 (Flatness and associated points) Let f : X → S be a morphism of
Noetherian schemes and F a coherent sheaf on X.
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Claim 10.55.1 If F is flat over S then f
(
Ass(F)

)
⊂ Ass(S ).

Proof Let x ∈ X be an associated point of F and s := f (x). Assume that s is
not an associated point of S . Then there is an r ∈ ms,S such that r : OS → OS

is injective near s. Tensoring with F shows that r : F → F is injective near Xs.
Thus none of the points of Xs is in Ass(F). �

Claim 10.55.2 Assume that F is flat over S and x ∈ Ass(F). Then every generic
point of Supp

(
x̄∩Xs

)
is an associated point of Fs. In particular, if F is flat with

pure fibers then every x ∈ Ass(F) is a generic point of Supp
(
F f (x)

)
.

Proof Let G ⊂ F be the largest subsheaf supported on x̄. After localizing
at a generic point of Supp

(
x̄ ∩ Xs

)
, we have Supp

(
x̄ ∩ Xs

)
= {w}, a single

closed point. There is an n ≥ 0 such that G ⊂ mn
s,S F, but G 1 mn+1

s,S F.
Thus mn

s,S F/mn+1
s,S F '

(
mn

s,S /m
n+1
s,S

)
⊗ Fs has a nonzero subsheaf supported

on w. �

Note that flatness is needed for (10.55.2) as illustrated by the restriction of
either of the coordinate projections to the union of the axes (xy = 0).

Claim 10.55.3 Assume f is of finite type, F is flat over S , and x ∈ Ass(F).
Then every fiber of x̄→ f (x̄) has the same dimension.

Proof We may assume that f (x) is a minimal associated point of S . Assume
that we have s ∈ f (x̄) such that dim(Xs ∩ x̄) is larger than the expected dimen-
sion d. By restricting to a general relative Cartier divisor H ⊂ X, F|H is flat
along Hs by (10.56) and Hs ∩ x̄ is a union of associated points of F|H by
(10.22.1). Repeating this d + 1 times we get Cartier divisors H1, . . . ,Hd+1 ⊂ X
and a complete intersection Z := H1 ∩ · · · ∩Hd+1 such that F|Z is flat along Zs,
the generic points of Z∩ x̄ are associated points of F|Z yet they do not dominate
f (x̄). This is impossible by (10.55.1). �

Next we discuss some basic reduction steps.
Let f : X → S be a morphism that we would like to prove to be flat. We can

usually harmlessly assume that S is local.
If f is of finite type, then flatness is an open property. Let U ⊂ X denote the

largest open set over which f is flat and set Z := X \U. The situation is techni-
cally simpler if Z is a single closed point. To achieve this, one can use (10.56)
to pass to a general hyperplane section of X and repeat if necessary, until Z
becomes zero-dimensional. A potential drawback is that, while we can choose
general hyperplanes, some fibers are nongeneral complete intersections, so
may be harder to control.
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Alternatively, we can localize at a generic point of Z. Then f is no longer of
finite type, which can cause problems.

Once S and X are both local, we can take their completions. Now we have
a local morphism of complete, local, Noetherian schemes. Note, however, that
some of our results hold only over base schemes that are normal, seminor-
mal, or reduced. These properties are preserved by completion for excellent
schemes, but not in general.

Proposition 10.56 (Bertini theorem for flatness) (Matsumura, 1986, p.177)
Let (x, X) → (s, S ) be a local morphism of local schemes, r ∈ mx,X and F a
coherent sheaf on X. The following are equivalent.
(10.56.1) r is a non-zerodivisor on F and F/rF is flat over S .
(10.56.2) r is a non-zerodivisor on Fs and F is flat over S . �

10.57 (Flatness and residue field extension) The following simple trick
reduces most flatness questions for local morphisms f : (x, X) → (s, S ) with
finitely generated residue field extension k(x)/k(s) to the special case when
k(x) = k(s) and they are infinite. (See 10.52–10.53 for other versions.)

If k(x)/k(s) is a generated by n elements then there is a point s′ ∈ An
k(s) such

that k(x) ⊂ k(s′) and k(s′) is infinite.
Consider next the trivial lifting f ′ : X′ := An

X → S ′ := An
S . Set s′ ∈ An

k(s) ⊂

S ′ and x′ := (s′, x) ∈ X′ projecting to x. Thus we have a commutative diagram
of pointed schemes

(x′ ∈ X′)

f ′

��

πX // (x ∈ X)

f

��
(s′ ∈ S ′)

πS // (s ∈ S )

(10.57.1)

where πX , πS are smooth, k(x′) = k(s′) and f is flat at x iff f ′ is flat at x′.
Many properties of schemes and morphisms are preserved by composing

with smooth morphisms; see Matsumura (1986, sec.23) for a series of such
results. Thus the properties of (s, S ) are inherited by (s′, S ′). Once we prove a
result about (x′, X′) it descends to (x, X).

Over reduced bases, flatness is usually easy to check if we know all the
fibers. For projective morphisms there are criteria using the Hilbert function
(3.20). In the local case, we have the following.

Lemma 10.58 Let S be a reduced scheme and f : X → S a morphism that is
of finite type, pure dimensional and with geometrically reduced fibers. Then f
is flat.
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Proof By (4.38), it is enough to show this when (s, S ) is the spectrum of a
DVR. In this case f is flat iff none of the associated points of X is contained in
Xs. By assumption Xs is reduced, so only generic points of Xs could occur.
Then the corresponding irreducible component of Xs is also an irreducible
component of X, but we also assumed that f has pure relative dimension. �

10.59 (Format of flatness criteria) In many cases we have some information
about the fibers of a morphism, but we do not fully understand them. So we
are looking for results of the following type.

