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THE ALMOST LINDELÔF DEGREE 

BY 

S. W I L L A R D A N D U. N. B . D I S S A N A Y A K E 

ABSTRACT. In [A], Arhangel'skii showed that for any T2 space 
X, | X | < 2 L ( x ) x ( x ) , where L(X) is the Lindelôf degree of X and 
x(X) is the character of X. 

In [B], Bell, Ginsburg and Woods improved this result, assuming 
normality, by showing that for T4 spaces X, | X | < 2 w L ( x ) x ( x ) , where 
wL(X) is the weak Lindelôf degree of X. 

We introduce below a new cardinal function aL(X), the almost 
Lindelôf degree of X, which agrees with L(X) on T3 spaces, but 
which is often smaller than L(X) on T2 spaces, and show that for T2 

spaces X, 
| X | < 2 a L ( x ) x ( x ) 

1. Introduction. Our undefined notation follows that in [J]. Briefly, then, for 
a topological space X, 

L(X) = the Lindelôf degree of X, 

x(X) = the character of X, 

d(X) = the tightness of X, 

TTXOQ = the IT-character of X, 

ifc (X) = the closed character of X 

In addition, a subset E of a topological space X will be almost K-Lindelof iff 
every X-open cover % of E has a subsystem %' with | % ' | < K and E c 
U { O x U | t / e % ' } . We then define 

aL(E, X) = minJK | E is almost K-Lindelof}, 

aL(X) = co +sup{aL(J5, X) | E closed in X}, 

and refer to aL(X) as the almost Lindelôf degree of X 
Similarly, the weak Lindelôf degree wL(X) of X is by définition the least 

K >co such that every open cover °li of x has a subsystem %' with |%'| < K and 

x-U^7 . 
Note that wL (X) < aL (X, X) + <o. 
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1.1 THEOREM. For any topological space X, 
(i) wL(X)<aL(X)<L(X) . 

(ii) aL(X) = L(X) ifXisT3. 

Proof. Follows from the définitions. 

1.2 REMARK. Let KK be the Katëov H-closed extension of the infinite 
discrete space X. A typical basic open set B in KX takes the form B = G U{3P} 
where 3P is a free ultrafilter on X and G e $P or B is a subset of X. Since 
K X - X is the set of all free ultrafilters on X, it is clear that KX-X is a closed 
discrete subset of KX and | K X - X | = 22'XI. Thus L(KX) = 22lxl. We denote the 
Stone-Cêch compactifiaction of X by 0X. Since the weight of |3X is 2 | x | , and by 
considering basic open neighbourhoods at & e j3X — X in KX, it follows that 
aL(KX) = 2 | x | and aL(KX, KX)<X0. 

This standard example (19N of [W]) shows that in general wL(X), aL(X) 
and L(X) are distinct for T2 spaces. Next we shall give a more general example 
since not every infinite cardinal is of the form 2K. 

1.3 EXAMPLE. For any cardinal K>CO, there exists a T2-space X with 
aL(X)<K andL(X) = 2K. 

Proof. Let T = IKxI, and let E be the subspace IK x{0} of T. Note that T is 
hereditarily K-Lindelof (since W(T) = K). 

Let X be the set T with the following topology: neighbourhoods of points 

peT—E will be unchanged in X, while neighbourhoods of points peE will 

take the form U*p = (U-E)U{p} 

where U is a neighbourhood of p in T. 
Certainly L(X) = 2K since E is a closed relatively discrete subspace of X of 

cardinality 2K. 
Moreover, aL(X) = K. This follows from the fact that if U is open in T and 

p e l / H E , then 
ClxU*^U. 

To see this, let x e U. If x£E, then x G U*, SO assume J C G L / H E . Let V* be a 
neighbourhood of x in X Then 

VJ = (V-E)U{*} 

where V is a neighbourhood of x in T. Since E is nowhere dense, it follows that 
V* nU* + O. Thus JC G ClxU%. 

2. Main theorem. Here, our terminology follows that of [J]. We require the 
following lemma. 

2.1 LEMMA, (a) Let X be a T2 space. Then |X|<d(X)* ( x ) . 
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(b) Let X be a space with a (X)<0 . Let G: P(X)<3->P<K(X) be a set 
mapping with the property that G(A)^Â for every A e P < 3 ( X ) . Suppose there 
exists B c X such that B 3 G(A) for every A eP<3(B). Then B = B. 

Prooi. (a) See [J], 2.5. 
(b) Let xeB. Then, since d(X) < |3, there is an A G P< 3 (£) with x e Â. Thus 

X G G ( A ) C B . 

2.2 THEOREM. Let X be a T2 space. Then | X | < 2 x ( x ) a L ( x ) . 

Proof. Set 0 = x(X)aL(X) and K = 23. For each x e X let Wx be a collection 
of neighbourhoods of x such that \WX\<(3 and 

{ x } = n { W : W e F x } . 

For A c X , we write 
WA = {JWX:XGA}. 

Suppose A<=X with |A|</3. Let VA consist of all % c >fA such that |<&|<3 
and X - U { Û : l / e W < ï > . Since |1T A |<3 , we have | V A | < | 3 0 = 2 e = K. For 
each 7 G VA, choose p ( 7 ) e X - U {Û: 17 € V} and set 

G(A) = A U { p ( F ) : T e V A } . 

Then, by 2.1 (a), | G ( A ) | < K 3 = 2 e = K. 

H e n c e G : P s 0 ( X ) ^ p S K ( X ) . 
Now by 2.24 (a) in [J], there is some B c X with \B\ = K such that B => G(A) 

for every A e P s 3 ( B ) . 
We claim X = B. 

First, by 2.1 (b), B is a closed subset of X. Suppose q e X - B . For each y e B , 
choose Vv e Wy such that q^ Vy. Since aL(B, X) < «, there is some D e PS0(B) 
such that B c U {Vy : y e D } c X - { q } . Thus F = { V y : y e D } belongs to VD and 
by construction, p ( 7 ) e G ( D ) c f i . But p ( l " ) e X - (J {Û: C/e T}<=X-B, a 
contradiction. Thus, it follows that |X| < K. 

The following theorem generalizes 2.1 (a) and the proof is similar to 2.5 of 

2.3 THEOREM. Let X be a T2 space. Then \X\<d(X)~xix)^(x\ 

Following the main lines of the proof of the Theorem 2.2 and applying 2.3 
instead of 2.1 (a), one can easily obtain the following generalization of 2.2. 

2.4 THEOREM. Let X be a T2 space. Then | x | < 2 a L ( x ) ^ ( X V x ( x ) ô ( x ) . 

2.5 EXAMPLE. The space constructed in 1.3 illustrates that the bound pro­
vided by Theorem 2.2 is sharper for (non-regular) T2 spaces than 
Arhangel'sklii's famous 

| X | < 2 L ( x ) x ( x ) 
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That example can be modified to show that our 2.2 differs also from the 
following result of Hajnal and Juhasz: 

|X|<2c(x)xCX) 

(for T2 spaces; cf [J], 2.15(B)). To do this, let X be the space constructed in 1.3 
and let Y be the Alexandroff double of the space T in 1.3. Then the disjoint 
union Z of X and Y has aL(Z) = *(Z) = K while c(Z) = L(Z) = 2K. 

We are indebted to the referee for his helpful suggestions towards the 
improvements of the paper. 
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