T-IDEALS AND c-IDEALS

by AARON KLEIN
(Received 27th May 1977)

1.

Given a ring R we consider the category \tilde{R} of R-rings (rings A with given ring-homomorphisms $R \rightarrow A$), and R-homomorphisms (ring-homomorphisms that form commutative triangles with the given maps from R). All rings are associative and have 1 , all homomorphisms send 1 to 1 .

We define a $c-R$-ring as an object A in \tilde{R} with a family of maps $\left\{\rho_{x} \in \operatorname{hom}_{\tilde{R}}(A, A) \mid x \in\right.$ $A\}$. Equivalently, a $c-R$-ring is an R-ring A with a binary operation $a \cdot b\left(=a \rho_{b}\right)$ on A satisfying

$$
\begin{equation*}
\left(a+a^{\prime}\right) \cdot b=(a \cdot b)+\left(a^{\prime} \cdot b\right) ; \quad\left(a a^{\prime}\right) \cdot b=(a \cdot b)\left(a^{\prime} \cdot b\right) ; \hat{r} \cdot b=\hat{r} \tag{1}
\end{equation*}
$$

for all $a, a^{\prime}, b \in A, r \in R$. Here \hat{r} denotes the image of r under $R \rightarrow A$ and the ring multiplication on A is denoted by juxtaposition.

We call the third operation R-composition and we denote by $c \tilde{R}$ the category whose objects are the $c-R$-rings and whose maps are those maps of \tilde{R} which preserve R-composition.

Let A be a c - R-ring and $K \subset A$. We call K a c-ideal in A if K is the kernel of a map in $c \tilde{R}$. The following is implied.

Theorem 1. $K \subset A$ is a cideal in A if and only if:
(i_{1}) K is an ideal in the ring A,
(i_{2}) $k \cdot a \in K$ for all $k \in K, a \in A$, and
(i, $a \cdot\left(k+a^{\prime}\right)-a \cdot a^{\prime} \in K$ for all $a, a^{\prime} \in A, k \in K$.
2.

We emphasise the importance of c-ideals by relating them to the well-known T-ideals $(1,2.2)$ in free algebras.

Let Λ be a commutative ring with 1 and $V=\Lambda\left\{x_{s}\right\}_{s \in S}$ the free associative Λ-algebra with 1 over a set S (the notation follows (1)). Let $V^{|S|}$ be the direct product of $|S|$ copies of V. We may write elements of $V^{|S|}$ as vectors of polynomials in the (non-commuting) indeterminates $\left\{x_{s} \mid s \in S\right\}$, namely

$$
\mathbf{f}=\left(f_{s}(\mathbf{x})\right)_{s \in S} \text { with } \mathbf{x}=\left(x_{s}\right)_{s \in S}
$$

with component-wise addition and multiplication. We define a composition on $V^{|S|}$

$$
\begin{equation*}
\mathbf{f} \circ \mathbf{g}=\left(f_{s}(\mathbf{g})\right)_{s \in S} \text { for } f=\left(f_{s}(\mathbf{x})\right), \mathbf{g}=\left(g_{s}(\mathbf{x})\right) \tag{2}
\end{equation*}
$$

It follows that $V^{|S|}$ with the (associative) composition (2) may be viewed as an object of the category $c \tilde{\Lambda}$.

Theorem 2. (i) If K is a c-ideal in $V^{|S|}$ with the composition (2), then K is a subdirect sum of $|S|$ copies of a T-ideal Jof the free algebra V and it contains the direct sum $\Sigma_{|S|} J$ of $|S|$ copies of J; thus K is a dense sub-direct sum.
(ii) For any T-ideal Jof the free algebra V, the direct product $J^{|S|}$ of $|S|$ copies of Jis a c-ideal in $V^{|S|}$. If the index-set S is infinite and $J \neq 0$ then the direct sum $\Sigma_{|S|} J$ is not a c-ideal in $V^{|S|}$.