Let (s, S ) be a local scheme, f : X → S a morphism and F a vertically pure
coherent sheaf on X. Let Z ⊂ X be a closed subset such that FX\Z is flat over
S . We make various assumptions on pure(Fs) (involving Zs) and on S . The
conclusion should be that F is flat and Fs is pure.

The natural way to organize the results is by the relative codimension; in
the local case this equals codimXs (Zs). The starting case is when Z = X, so the
codimension is 0.

The main theorems are (10.60), (10.63), (10.67), (10.71) and (10.73).

Flatness in Relative Codimension 0

The basic result is the following, proved in Grothendieck (1971, II.2.3).

Theorem 10.60 Let f : (x, X) → (s, S ) be a local morphism of local, Noethe-
rian schemes of the same dimension such that f −1(s) = x as schemes, that is,
mx,X = ms,S OX . Assume that k(x) ⊃ k(s) is separable and Ŝ , the completion of
S , is normal. (Note that if S is normal and excellent, then Ŝ is normal.)

Then f is flat at x.

Proof We may replace S and X by their completions. As in (10.52.4), we can
factor f as

f : (x, X)
p
→ (y,Y)

q
→ (s, S )

where (y,Y) is also complete, local, Noetherian, k(x) = k(y), mx,X = my,YOX

and q is flat.
Thus p∗ : my,Y/m2

y,Y → mx,X/m2
x,X is surjective, hence p∗ : OY → OX is

surjective by the Nakayama lemma. Equivalently, p : X → Y is a closed
embedding. It is thus an isomorphism, provided Y is integral.

In order to ensure these properties of Y we need to know more about q.
If k(x)/k(s) is finitely generated then q is the localization of a smooth mor-
phism (10.52.3). Thus Y is normal and dim Y = dim S , as required. The general
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case is technically harder. We use that q is formally smooth and geometrically
regular (10.52.4) to reach the same conclusions as before.

Thus p is an isomorphism, so f = q and f is flat. �

Examples 10.61 These examples show that the assumptions in (10.60) and
(10.63) are necessary.

(10.61.1) Assume that char k , 2 and set C := (y2 = ax2 + x3) where a ∈ k
is not a square. Let f : C̄ → C denote the normalization. Then the fiber over
the origin is the spectrum of k(

√
a), which is a separable extension of k. Here

C is not normal and f is not flat.
(10.61.2) The extension C[x, y] ⊂ C[ x

y , y](y) is not flat yet (x, y) · C[ x
y , y](y)

is the maximal ideal and the residue field extension is purely transcendental.
However, the dimension of the larger ring is 1.

A similar thing happens with C[x, y] ↪→ C[[t]] given by (x, y) 7→ (t, sin t).
The fiber over the origin is the origin with reduced scheme structure.

(10.61.3) On C[x, y] consider the involution τ(x) = −x, τ(y) = −y. The invar-
iant ring is C[x2, xy, y2] ⊂ C[x, y]. The fiber over the origin is the spectrum of
C[x, y]/(x2, xy, y2); it has length 3 and embedding dimension 2. The fiber over
any other point has length 2. Thus the extension is not flat.

(10.61.4) As in Kollár (1995a, 15.2), on S := k[x1, x2, y1, y2] consider the
involution τ(x1, x2, y1, y2) = (x2, x1, y2, y1). The ring of invariants is

R := k[x1 + x2, x1x2, y1 + y2, y1y2, x1y1 + x2y2].

The resulting extension is not flat along (x1 − x2 = y1 − y2 = 0).
If char k = 2, then x1 − x2, y1 − y2 are invariants. Set P := (x1 − x2, y1 − y2)R.

Then S/PS = S/(x1 − x2, y1 − y2)S ' k[x1, y1] and R/P ' k[x2
1, y

2
1].

Thus S P ⊃ RP is a finite extension whose fiber over P is k(x1, y1) ⊃ k(x2
1, y

2
1).

This is an inseparable field extension, generated by 2 elements.
(10.61.5) Set X := (z = 0) ∪ (z − x = z − y = 0) ⊂ A3 with coordinate

projection π : X → A2
xy. Then π is finite, has curvilinear fibers, but not flat.

These examples leave open only one question: What happens with curvilin-
ear fibers?

Definition 10.62 (Curvilinear schemes) Let k be a field and (A,m) a local,
Artinian k-algebra. We say that Speck A is curvilinear if A is cyclic as a k[t]-
module for some t. That is, if A can be written as a quotient of k[t]. It is easy
to see that this holds if either A/m is a finite, separable extension of k and m is
a principal ideal, or A is a field extension of k of degree = char k.
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Let B be an Artinian k-algebra. Then Speck B is called curvilinear if all of
its irreducible components are curvilinear. If k is an infinite field, this holds iff
B can be written as a quotient of k[t]. If K/k is a field extension and Speck B is
curvilinear then so is SpecK(B ⊗k K).

Let π : X → S be a finite-type morphism. The embedding dimension of
fibers is upper semicontinuous, thus the set {x ∈ X : Xπ(x) is curvilinear at x} is
open.

Theorem 10.63 Let f : X → S be a finite type morphism with curvilinear
fibers such that every associated point of X dominates S . Assume that either S
is normal, or there is a closed W ⊂ S such that depthW S ≥ 2 and f is flat over
S \W. Then f is flat.

