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THE ALMOST LINDELOF DEGREE

BY
S. WILLARD AND U. N. B. DISSANAYAKE

ABSTRACT. In [A], Arhangel’skii showed that for any T, space
X, |X|=2tCxX) where L(X) is the Lindelof degree of X and
x(X) is the character of X.

In [B], Bell, Ginsburg and Woods improved this result, assuming
normality, by showing that for T, spaces X, |X|=2"-x® where
wL(X) is the weak Lindelof degree of X.

We introduce below a new cardinal function aL(X), the almost
Lindelof degree of X, which agrees with L(X) on T; spaces, but
which is often smaller than L(X) on T, spaces, and show that for T,

spaces X,
\X| S2aL(X)x<X).

1. Introduction. Our undefined notation follows that in [J]. Briefly, then, for
a topological space X,
L(X) =the Lindelof degree of X,

x (X) = the character of X,
d(X) = the tightness of X,
7x(X) =the w-character of X,
. (X) =the closed character of X.

In addition, a subset E of a topological space X will be almost k-Lindelof ift
every X-open cover U of E has a subsystem U’ with |U%'|<«k and Ec
U{ClkU | UeU’}. We then define

aL(E, X)=min{k | E is almost k-Lindel6f},
aL(X)=w +sup{aL(E, X) | E closed in X},
and refer to alL(X) as the almost Lindelof degree of X.

Similarly, the weak Lindelof degree wL(X) of X is by definition the least

k = w such that every open cover U of x has a subsystem A’ with |%’| =<« and
X=Jau'.
Note that wL(X)=aL (X, X)+ .
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1.1 TaeorReM. For any topological space X,
(i) wL(X)=aL(X)=L(X).
(i) aL(X)=L(X) if X is Ts.

Proof. Follows from the definitions.

1.2 ReMARK. Let kK be the Katéov H-closed extension of the infinite
discrete space X. A typical basic open set B in kX takes the form B = G U{®?}
where P is a free ultrafilter on X and Ge@® or B is a subset of X. Since
kX — X is the set of all free ultrafilters on X, it is clear that kX — X is a closed
discrete subset of kX and |kX — X|=22". Thus L(kX)=2>". We denote the
Stone-Céch compactifiaction of X by BX. Since the weight of BX is 2!, and by
considering basic open neighbourhoods at ? € BX—X in kX, it follows that
aL(kX)=2%"and aL(kX, kX)<X,.

This standard example (19N of [W]) shows that in general wL(X), aL(X)
and L(X) are distinct for T, spaces. Next we shall give a more general example
since not every infinite cardinal is of the form 2*.

1.3 ExampLE. For any cardinal « =w, there exists a T,-space X with
aL(X)=k and L(X)=2".

Proof. Let T=1"x1, and let E be the subspace I x{0} of T. Note that T is
hereditarily «-Lindelof (since w(T) = k).

Let X be the set T with the following topology: neighbourhoods of points
p € T—E will be unchanged in X, while neighbourhoods of points p e E will

take the form
U%=(U-E)uip}

where U is a neighbourhood of p in T.
Certainly L(X)=2" since E is a closed relatively discrete subspace of X of
cardinality 2.
Moreover, al.(X) = k. This follows from the fact that if U is open in T and
pe UNE, then
CLU> U.

To see this, let xe U. If x¢ E, then x € U}, so assume xe UNE. Let V¥ be a
neighbourhood of x in X. Then

VEi=(V-E)U{x}

where V is a neighbourhood of x in T. Since E is nowhere dense, it follows that
VENU%#®. Thus x € ClyU%.

2. Main theorem. Here, our terminology follows that of [J]. We require the
following lemma.

2.1 LemMA. (a) Let X be a T, space. Then |X|=d(X)**®.
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(b) Let X be a space with a(X)=pB. Let G: P(X)g—P_.(X) be a set
mapping with the property that G(A)> A for every A € P_4(X). Suppose there
exists B < X such that B> G(A) for every A €P_z(B). Then B=B.

Proof. (a) See [J], 2.5.
(b) Let x € B. Then, since 3(X) =, there is an A € P_z(B) with x € A. Thus
xe G(A)<B.

2.2 THEOREM. Let X be a T, space. Then |X|=2x3eLO,

Proof. Set 8 = x(X)aL(X) and k =2°. For each x € X let W, be a collection
of neighbourhoods of x such that |W,|=g and

x}=N{W:We W,

For A = X, we write
Wi=U {Wx:xcA}

Suppose A < X with |A|=p. Let V, consist of all % = W', such that |U|<p
and X—J{U:UeU}+®. Since |[W,|=pB, we have |V,|=B?=2°=«. For
each V' e V,, choose p(¥)e X—J{U:Ue ¥V} and set

GA)=AU{p(V): Ve V,}

Then, by 2.1 (a), |G(A)|=«® =2° =«.

Hence G :P_35(X) = p=.(X).

Now by 2.24 (a) in [J], there is some B < X with |B|= « such that B> G(A)
for every A € P_4(B).

We claim X = B.
First, by 2.1 (b), B is a closed subset of X. Suppose q € X — B. For each y € B,
choose V, € W, such that q¢ V. Since aL(B, X) <k, there is some D € P_4(B)
such that B< {J {V,:ye D}= X—{q}. Thus ¥ ={V, :y € D} belongs to V, and
by construction, p(¥)e G(D)<=B. But p(V)eX-UJ{U:UeV}<X-B, a
contradiction. Thus, it follows that | X|=«.

The following theorem generalizes 2.1 (a) and the proof is similar to 2.5 of

J].
2.3 THEOREM. Let X be a T, space. Then |X|=d(X)™ X%

Following the main lines of the proof of the Theorem 2.2 and applying 2.3
instead of 2.1 (a), one can easily obtain the following generalization of 2.2.

2.4 THEOREM. Let X be a T, space. Then |X|=2X0w.COmaC0

2.5 ExampLE. The space constructed in 1.3 illustrates that the bound pro-
vided by Theorem 2.2 is sharper for (non-regular) T, spaces than

Arhangel’sklii’s famous
lx| = 2L(X)x(X)
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That example can be modified to show that our 2.2 differs also from the
following result of Hajnal and Juhasz:

|X| = ZC(X)X(X)

(for T, spaces; cf [J], 2.15(B)). To do this, let X be the space constructed in 1.3
and let Y be the Alexandroff double of the space T in 1.3. Then the disjoint
union Z of X and Y has alL(Z)= x(Z) =k while ¢(Z)=L(Z)=2".
We are indebted to the referee for his helpful suggestions towards the
improvements of the paper.
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