Proof. (i) Let K be a c-ideal in $V^{|S|}$ and for any $r \in S$ denote by J_{r} the r-th projection of K into V. We show that J_{r} is a T-ideal in the free algebra V. Take $h \in J_{r}$ and any $h \in K$ with $\boldsymbol{h}_{r}=\boldsymbol{h}$. For arbitrary $f \in V^{|S|}$ we have hof $\in K$ by (i_{2}) of Theorem 1, hence (hof) $\in \boldsymbol{J}_{r}$. But (hof) $r_{r}=h_{r}(\mathbf{f})=\boldsymbol{h}(\mathbf{f})$ and this proves that J_{r} is indeed a T-ideal. We use the property (i_{3}), Theorem 1 , of K to show that all J_{r} are equal. Let r, t be any two indices in S and h any element of J_{r} Take again $h \in K$ with $h_{r}=h$ and $f=\left(\delta_{s t} x_{r}\right)_{s \in S}$. Then the vector $\mathbf{f}(\mathbf{h}+O)-\mathrm{f}^{\circ} O$ is in K so its t-component, namely $f_{t}(\mathrm{~h})=h$, is in J_{t}. This proves $J_{r} \subset J_{t}$ and, since r and t were arbitrary, it follows that all the projections of K are equal, say to J. Now, the set of vectors $\left\{\left(\delta_{s t} h\right)_{s \in S} \mid t \in S, h \in J\right\}$ generates the direct sum $\Sigma_{|S|} J$. We show that all these vectors are in K, hence $\Sigma_{|S|} J \subset K$. Fix $t \in S$ and put $\mathbf{f}=\left(\delta_{s t} x_{s}\right)_{s \in s .}$. With any $h \in J$ take $h \in K$ with $h_{t}=h$. Then $f \circ(h+O)-f \circ O$ is in K and this vector is precisely $\left(\delta_{s 1} h\right)_{s \in S}$.
(ii) Assume J is a T-ideal in the free algebra V and let K be a direct product of $|S|$ copies of J. We show that K is a c-ideal in $V^{|S|}$. The condition (i_{1}) of Theorem 1 is evident and $\left(i_{2}\right)$ follows since J is a T-ideal. To establish that K meets $\left(i_{3}\right)$ we have to show that $f(\mathbf{h}+\mathbf{g})-f(\mathbf{g}) \in J$ for all $\mathbf{h} \in K$ and for any $f \in V, \mathbf{g} \in V^{|S|}$. It suffices to show it for monomials $f=\lambda x_{s_{1}} \ldots x_{s_{m}}$ in V. Thus we prove that $\lambda\left(h_{s_{1}}+g_{s_{1}}\right) \ldots\left(h_{s_{m}}+g_{s_{m}}\right)-\lambda g_{s_{1}} \ldots g_{s_{m}}$ is in J. Upon expanding, the term $g_{s_{1}} \ldots g_{s_{m}}$ cancels out and we arrive to a sum of monomials, each of them involving at least one component of h as a factor. Since all the components of h are in J and J is an ideal, the result follows.

To establish the last assertion in (ii), let $L=\Sigma_{|S|} J$, J a non-zero T-ideal in V. Take any $h \in L$ with a certain non-zero component $h_{s_{0}}$. Now, consider $f \in V^{|S|}$ with all components equal to $x_{s_{0}}$. If L satisfies $\left(i_{3}\right)$ of Theorem 1 , then $f(\mathbf{h}+O)-f$ foh has to be in L. Yet all the components of $f 0(h+O)-f \circ h$ are equal to the non-zero polynomial $h_{s_{0}}$, hence this vector cannot be in L if S is infinite. So, in this case L cannot be a c-ideal.

Remark. The assumption that V has 1 is not essential. It puts V in $\tilde{\Lambda}$, but the theorem is true even without 1 and the proof remains unaltered.

3.

For infinite S, the question whether there are c-ideals in $V^{|S|}$ which are not direct products of T-ideals, namely $J^{|S|}$, remains open. In this form, the problem is related to a well-known open problem (2) concerning varieties of algebras, as follows. We assume that $|S| \geqq|\Lambda|$, so $\left|\Lambda\left\{x_{s}\right\}_{s \in S}\right|=|S|$.

Theorem 3. If there is in $V=\Lambda\left\{x_{s}\right\}_{s \in s} a T$-ideal J which is not finitely generated as a T-ideal, then there is a c-ideal in $V^{|S|}$ which is not a direct product of T-ideals.

Proof. We may assume that J is generated by a set of polynomials $\left\{p_{s} \mid s \in S\right\}$. For finite subsets $H \subset S$ denote by J_{H} the T-ideal in V generated by $\left\{p_{s} \mid s \in H\right\}$. Let K_{H} be a direct product of $|S|$ copies of J_{H}. Then K_{H} is a c-ideal by (ii) of Theorem 2, and so we obtain a directed set of c-ideals $\left\{K_{H} \mid H\right.$ finite, $\left.H \subset S\right\}$ in $V^{|S|}$. It follows that $K=U K_{H}$ is a c-ideal in $V^{|S|}$. However, K is a subdirect sum of $|S|$ copies of J, but not the whole $J^{|S|}$ since $\mathbf{p}=\left(p_{s}\right)_{s \in S} \notin K$.

REFERENCES

(1) C. Procesi, Rings with polynomial identities (M. Dekker, N.Y., 1973).
(2) W. Specht, Gesetze in Ringen 1, Mat. Zeit. 52 (1950), 557-589.

Department of Mathematics
Bar-Ilan University
Ramat Gan, Israel