Proof We start with the classical case when X, S are complex analytic, S is
normal, f is finite, and X ⊂ S × C. Let s ∈ S be a smooth point. Then S × C
is smooth along {s} × C thus X is a Cartier divisor near Xs. In particular, f
is flat over the smooth locus S ns ⊂ S . Set d := deg f . For each s ∈ S ns

there is a unique monic polynomial td + ad−1(s)td−1 + · · · + a0(s) of degree d
whose zero set is precisely Xs ⊂ C. As in the proof of the analytic form of the
Weierstrass preparation theorem (see, for instance, Griffiths and Harris (1978,
p.8) or Gunning and Rossi (1965, sec.II.B)) we see that the ai(s) are analytic
functions on S ns. By Hartogs’s theorem, they extend to analytic functions on
the whole of S ; we denote these still by ai(s). Thus

X =
(
td + ad−1(s)td−1 + · · · + a0(s) = 0

)
⊂ S × C

is a Cartier divisor and f is flat. This completes the complex analytic case.
In general, we argue similarly, but replace the polynomial td + ad−1(s)td−1 +

· · · + a0(s) by the point in the Hilbert scheme corresponding to Xs.
Assume first that f is finite. Again set d := deg f and let S ◦ ⊂ S denote a

dense open subset over which f is flat. Since f is finite, it is (locally) projective,
thus we have

Univd(X/S )
u
��

p // X

f
��

Hilbd(X/S ) π // S

(10.63.1)

parametrizing length d quotients of the fibers of f . If s ∈ S ◦ then OXs has
length d, hence its sole length d quotient is itself. Thus π is an isomorphism
over S ◦.

Let s→ S be a geometric point. Then Xs ' Spec k(s)[t]/
(∏

i(t − ai)mi
)

for
some ai ∈ k(s) and mi ∈N. Thus the fiber of p over s is a finite set correspond-
ing to length d quotients of k(s)[t]/

(∏
i(t − ai)mi

)
, equivalently, to solutions
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of the equation
∑

i m′i = d where 0 ≤ m′i ≤ mi. We have not yet proved
that Hilbd(X/S ) has no embedded points over Sing S , but we obtain that
pure

(
Hilbd(X/S )

)
→ S is finite and birational, hence an isomorphism if S

is normal or if S ◦ ⊃ S \W in case (2) by (10.6.4). The natural map

pure(p) : Univd(X/S ) ×Hilbd(X/S ) pure
(
Hilbd(X/S )

)
→ X

is a closed immersion whose image is isomorphic to X over S ◦. Thus pure(p)
is an isomorphism, so f is flat and Hilbd(X/S ) ' S .

Finally, (10.49) reduces the general case to the finite one. (Note that any
finite type, quasi-finite morphism can be extended to a finite morphism, but
there is no reason to believe that the extension still has curvilinear fibers. So
we need to use the more difficult (10.49).) �

Over a nonnormal base there does not seem to be any simple analog of
(10.63), but the following is quite useful.

Proposition 10.64 Let f : X → (s, S ) be a finite morphism with curvilinear
fibers. Assume that
(10.64.1) the pair (s ∈ S ) is weakly normal (10.74),
(10.64.2) f is flat of constant degree d over S \ {s},
(10.64.3) X has no associated points in Supp f −1(s), and
(10.64.4) either x := Supp f −1(s) is a single point and k(x)/k(s) is purely

inseparable, or f has well-defined specializations (4.2.9).
Then f is flat.

Proof Again consider the diagram (10.63.1). By (2), p and π are isomorphisms
over S \ {s}. We claim that π is an isomorphism. Since (s ∈ S ) is weakly
normal, this holds if π−1(s) has a unique geometric point. If f has well-defined
specializations, this holds by definition.

Otherwise, let s′ → s be a geometric point. Since k(x)/k(s) is purely insep-
arable, Xs′ ' Spec k(s′)[t]/(tr) for some r, which has a unique subscheme of
length d. Thus π is an isomorphism. As in the proof of (10.63), we conclude
that p is also an isomorphism. �

The proof given in (4.21) applies with minor modifications to give the fol-
lowing result of Ramanujam (1963) and Samuel (1962); see also Grothendieck
(1960, IV.21.14.1).

Theorem 10.65 (Principal ideals in power series rings) Let (R,m) be a normal,
complete, local ring and P ⊂ R[[x1, . . . , xn]] a height 1 prime ideal that is not
contained in mR[[x1, . . . , xn]]. Then P is principal. �
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Corollary 10.66 (Unique factorization in power series rings) Let (R,m) be
a normal, complete, local ring and g ∈ R[[x1, . . . , xn]] a power series not
contained in mR[[x1, . . . , xn]]. Then g has a unique factorization as g =

∏
i pi

where each (pi) is a prime ideal.

Proof Let Pi be a height 1 associated prime ideal of (g). Then Pi is not
contained in mR[[x1, . . . , xn]] thus it is principal by (10.65). �

Example 10.66.1 A lemma of Gauss says that if R is a UFD then R[t] is also a
UFD. More generally, if Y is a normal scheme then Cl(Y × An) ' Cl(Y). If An

is replaced by a smooth variety X then there is an obvious inclusion

Cl(Y) × Cl(X) ↪→ Cl(Y × X),

but, as the next example shows, this map is not surjective, not even if Cl(Y) =

Cl(X) = 0.
Let E ⊂ P2 be a cubic defined over Q such that Pic(E) is generated by a

degree 3 point P := E ∩ L for some line L ⊂ P2. Let S ⊂ A3 be the affine cone
over E and E◦ := E \ P. Then Cl(S ) = 0 and Cl(E◦) = 0. However, we claim
that Cl(S × E◦) is infinite.

To see this, pick any φ ∈ End(E). (For example, for any m we have mul-
tiplication by 3m + 1 which sends p ∈ E(Q̄) to the unique point φ(p) ∼
(3m + 1)p −mP.) The lines

{
`p × {φ(p)} : p ∈ E

}
sweep out a divisor in S × E,

where `p ⊂ S denotes the line over p ∈ E. It is not hard to see that this gives
an isomorphism End(E) ' Cl(S × E◦).

As another application, let R denote the complete local ring of S at its vertex.
The above considerations also show that R is a UFD, but R[[t]] is not.

Flatness in Relative Codimension 1

The following result is stated in all dimensions, but we will have stronger
theorems when the codimension is ≥ 2.

