PERMANENT PRESERVERS ON THE SPACE OF
‘ - DOUBLY STOCHASTIC MATRICES

B. N. MOYLS, MARVIN MARCUS, ano HENRYK MINC

- 1. Introduction. Let M, be the linear space of n-square matrices with
real elements. For a matrix X = (x;;) € M, the permanent is defined by

n
perX = Z H Xio(i)y
Iz i=

where ¢ runs over all permutations of 1,2,...,#. In (2) Marcus and May
determine the nature of all linear transformations 7" of M, into itself such
that per T'(X) = per X for all X € M,. For such a permanent preserver T,
and for n > 3, there exist permutation matrices P, Q, and diagonal matrices
D, L in M,, such that per DL = 1 and either

T(X) = DPXQL for all X € M,,
or

T(X) = DPX'QL for all X ¢ M,.
Here X’ denotes the transpose of X. In the case n = 2, a different type of
transformation is also possible.

In the present paper we consider those linear mappings which preserve the
permanents of doubly stochastic matrices. A matrix is doubly stochastic (d.s.)
if its elements are non-negative real numbers and its row and column sums
are all 1. The set of d.s. matrices in M, forms a convex polyhedron 2, in
which the vertices are permutation matrices. By a permanent preserver on Q,
we mean a mapping 7T of @, into itself such that, for 4, B € Q, and for real
numbers o, 3, 0 < a < 1,08 ,a+8 =1,

(1.1) T(ad + BB) = aT(4) + BT (B).
(1.2) per 7'(4) = per 4.
We shall show that for such T there exist fixed permutation matrices P, Q
such that either
T(A) = PAQ for all 4 € Q,,
or
T(A) = PA'Q for all 4 € Q,.
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2. Results. Let T be a mapping of @, into itself satisfying (1.1) and (1.2).
In (3, Lemma 1) it is shown that for 4 € Q,, per 4 = 1 if and only if 4 is
a permutation matrix. It follows that 7" maps permutation matrices into
permutation matrices. Suppose that 7'(I) = P;, where [ is the identity
matrix. Define the mapping ¢ on @, by

¢(4) = PiT(4).
Then ¢ has properties (1.1), (1.2), and
(2.1) o) = L

If 4 € Q,, then 4 is in the convex hull of at most (# — 1)? + 1 permuta-
tion matrices (1); i.e.,
k

(2.2) A =2 0P, E< (n—1)"+1,
=1
where 6, >0, j=1,...,k, and > *,010, = 1. Then
k
(23) s) = 3 0,0(P)).

It is thus sufficient to discuss the action of ¢ on permutation matrices.

We shall say that two permutation matrices P; and Ps cotncide in the
position (4, 7) if the elements of P; and P, in this position are both 1; and we
shall denote by ¢[P}, Ps] the number of positions in which P; and P coincide.

LEmMA 1. If ¢[Py, P2] = a and

A =06P; + (1 — )P, 0<o<1,
then there exist integers
e;>0,7=1,...,r, Z e; =1 — a,
=1

such that
per 4 = I]jl [0 4+ (1 — 6)%].
Proof. There exists a permutation matrix P such that
P'(PiP)P = I, + ]; R.;, ,z_:l e; =n—a

where I, is the identity in Q, and

01
(2.4) Ro=| 91
o1
10 0
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is t-square. (All elements not shown as 1's are zero.) Here + and &' indicate
direct sums. Note that P’'(P{P,)P = I. Hence we have
per A = per [P'(Pi4)P]
= per [0 + (1 — 6)P'P{P,P]

per[[a + Zr 6r,; + (1 — 0)R€j)}

=1

= I_TI per [0Iej + (1 - H)Rc,]
=1

Il

I 1 + (1 — )]

j=1
LEMMA 2. For two permutation matrices Py, P,
clo(P1), ¢(P2)] = c[P1, Psl.
Proof. Let ¢[P1, P2] = aand ¢[¢p(P1),¢(P2)] =B.For4 () = 0P+ (1 — 0)P;
0<0<1,¢(A() =606(P1) + (1 — 0)¢(P1). By Lemma 1,

per 4(8) = Ij 69 + (1 — 6)7],

where
Z €; = N — a,
j=1
and
per 9(4(0) = [T 167 + (1 — )",
=
where

Since ¢ preserves permanents,

s

(2.5) IT 10+ @ —o0“1= I 6" + 01— 6]
j=1 j=1

forall9,0 < 6 < 1, and hence for all real 8. We may assume thate; < ... < e,
fi<...<f, and e, < f;. Now the polynomial 6% 4+ (1 — 6)” in 6 has at
least one root which is not a root of §* + (1 — )¢ for any ¢, 0 < ¢t < f,. Since
this root must occur in both sides of (2.5), e, = f.. By induction, ¢; = f;
forj=1,...,s, and » = 5. Hence o = 6.

