THE ALMOST LINDELÖF DEGREE

BY

S. WILLARD AND U. N. B. DISSANAYAKE

ABSTRACT. In [A], Arhangel'skii showed that for any T_2 space $X, |X| \leq 2^{L(X)\chi(X)}$, where L(X) is the Lindelöf degree of X and $\chi(X)$ is the character of X.

In [B], Bell, Ginsburg and Woods improved this result, assuming normality, by showing that for T_4 spaces X, $|X| \le 2^{wL(X)_X(X)}$, where wL(X) is the weak Lindelöf degree of X.

We introduce below a new cardinal function aL(X), the almost Lindelöf degree of X, which agrees with L(X) on T_3 spaces, but which is often smaller than L(X) on T_2 spaces, and show that for T_2 spaces X,

 $|X| \leq 2^{aL(X)\chi(X)}.$

1. Introduction. Our undefined notation follows that in [J]. Briefly, then, for a topological space X,

L(X) = the Lindelöf degree of X, $\chi(X) =$ the character of X, $\partial(X) =$ the tightness of X, $\pi\chi(X) =$ the π -character of X, $\psi_c(X) =$ the closed character of X.

In addition, a subset E of a topological space X will be *almost* κ -Lindelöf iff every X-open cover \mathcal{U} of E has a subsystem \mathcal{U}' with $|\mathcal{U}'| \leq \kappa$ and $E \subset \bigcup \{Cl_X U \mid U \in \mathcal{U}'\}$. We then define

 $aL(E, X) = \min\{\kappa \mid E \text{ is almost } \kappa \text{-Lindelöf}\},\$

 $aL(X) = \omega + \sup\{aL(E, X) \mid E \text{ closed in } X\},\$

and refer to aL(X) as the almost Lindelöf degree of X.

Similarly, the weak Lindelöf degree wL(X) of X is by definition the least $\kappa \ge \omega$ such that every open cover \mathcal{U} of x has a subsystem \mathcal{U}' with $|\mathcal{U}'| \le \kappa$ and $X = \bigcup \mathcal{U}'$.

Note that $wL(X) \le aL(X, X) + \omega$.

Received by the editors August 18, 1983 and, in revised form, December 13, 1983. AMS Subject Classification (1980) Primary 54A25 Secondary 54D20

[©] Canadian Mathematical Society 1984

- 1.1 THEOREM. For any topological space X,
- (i) $wL(X) \le aL(X) \le L(X)$.
- (ii) aL(X) = L(X) if X is T_3 .

Proof. Follows from the definitions.

1.2 REMARK. Let κK be the Katěov *H*-closed extension of the infinite discrete space *X*. A typical basic open set *B* in κX takes the form $B = G \cup \{\mathcal{P}\}$ where \mathcal{P} is a free ultrafilter on *X* and $G \in \mathcal{P}$ or *B* is a subset of *X*. Since $\kappa X - X$ is the set of all free ultrafilters on *X*, it is clear that $\kappa X - X$ is a closed discrete subset of κX and $|\kappa X - X| = 2^{2^{|X|}}$. Thus $L(\kappa X) = 2^{2^{|X|}}$. We denote the Stone-Cêch compactifiaction of *X* by βX . Since the weight of βX is $2^{|X|}$, and by considering basic open neighbourhoods at $\mathcal{P} \in \beta X - X$ in κX , it follows that $aL(\kappa X) = 2^{|X|}$ and $aL(\kappa X, \kappa X) < \aleph_0$.

This standard example (19N of [W]) shows that in general wL(X), aL(X) and L(X) are distinct for T_2 spaces. Next we shall give a more general example since not every infinite cardinal is of the form 2^{κ} .

1.3 EXAMPLE. For any cardinal $\kappa \ge \omega$, there exists a T_2 -space X with $aL(X) \le \kappa$ and $L(X) = 2^{\kappa}$.

Proof. Let $T = I^{\kappa} \times I$, and let *E* be the subspace $I^{\kappa} \times \{0\}$ of *T*. Note that *T* is hereditarily κ -Lindelöf (since $w(T) = \kappa$).

Let X be the set T with the following topology: neighbourhoods of points $p \in T - E$ will be unchanged in X, while neighbourhoods of points $p \in E$ will take the form $U_n^* = (U - E) \cup \{p\}$

$$O_p = (O L)O_{1}$$

where U is a neighbourhood of p in T.

Certainly $L(X) = 2^{\kappa}$ since E is a closed relatively discrete subspace of X of cardinality 2^{κ} .

Moreover, $aL(X) = \kappa$. This follows from the fact that if U is open in T and $p \in U \cap E$, then

$$Cl_X U_p^* \supset U.$$

To see this, let $x \in U$. If $x \notin E$, then $x \in U_p^*$, so assume $x \in U \cap E$. Let V_x^* be a neighbourhood of x in X. Then

$$V_x^* = (V - E) \cup \{x\}$$

where V is a neighbourhood of x in T. Since E is nowhere dense, it follows that $V_x^* \cap U_p^* \neq \Phi$. Thus $x \in Cl_x U_p^*$.