Theorem 10.67 Let f : X → S be a finite type morphism of Noetherian
schemes, s ∈ S a closed point, and Z ⊂ Xs a nowhere dense closed subset
such that f is flat along Xs \ Z. Assume that
(10.67.1) pureZ(Xs) is smooth,
(10.67.2) dim S ≥ 1 and S has no embedded points, and
(10.67.3) X has no embedded points.
Then f is smooth.
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Proof Pick a closed point x ∈ Z. By (10.57) we may assume that k(x) = k(s).
Choose local coordinates x1, . . . , xn ∈ mx,Xs and apply (10.50). Then there is
an elementary étale π : (x′, X′)→ (x, X) such that f ◦ π factors as

(x′, X′)
g
→ (y,Y)

τ
→ (s, S ),

where g is finite, g−1(y′) = {x′} (as sets), τ is smooth of relative dimension n,
and k(y) = k(s). We also know that gs induces an embedding pure(X′s)→ Ys.

We claim that g is an isomorphism. To see this, note first that, since X′ → S
is flat along X′s\Z

′, (10.54) implies that there is a smallest closed subset W ⊂ Y
such that g−1(X′s ∩W) ⊂ Z′ and g is an isomorphism over Y \W. Since Y → S
is smooth, we are done if W = ∅.

To see this, pick a generic point w ∈ W with projections pY ∈ Y and p ∈ S .
Since Yp is smooth and X′p → Yp is an isomorphism outside W, we see that
pureW (Xp) ' Yp. Thus X′p has an embedded point in g−1(W ∩ Yp). Therefore p
is not a generic point of S by (3). Then

depthpY
Y = depthpY

Yp + depthp S ≥ 1 + 1 = 2,

and X′ has no associated points contained in g−1(W) (3). Hence g is an
isomorphism by (10.6). �

In codimension 1, an slc pair is either smooth or has nodes. Next we show
that a close analog of (10.67) holds for nodal fibers if the base scheme is
normal; the latter assumption is necessary by (10.70.1).

Corollary 10.68 Let (s, S ) be a normal, local scheme and f : X → S a finite
type morphism of pure relative dimension 1. Assume that f is generically flat
along Xs and pure(Xs) has a single singular point x, which is a node. Then, in
a neighborhood of x, one of the following holds:
(10.68.1) f is flat and its fibers have only nodes.
(10.68.2) f is not flat, X is not S 2 and the normalization f̄ : X̄ → S is smooth.

Proof By (10.51), after étale coordinate changes, we may assume that X is a
partial normalization of a relative hypersurface H = (h = 0) ⊂ A2

S such that hs

has a single node.
If the generic fiber Hg is smooth, then H is normal and so X = H. Other-

wise, ∂h/∂x = ∂h/∂y = 0 is an étale section. After an étale base change, we
may assume that the fibers are singular along the zero section Z ⊂ A2

S → S .
Blowing it up gives the normalization τ : H̄ → H, which is smooth over S .
Furthermore, we have an exact sequence

0→ OH → τ∗OH̄ → OZ → 0.
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Since X lies between H̄ and H, there is an ideal sheaf J ⊂ OZ such that
OX/OH ' J.

If J = 0 then X ' H. If J = OZ , then X ' H̄. The projection to S is flat in
both cases. Otherwise Supp(OH̄/OX) = Supp(OZ/J) has codimension ≥ 2 in
H, thus X is not S 2 by (10.6). �

With different methods, the following generalization of (10.68) is proved in
Kollár (2011b). The projectivity assumption should not be necessary.

Theorem 10.69 Let (s, S ) be a normal, local scheme and f : X → S a projec-
tive morphism of pure relative dimension 1. Assume that X is S 2 and pure(Xs)
is seminormal (resp. has only simple, planar singularities).

Then f is flat with reduced fibers that are seminormal (resp. have only
simple, planar singularities). �

See Arnol′d et al. (1985, I.p.245) for the conceptual definition of simple,
planar singularities. For us, it is quickest to note that a plane curve singularity(
f (x, y) = 0

)
is simple iff

(
z2 + f (x, y) = 0

)
is a Du Val surface singularity.

Examples 10.70 The next examples show that (10.68–10.69) do not general-
ize to nonnormal bases or to other curve singularities.

10.70.1 (Deformations of ordinary double points) Let C ⊂ P2 be a nodal cubic
with normalization p : P1 → C. Over the coordinate axes S := (xy = 0) ⊂ A2

consider the family X that is obtained as follows.
Over the x-axis take a smoothing of C, over the y-axis take P1 ×A1

y and glue
them over the origin using p : P1 → C to get f : X → S .

Then X is seminormal and S 2, the central fiber is C with an embedded point,
yet f is not flat.

10.70.2 (Deformations of ordinary triple points) Consider the family of plane
cubic curves

C :=
(
(x2 − y2)(x + t) + t(x3 + y3) = 0

)
⊂ A2

xy × A
1
t .

For every t, the origin is a singular point, but it has multiplicity 3 for t = 0
and multiplicity 2 for t , 0. Thus blowing up the line (x = y = 0) gives the
normalization for t , 0, but it introduces an extra exceptional curve over t = 0.
The normalization of C is obtained by contracting this extra curve. The fiber
over t = 0 is then isomorphic to three lines though the origin in A3.

10.70.3 (Deformations of ordinary quadruple points) Let C4 → P
14 be the

universal family of degree 4 plane curves and C4,1 → S 12 the 12-dimensional
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subfamily whose general members are elliptic curves with two nodes. We
normalize both the base and the total space to get π̄ : C̄4,1 → S̄ 12.

We claim that the fiber of π̄ over the plane quartic with an ordinary quadruple
point C0 : = (x3y − xy3 = 0) is C0 with at least two embedded points. Most
likely, the family is not even flat.