Let 9,9 be the set of those permutation matrices in £, which have 1 in
position (7, 7). Since we shall be dealing mainly with the case ¢ = #n, we shall
write ; for A, ™.
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LeEMMA 3. There exists a permutation ¢ of 1,2,...,n such that P € U,
implies ¢(P) € Wiy, 1=1,...,mn.

Proof. If n = 2, ¢ is the identity. For n = 3, set R = I, 4+ R,_1 (see (2.4)).
Since ¢[I,R] =1, ¢[I,¢(R)] =1 by Lemma 2, ¢(R) € A,, for a unique
positive integer o1 < #. Similarly, for any P € Ui, ¢(P) € U, for at least
one 7. We shall show that ¢(P) € ,,.

Case (1): ¢|{I, P] = 1. Let P;; be the permutation matrix which coincides
with [ except in rows ¢ and 7, ¢ # j. By Lemma 2, ¢[¢(R), ¢ (P1;)] = 0; hence
¢(P1j) § Us,.  Similarly, c[¢(P), $(P1;)] = 0; hence ¢(Py) §A.. Now
cll, $(P1;)] = n — 2; thus, if 7 # a1, ¢(P1;) = P.oy, valid for j = 2,..., n.
This contradicts Lemma 2; hence 7 = o;.

Case (11): ¢[I,Pl=k>1. If k>n — 1, P =1, which is in all %, If
k < n — 1, we can choose a matrix Q such that ¢[R, Q] = ¢[P, Q] = 0, while
c[I, Q] = n — k. In fact there is no loss in generality in assuming that
P =1 + P, for some permutation matrix P; € Q,;; in which case
Q = R/ + I, will do. By Lemma 2, ¢[¢(R), $(Q)] = c[¢(P), $(Q)] = 0,
while ¢[I, ¢(P)] = k and ¢[I, $(Q)] = n — k. This forces ¢ (P) into U,,.

We have shown that for any P € Uy, ¢(P) € U, for some particular integer
o1, 1 < o1 < n. Similarly, we can find for each 4, 1 < 7 < %, an integer o,
such that P € U, implies ¢ (P) € U,,. Clearly o; # o, if 7 5% j; thus () = o
gives the desired permutation.

Let P, be the permutation matrix whose ¢(z)th column is the 7th column
of I; ¢ is the permutation given by Lemma 3. Define the linear transforma-
tion ¥ on Q,:

(2.6) Y(4) = P,¢(4)P;, 4 € Q.

Denote by &, the set of permanent preservers on Q, which map A, into A9,
1 =1,2,...,t It follows at once that y € §,. Let E be the identity mapping
on 2, and let F be the transpose mapping on ,; that is, F(4) = 4’ for
all 4 € Q,.

LEMMA 4. If G € &, then G = E or G = F.

Proof. The proof is by induction on #n. For » = 1, 2 it is immediate that
G = E. For n = 3 it is easily checked that G must be E or F.

For n > 4, each permutation matrix P € U, can be written: P = I, + P,
where P is a permutation matrix in €, ;.. Thus G induces a linear mapping
G on Q,_1 defined by: G(P) = I; + G(P) and (2.3); moreover, G ¢ &,_;. By
the induction hypothesis G is the identity or transpose mapping, and hence
G = E or F on Y. Similarly G = E or F on . To see that G = E or F
uniformly on ;U s, consider the matrices:
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100060...0 00100...0
00100...0 01000...0
00010...0 00010...0
P,=100001...0], P,=100001...0
00000...1 00000...1
0100 .0 10000...0

Since ¢[Py, Ps] = n — 3 while ¢[P;, Py'] = 0, it follows {rom Lemma 2 that
G(Py) = Py, if G(Py)) =P, and G(Py) = Py, if G(P,) = Py. Similarly
G = E or F uniformly on all Ay, 2 =1,...,n.

There remains to show that, for P¢%,, :=1,...,#n, G(P) =P or P’
according as G = E or F on the ;. We shall discuss the case where G = E
on U;; the argument for transposition is the same. Let P, be the matrix
obtained from I by permuting columns « and 8. For each «, 1 < a < 7,
Iy # a D PPay € Na. Then G(PPyy) = PPay. Since ¢[G(P), G(PPuy)] = n—2
and G(P) § Asy G(P) = PPuy Py for some 6. When n > 4, this cannot hold
for all « unless § = y. Thus G(P) = P, and the proof of the lemma is com-
plete.

Since T(A) = P;P,/¥(A)P,, we have immediately our main result:

THEOREM: Let T be a linear mapping of Q, into Q, such that per T(A) = per 4
or all A € Q,. Then there exist permutation matrices P and Q such that either
T(4) = PAQ, all A € Q,,
or
T(4) = PA'Q, all A € Q,.
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