2. Main theorem. Here, our terminology follows that of [J]. We require the following lemma.

2.1 LEMMA. (a) Let X be a T_2 space. Then $|X| \leq d(X)^{\chi(X)}$.

[December

(b) Let X be a space with $\partial(X) \leq \beta$. Let G: $P(X)_{\leq\beta} \rightarrow P_{\leq\kappa}(X)$ be a set mapping with the property that $G(A) \supset \overline{A}$ for every $A \in P_{\leq\beta}(X)$. Suppose there exists $B \subset X$ such that $B \supset G(A)$ for every $A \in P_{\leq\beta}(B)$. Then $B = \overline{B}$.

Proof. (a) See [J], 2.5.

(b) Let $x \in \overline{B}$. Then, since $\partial(X) \leq \beta$, there is an $A \in P_{\leq \beta}(B)$ with $x \in \overline{A}$. Thus $x \in G(A) \subset B$.

2.2 THEOREM. Let X be a T_2 space. Then $|X| \leq 2^{\chi(X)aL(X)}$.

Proof. Set $\beta = \chi(X)aL(X)$ and $\kappa = 2^{\beta}$. For each $x \in X$ let \mathcal{W}_x be a collection of neighbourhoods of x such that $|\mathcal{W}_x| \leq \beta$ and

$$\{x\} = \bigcap \{\overline{W} : W \in \mathcal{W}_x\}.$$

For $A \subset X$, we write

$$\mathcal{W}_A = \bigcup \{ \mathcal{W}_X : x \in A \}.$$

Suppose $A \subseteq X$ with $|A| \leq \beta$. Let V_A consist of all $\mathcal{U} \subseteq \mathcal{W}_A$ such that $|\mathcal{U}| \leq \beta$ and $X - \bigcup \{\overline{U} : U \in \mathcal{U}\} \neq \Phi$. Since $|\mathcal{W}_A| \leq \beta$, we have $|V_A| \leq \beta^{\beta} = 2^{\beta} = \kappa$. For each $\mathcal{V} \in V_A$, choose $p(\mathcal{V}) \in X - \bigcup \{\overline{U} : U \in \mathcal{V}\}$ and set

$$G(A) = A \cup \{p(\mathcal{V}) : \mathcal{V} \in V_A\}.$$

Then, by 2.1 (a), $|G(A)| \le \kappa^{\beta} = 2^{\beta} = \kappa$.

Hence $G: P_{\leq \beta}(X) \rightarrow p_{\leq \kappa}(X)$.

Now by 2.24 (a) in [J], there is some $B \subseteq X$ with $|B| = \kappa$ such that $B \supset G(A)$ for every $A \in P_{\leq \beta}(B)$.

We claim X = B.

First, by 2.1 (b), *B* is a closed subset of *X*. Suppose $q \in X - B$. For each $y \in B$, choose $V_y \in \mathcal{W}_y$ such that $q \notin \overline{V}_y$. Since $aL(B, X) \leq \kappa$, there is some $D \in P_{\leq\beta}(B)$ such that $B \subset \bigcup \{\overline{V}_y : y \in D\} \subset X - \{q\}$. Thus $\mathcal{V} = \{V_y : y \in D\}$ belongs to V_D and by construction, $p(\mathcal{V}) \in G(D) \subset B$. But $p(\mathcal{V}) \in X - \bigcup \{\overline{U} : U \in \mathcal{V}\} \subset X - B$, a contradiction. Thus, it follows that $|X| \leq \kappa$.

The following theorem generalizes 2.1 (a) and the proof is similar to 2.5 of [J].

2.3 THEOREM. Let X be a T_2 space. Then $|X| \leq d(X)^{\pi\chi(X)\psi_c(X)}$.

Following the main lines of the proof of the Theorem 2.2 and applying 2.3 instead of 2.1 (a), one can easily obtain the following generalization of 2.2.

2.4 THEOREM. Let X be a T_2 space. Then $|X| \leq 2^{aL(X)\psi_c(X)\pi_X(X)\partial(X)}$.

2.5 EXAMPLE. The space constructed in 1.3 illustrates that the bound provided by Theorem 2.2 is sharper for (non-regular) T_2 spaces than Arhangel'sklii's famous

$$|X| \leq 2^{L(X)\chi(X)}$$

https://doi.org/10.4153/CMB-1984-070-2 Published online by Cambridge University Press

That example can be modified to show that our 2.2 differs also from the following result of Hajnal and Juhasz:

$$|X| \leq 2^{c(X)\chi(X)}$$

(for T_2 spaces; cf [J], 2.15(B)). To do this, let X be the space constructed in 1.3 and let Y be the Alexandroff double of the space T in 1.3. Then the disjoint union Z of X and Y has $aL(Z) = \chi(Z) = \kappa$ while $c(Z) = L(Z) = 2^{\kappa}$.

We are indebted to the referee for his helpful suggestions towards the improvements of the paper.

REFERENCES

[A] A. V. Arhangel'skii, On the cardinality of bicompacta satisfying the first axiom of countability, Soviet Math. Dok. **10** (1969), 951–955.

[B] M. J. Bell, J. N. Ginsburg and G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. **79** (1978), 37–45.

[J] I. Juhasz, Cardinal functions in Topology – ten years later, Math. Centre Tract #123, Math. centrum, Amsterdam, 1980.

[W] S. Willard, General Topology, Addison-Wesley, Reading, Mass., 1968.

THE UNIVERSITY OF ALBERTA EDMONTON, ALBERTA

1984]