We prove this by showing that in different families of curves through [C0] ∈
S 12 we get different flat limits.

To see this, note that the seminormalization Csn
0 of C0 can be thought of as

four general lines through a point in P4. In suitable affine coordinates, we can
write it as k[x, y]/(x3y − xy3) ↪→ k[u1, . . . , u4]/(uiu j : i , j) using the map
(x, y) 7→ (u1 + u3 + u4, u2 + u3 − u4). Any three-dimensional linear subspace
〈u1, . . . , u4〉 ⊃ Wλ ⊃ 〈u1 + u3 + u4, u2 + u3 − u4〉. corresponds to a projection
of Csn

0 to P3; call the image Cλ ⊂ P
3. Then Cλ is four general lines through a

point in P3; thus it is a (2, 2)-complete intersection curve of arithmetic genus
1. (Note that the Cλ are isomorphic to each other, but the isomorphism will
not commute with the map to C0 in general.) Every Cλ can be realized as the
special fiber in a family S λ → Bλ of (2, 2)-complete intersection curves in P3

whose general fiber is a smooth elliptic curve.
By projecting these families to P2, we get a one-parameter family S ′λ → Bλ

of curves in S 12 whose special fiber is C0 .
Let S̄ ′λ ⊂ C̄4,1 be the preimage of this family in the normalization. Then

S̄ ′λ is dominated by the surface S λ. In particular, the preimage of C0 in C̄4,1 is
connected.

There are two possibilities. First, if S̄ ′λ is isomorphic to S λ, then the fiber
of C̄4,1 → S̄ 12 over [C0] is Cλ. This, however, depends on λ, a contradiction.
Second, if S̄ ′λ is not isomorphic to S λ, then the fiber of S̄ ′λ → Bλ over the origin
is C0 with some embedded points. Since C0 has arithmetic genus 3, we must
have at least two embedded points.

Flatness in Relative Codimension ≥ 2

Once we know flatness at codimension 1 points of the fibers, the follow-
ing general result, valid for coherent sheaves, can be used to prove flatness
everywhere. We no longer need any restrictions on the base scheme S .

Theorem 10.71 Let f : X → S be a finite type morphism of Noetherian
schemes, (s, S ) local. Let F be a vertically pure coherent sheaf on X and
Z ⊂ Supp Fs a nowhere dense closed subset. Assume that
(10.71.1) depthZ pureZ(Fs) ≥ 2, and
(10.71.2) F is flat over S along X \ Z.
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Then F is flat over S and torsZ(Fs) = 0.

Proof Set m := ms,S and Xn := SpecX(OX/mn
s,S OX) and Fn := F|Xn . We may

assume that S is m-adically complete. There are natural complexes

0→ (mn/mn+1) · F0 → Fn+1
rn
−→ Fn → 0, (10.71.3)

which are exact on X \ Z, but not (yet) known to be exact along Z, except that
rn is surjective. We also know that

(mn/mn+1) · pureZ(F0)→ pureZ(ker rn) (10.71.4)

is an isomorphism on X \ Z. Since depthZ pureZ(F0) ≥ 2, this implies that
(10.71.4) is an isomorphism on X by (10.6). Next we show that the induced

rn : torsZ(Fn+1)→ torsZ(Fn) is surjective. (10.71.5)

Set Kn+1 := r−1
n

(
torsZ(Fn)

)
. We have an exact sequence

0→ pureZ(ker rn)→ Kn+1/ torsZ(ker rn)→ torsZ(Fn)→ 0. (10.71.6)

Using that (10.71.4) is an isomorphism, we have depthZ pureZ(ker rn) ≥ 2,
hence the sequence (10.71.6) splits by (10.6).

Thus T := lim
←−−

torsZ(Fn) is a subsheaf of F and Xs∩Supp T ⊂ Z. Thus T = 0
since F is vertically pure, and torsZ(Fn) = 0 for every n by (10.71.5).

Now (10.71.4) says that (mn/mn+1) · F0 ' ker rn. Therefore the sequences
(10.71.3) are exact, F is flat and torsZ(F0) = 0. �

Putting together the flatness criteria (10.60), (10.68), (10.69.1) and (10.71)
gives the following strengthening of Hironaka (1958).

Theorem 10.72 Let (s, S ) be a normal, local, excellent scheme, X an S 2

scheme, and f : X → S a finite type morphism of pure relative dimension
n. Assume that pure(Xs) is
(10.72.1) either geometrically normal
(10.72.2) or geometrically seminormal and S 2.
Then f is flat with reduced fibers that are normal in case (1) and seminormal
and S 2 in case (2). �

Flatness in Relative Codimension ≥ 3

The following gives an even stronger result in codimension ≥ 3; see Kollár
(1995a, thm.12). Lee and Nakayama (2018) pointed out that the purity
assumption in (2) is also necessary.
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Theorem 10.73 Let f : X → S be a finite type morphism of Noetherian
schemes, (s, S ) local. Let F a coherent sheaf on X and Z ⊂ Supp F a closed
subset such that Xs ∩ Z ⊂ Supp Fs has codimension ≥ 3. Let j : Xs \ Z ↪→ Xs

be the natural injection. Assume that
(10.73.1) depthXs∩Z

(
j∗(Fs|Xs\Z)

)
≥ 3,

(10.73.2) F|X\Z is flat over S with pure, S 2 fibers, and
(10.73.3) depthZ F ≥ 2.
Then F is flat over S and Fs = j∗(Fs|Xs\Z).

Proof Set m := ms,S , Xn := SpecX(OX/mnOX) and Fn := F|Xn . We may
assume that OS and OX are m-adically complete. Set Gn := Fn|Xn\Z and let
j denote any of the injections Xn \ Z ↪→ Xn. By assumption (2) we have exact
sequences

0→ (mn/mn+1) ·G0 → Gn+1−→Gn → 0. (10.73.4)

Pushing it forward we get the exact sequences

0→ (mn/mn+1) ⊗ j∗G0 → j∗Gn+1
rn
→ j∗Gn

→ (mn/mn+1) ⊗ R1 j∗G0.
(10.73.5)

Here j∗G0 is coherent and assumption (1) implies (in fact is equivalent to)
R1 j∗G0 = 0 by Grothendieck (1968, III.3.3, II.6 and I.2.9) or (10.29).

Thus the rn are surjective. This shows that G := lim
←−−

j∗Gn is a coherent sheaf
on X that is flat over S with S 2 fibers. Furthermore, the natural map % : F → G
is an isomorphism along Xs \ Z. Thus (10.6) implies that it is an isomorphism.
So F ' G is flat with central fiber j∗G0 = j∗(Fs|Xs\Z). �

10.8 Seminormality and Weak Normality

Normalization is a very useful operation that can be used to “improve” a
scheme X. However, the normalization Xn → X usually creates new points,
and this makes it harder to relate X and Xn. The notions of semi and weak
normalization intend to do as much of the normalization as possible, without
creating new points.

Definition 10.74 Let X be a Noetherian scheme and Z ⊂ X a closed, nowhere
dense subset. A finite modification of X centered at Z is a finite morphism
p : Y → X such that the restriction p : Y \ p−1(Z) → X \ Z is an isomorphism
and none of the associated primes of Y is contained in p−1(Z).
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A pair (Z ⊂ X) is called normal if every finite modification p : Y → X
centered at Z is an isomorphism. It is called seminormal (resp. weakly nor-
mal) if such a p is an isomorphism, provided k(x) ↪→ k

(
red p−1(x)

)
is an

isomorphism (resp. purely inseparable) for every x ∈ X.
A reduced scheme X is normal (resp. seminormal or weakly normal) if every

pair (Z ⊂ X) is normal (resp. seminormal or weakly normal).
Let X be a reduced scheme with normalization Xn. There are unique

Xn // Xsn πsn // X and Xn // Xwn πwn // X,

where Xsn is seminormal, Xwn is weakly normal, and k(x) ↪→ k
(
red π−1

sn (x)
)

(resp. k(x) ↪→ k
(
red π−1

wn(x)
)
) is an isomorphism (resp. purely inseparable) for

every x ∈ X. Note that Xwn = Xsn in characteristic 0.
For more details, see Kollár (1996, sec.I.7.2) and Kollár (2013b, sec.10.2).

Examples 10.75 The curve examples led to the general definition of semi-
normalization, but they do not adequately show how complicated seminormal
schemes are in higher dimensions.

(10.75.1) The normalization of the higher cusps C2m+1 := (x2 = y2m+1) is

π2m+1 : A1
t → C2m+1 given by t 7→ (t2m+1, t2).

The map π2m+1 is a homeomorphism, so it is also the seminormalization. By
contrast, the normalization of the higher tacnode C2m := (x2 = y2m) is

π2m : A1
t × {±1} → C2m given by (t,±1) 7→ (±tm, t).

The map π2m is not a homeomorphism since (0, 0) ∈ C2m has two preimages,
(0, 1) and (0,−1). The seminormalization of C2m is

τ2m : C2 ' (s2 = t2)→ C2m given by (s, t) 7→ (sm, t).

(10.75.2) Let g(t) ∈ k[t] be a polynomial without multiple factors and set Cg :=
Speck

(
k + g · k[t]

)
. We can think of Cg as obtained from A1 by identifying all

roots of g. It is an integral curve whose normalization is A1. It has a unique
singular point cg ∈ Cg and k(cg) = k.

If g is separable then Cg is seminormal and weakly normal. If g is irreducible
and purely inseparable then Cg is seminormal, but not weakly normal; the weak
normalization is A1.

(10.75.3) If B is a seminormal curve, then every irreducible component of B is
also seminormal, but an irreducible component of a seminormal scheme need
not be seminormal. In fact, every reduced and irreducible affine variety that is
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smooth in codimension 1, occurs as an irreducible component of a seminormal
complete intersection scheme, see Kollár (2013b, 10.12).

(10.75.4) If X is S 2 (but possibly nonreduced) and Z has codimension ≥ 2,
then (Z ⊂ X) is a normal pair by (10.6).

The following properties are proved in Kollár (2016c). The last equivalence
is surprising since the completion of a normal local ring is not always normal.

Proposition 10.76 For a Noetherian scheme X without isolated points, the
following are equivalent.
(10.76.1) X is normal (resp. seminormal, weakly normal).
(10.76.2) Z ⊂ X is a normal (resp. seminormal, weakly normal) pair for every

closed, nowhere dense subset Z ⊂ X.
(10.76.3) {x} ⊂ Spec Ox,X is a normal (resp. seminormal, weakly normal) pair

for every nongeneric point x ∈ X.
(10.76.4) {x} ⊂ Spec Ôx,X is a normal (resp. seminormal, weakly normal) pair

for every nongeneric point x ∈ X. �

The next results show that many questions about schemes can be settled
using points and specializations only, up to homeomorphisms.

Definition 10.77 Let f : X → Y be a morphism, R a DVR and q : Spec R→ Y
a morphism. We say that q lifts after a finite extension if there is a DVR R′ ⊃
R that is the localization of a finite extension of R such that q′ : Spec R′ →
Spec R→ Y lifts to q′X : Spec R′ → X.

10.78 (Universal homeomorphism) A morphism f : U → V of S -schemes is
a universal homeomorphism if f ×S 1W : U ×S W → V ×S W is a homeomor-
phism for every S -scheme W; see Stacks (2022, tag 04DC). Equivalently, if f
is integral, surjective and geometrically injective, see Stacks (2022, tag 04DF).

The following characterization for local schemes is simple, but useful.

Claim 10.78.1 Let (s, S ) be a local scheme and f : U → S a finite type
morphism that is geometrically injective. Then f is a finite, universal home-
omorphism iff every local, component-wise dominant (4.30) morphism from
the spectrum of a DVR to S , lifts to U, after a finite extension.

Proof For any generic point gS ∈ S there is a q : (t,T ) → (s, S ) such that
q(tg) = sg and q(t) = s where T is the spectrum of a DVR. Thus every irreduci-
ble component of S is dominated by a unique irreducible component of U. Let
V ⊂ U be their union. Extend f |V to a finite h : V̄ → S .
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Pick a point v̄ ∈ g−1(s). There is a q : T → V̄ such that q(t) = v̄ and q(tg) is
a generic point of V̄ . Then q is the only possible lifting of h ◦ q, hence v̄ ∈ V .
Thus V = V̄ and h is a universal homeomorphism. Since f is geometrically
injective we must have V = U. �

The following is a special case of Stacks (2022, tag 0CNF).

Claim 10.78.2 A finite morphism Y → X of Fp-schemes is a universal
homeomorphism iff it factors a power of the Frobenius Fq : Xq → Y → X. �

Definition 10.79 For a scheme X let |X| denote its underlying point set. Let
X,Y be reduced schemes and φ : |X| → |Y | a set-map of the underlying sets.
We say that φ is a morphism if there is a morphism Φ : X → Y inducing φ.
Note that such a Φ is unique since its graph is determined by its points.

Our aim is to find simple conditions that guarantee that a subset is Zariski
closed or that a set-map is a morphism.

We say that φ is a morphism on points if the natural inclusion k(x) ↪→

k
(
x, φ(x)

)
is an isomorphism for every x ∈ X, where we view

(
x, φ(x)

)
as a point

in X × Y . (This in effect says that there is a natural injection k(φ(x)) ↪→ k(x).)
We say that φ is a morphism on DVRs (resp. component-wise dominant

DVRs) if the composite φ ◦ h is a morphism whenever h : T → X is a mor-
phism (resp. a component-wise dominant morphism (4.30)) from the spectrum
of a DVR to X.

Lemma 10.80 (Valuative criterion of being a section) Let h : X → S be a sep-
arated morphism of finite type and B ⊂ |X| a subset. Then there is a Zariski
closed Z ⊂ X such that B = |Z| and h|Z : Z → S is a finite, universal home-
omorphism (10.78) iff every point s ∈ S has a unique preimage bs ∈ B,
k(bs)/k(s) is purely inseparable, and the following holds.

Let R be an excellent DVR and q : Spec R→ S a component-wise dominant
morphism. Then q lifts after a finite extension (10.77) to q′ : Spec R′ → X
whose image is in B.

Proof By assumption, h|B : B → S is a universal bijection. Let sg ∈ S be a
generic point and bg ∈ B its preimage. We claim that b̄g ⊂ B. For any b0 ∈ b̄g,
there is a component-wise dominant morphism τ : (t,T ) → S that maps the
generic point to h(bg) and the closed point to h(b0), where T is the spectrum of
a DVR. Lifting it shows that b0 ∈ B.

Thus Z is the union of all b̄g, hence Zariski closed and h|Z : Z → S is a finite,
universal bijection, hence a homeomorphism. �
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Lemma 10.81 (Valuative criterion of being a morphism) Let X,Y be schemes
of finite type, X seminormal, and Y separated. Then a set-map φ : |X| → |Y | is
a morphism iff it is a morphism on points and on component-wise dominant
DVRs.

Proof Let Z ⊂ X × Y be the graph of φ and h : X × Y → X the projection.
By (10.80) h|Z : Z → X is a finite, universal homeomorphism that is resi-
due field preserving since φ is a morphism on points. Thus h|Z : Z → X is
an isomorphism since X is seminormal. �

Definition 10.82 A morphism p : X → Y is geometrically injective if for every
geometric point ȳ→ Y the fiber X ×Y ȳ consists of at most one point.

Equivalently, for every point y ∈ Y , its preimage p−1(y) is either empty or a
single point and k

(
p−1(y)

)
is a purely inseparable extension of k(y).

If, furthermore, k
(
p−1(y)

)
equals k(y) then we say that p preserves residue

fields. The two notions are equivalent in characteristic 0.
A morphism of schemes f : X → Y is a monomorphism if for every scheme

Z, the induced map of sets Mor(Z, X)→ Mor(Z,Y) is an injection.
A monomorphism is geometrically injective. The normalization of the cusp

π : Spec k[t] → Spec k[t2, t3] is geometrically injective, but not a monomor-
phism. The problem is with the fiber over the origin, which is Spec k[t]/(t2) '
Spec k[ε] (where ε2 = 0). The two maps gi : Spec k[ε] → Spec k[t] given by
g∗0(t) = 0 and g∗1(t) = ε are different, but π ◦ g0 = π ◦ g1. A similar argument
shows that a morphism is a monomorphism iff it is geometrically injective and
unramified; see Grothendieck (1960, IV.17.2.6).

As this example shows, in order to understand when a map between moduli
spaces is a monomorphism, the key is to study the corresponding functors over
Spec k[ε] for all fields k.

See (1.64) for an example that is geometrically bijective but, unexpectedly,
not a monomorphism.

A closed, open or locally closed embedding is a monomorphism. A typical
example of a monomorphism that is not a locally closed embedding is the
normalization of the node with a point missing, that is A1 \ {−1} → (y2 =

x3 + x2) given by (t 7→ (t2 − 1, t3 − t).

Claim 10.82.1 (Stacks, 2022, tag 04XV) A proper monomorphism f : X → Y
is a closed embedding. �

Definition 10.83 A morphism g : X → Y is a locally closed embedding if it
can be factored as g : X → Y◦ ↪→ Y where X → Y◦ is a closed embedding and
Y◦ ↪→ Y is an open embedding.
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A monomorphism g : X → Y is called a locally closed partial decomposition
of Y if the restriction of g to every connected component Xi ⊂ X is a locally
closed embedding.

If g is also surjective, it is called a locally closed decomposition of Y . For
reduced schemes, the key example is the following.

Claim 10.83.1 Let h : Y → Z be a constructible, upper semi-continuous func-
tion and set Yi := {y ∈ Y : h(y) = i}. Then qiYi → Y is a locally closed
decomposition. �

The following direct consequence of (10.82.1) is quite useful.

Claim 10.83.2 A proper, locally closed partial decomposition g : X → Y is a
closed embedding. If Y is reduced, then a proper, locally closed decomposition
g : X → Y is an isomorphism. �

Proposition 10.84 (Valuative criterion of locally closed embedding) For a
geometrically injective morphism of finite type f : X → Y, the following are
equivalent.
(10.84.1) f (X) ⊂ Y is locally closed and X → f (X) is finite.
(10.84.2) Every component-wise dominant morphism, from the spectrum of an

excellent DVR to f (X), lifts to X, after a finite extension (10.77).
If f is a monomorphism, then these are further equivalent to
(10.84.3) f is a locally closed embedding.

Proof It is clear that (1) ⇒ (2). Next assume (2). A geometrically injective
morphism of finite type is quasi-finite, hence, by Zariski’s main theorem, there
is a finite morphism f̄ : X̄ → Y extending f . Set Z := X̄ \ X.

If Z , f̄ −1 f̄ (Z) then there are points z ∈ Z and x ∈ X such that f̄ (z) = f̄ (x).
Let T be the spectrum of a DVR and h : T → X̄ a component-wise dominant
morphism. Set g := f̄ ◦h. Then g(T ) ⊂ f (X) and the only lifting of g to T → X̄
is h, but h(T ) 1 X.

Thus Z = f̄ −1 f̄ (Z) hence X → Y \ f̄ (Z) is proper, proving (1). A proper
monomorphism is a closed embedding by (10.82.1), showing the equivalence
with (3). �

A major advantage of seminormality over normality is that seminormal-
ization X 7→ Xsn is a functor from the category of excellent schemes to the
category of excellent seminormal schemes. (The injection Sing X ↪→ X rarely
lifts to the normalizations.) It is thus reasonable to expect that taking the coarse
moduli space commutes with seminormalization. This is indeed the case for
coarse moduli spaces satisfying the following mild condition.
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Definition 10.85 A functorM : (schemes)→ (sets) with coarse moduli space
M has enough one-parameter families if the following holds.
(10.85.1) Let R be a DVR and Spec R → M a morphism. Then there is a

DVR R′ ⊃ R that is the localization of a finite extension of R and F′ ∈
M(Spec R′) such that Spec R′ → Spec R→ M is the moduli map of F′.

This condition holds if M is obtained as a quotient M = E/G, where G is an
algebraic group acting properly on E and there is a universal family over E.
Thus it is satisfied by all moduli spaces considered in this book.

Proposition 10.86 LetM : (schemes) → (sets) be a functor defined on finite
type schemes over a field of characteristic 0. Assume thatM has a finite type
coarse moduli space M and enough one-parameter families.

Then Msn is the coarse moduli space for Msn, the restriction of M to the
category Schsn of finite type, seminormal schemes.

Proof Since seminormalization is a functor, every morphism W → M lifts to
Wsn → Msn. Thus we have a natural transformation Φ : Msn → Mor

(
∗,Msn).

Assume that M′ is a finite type, seminormal scheme and we have another
natural transformation Ψ : Msn → Mor

(
∗,M′

)
. Every geometric point s 7→

Msn comes from a scheme Xs. Let Z ⊂ Msn × M′ denote the union of the
points (s,Φ[Xs]). Since M is a coarse moduli space and Msn → M is geo-
metrically bijective, the coordinate projection Z → Msn is also geometrically
bijective. SinceM has enough one-parameter families, Z → Msn is a universal
homeomorphism by (10.80). Thus Z → Msn is an isomorphism since Msn is
seminormal and the characteristic is 0.

Thus we get a morphism Msn → M′ and Ψ factors through Φ. �

The next examples show that the characteristic 0 assumption is likely nec-
essary in (10.86) and that the analogous claim for the underlying reduced
subscheme is likely to be false.

Examples 10.87 Let D be any diagram of schemes with direct limit limD.
Since seminormalization is a functor, we get a diagram Dsn and a natural
morphism lim(Dsn)→ (limD)sn. However, this need not be an isomorphism.

(10.87.1) Consider the diagram of all maps φa : Spec k[x] → Spec k[(x −
a)2, (x − a)3] for a ∈ k where k is an infinite field.

If char k = 0 then the direct limit is Spec k. After seminormalization, the
maps φa become isomorphisms φsn

a : Spec k[x] ' Spec k[x]. Now the direct
limit is Spec k[x].
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(10.87.2) If char k = p > 0 then xp − ap = (x − a)p ∈ k[(x − a)2, (x − a)3]
shows that the direct limit is Spec k[xp]. After seminormalization, the direct
limit is again Spec k[x]. Here Spec k[xp] behaves like a coarse moduli space.

(10.87.3) Consider the maps σi : k[x] → k[x, ε] given by σ0(g(x)) = g(x)
and σ1(g(x)) = g(x) + g′(0)ε. We get a universal push-out diagram

Spec k[x, ε]

σ1

��

σ0 // Spec k[x]

��
Spec k[x] // Spec k[x2, x3].

If we pass to the underlying reduced subspaces, the push-out is Spec k[x].
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