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Vanishing of Massey Products and Brauer
Groups

Ido Efrat and Eliyahu Matzri

Abstract. Let p be a prime number and F a ûeld containing a root of unity of order p. We relate
recent results on vanishing of triple Massey products in the mod-p Galois cohomology of F, due to
Hopkins, Wickelgren, Mináč, and Tân, to classical results in the theory of central simple algebras.
We prove a stronger form of the vanishing property for global ûelds.

1 Introduction

We ûx a prime number p. Let F be a ûeld, which will always be assumed to contain
a root of unity of order p. Let GF be the absolute Galois group of F. Recent works
by Hopkins, Wickelgren, Mináč, and Tân revealed a remarkable new property of the
mod-p Galois cohomology groups H i(GF ,Z/p), i = 1, 2, related to triple Massey
products. _is property, which they proved in several important cases, puts new re-
strictions on the possible group-theoretic structure of maximal pro-p Galois groups
of ûelds, and in particular, of absoluteGalois groups. For instance,Mináč andTân [16]
use this method to give new examples of pro-2 groups that cannot occur as absolute
Galois groups of ûelds.

More speciûcally, for an arbitrary proûnite group G that acts trivially on Z/p, let
H i(G) = H i(G ,Z/p). We recall that the triple Massey product is a multi-valued
map ⟨ ⋅ , ⋅ , ⋅ ⟩∶H1(G)3 → H2(G) (see §6 for its precise deûnition). We consider the
following cohomological condition:

If χ1 , χ2 , χ3 ∈ H1(G) and ⟨χ1 , χ2 , χ3⟩ ⊆ H2(G) is nonempty, then it contains
zero.

FollowingMináč andTân, we call this condition the vanishing tripleMassey product
property for G.

When G = GF for a ûeld F as above, this property can be rephrased in more basic
Galois-theoretic language, in terms of the groupsUn(Fp) of unipotent upper triangu-
lar n×n matrices over Fp . Namely, χ1 , χ2 , χ3 are the Kummer characters correspond-
ing the elements a1 , a2 , a3 of F×, which we assume for simplicity to be Fp-linearly
independent in F×/(F×)p . _en the following hold (see Corollary 6.4):
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● ⟨χ1 , χ2 , χ3⟩ ≠ ∅ if and only if each of F(a1/p
1 , a1/p

2 ) and F(a1/p
2 , a1/p

3 ) embeds into a
Galois extension of F with Galois group U3(Fp);

● 0 ∈ ⟨χ1 , χ2 , χ3⟩ if and only if F(a1/p
1 , a1/p

2 , a1/p
3 ) embeds into a Galois extension of

F with Galois group U4(Fp).
_e vanishing triple Massey product condition was shown to hold for G = GF in

the following situations:
(a) p = 2 and F is a global ûeld [10];
(b) p = 2 and F is arbitrary [16];
(c) p is arbitrary and F is a global ûeld [17].
Moreover, Mináč and Tân conjecture that GF satisûes the vanishing triple Massey
product property for every ûeld F containing a root of unity of order p [18]. If true, this
would give new kinds of examples of pro-p groups that are not realizable as absolute
Galois groups for arbitrary primes p, along the lines of [16] (where this is done for
p = 2). In view of the interpretations of triple Massey products in terms of U3(Fp)-
and U4(Fp)-Galois extension, one also obtains an “automatic realization" principle
in the above cases, and conjecturally always.

In this note we relate these recent developments to classical results in the theory
of central simple algebras and Brauer groups. We investigate another cohomologi-
cal property of G, which we call the cup product-restriction property for characters
χ1 , . . . , χr ∈ H1(G). _is property for r = 2 implies the vanishing triple Massey prod-
uct property, but unlike the latter property, it does not involve external cohomological
operations. Now, when G = GF , we prove this cup product-restriction property for
global ûelds and arbitrary r, using the Albert–Brauer–Hasse–Noether theorem and
an injectivity theorem for H1 due to Artin and Tate. In the case where p = 2 and
r = 2 the cup product-restriction property for GF was proved by Tignol [24, Cor. 2.8]
and is an easy consequence of a reûnement, also due to Tignol [23, _. 1], of a result
of Albert on the decomposition of central simple algebras as a tensor product of two
quaternion algebras.

Speciûcally, let G be an arbitrary proûnite group, let χ1 , . . . , χr ∈ H1(G) =
Hom(G ,Z/p), and set K = ⋂r

i=1 Ker(χ i). We deûne a multi-linear map
Λ(χ i)∶H1(G)r → H2(G) by Λ(χ i)(ϕ1 , . . . , ϕr) = ∑r

i=1 χ i ∪ ϕ i . It li�s to a homomor-
phism Λ(χ i)∶H1(G)⊗r → H2(G). We say that the cup product-restriction property
holds for χ1 , . . . , χr if the sequence

(1.1) H1(G)⊗r Λ(χi )ÐÐÐ→ H2(G) resKÐÐ→ H2(K)

is exact. Note that (1.1) is always a complex. Further, its exactness depends only on K
(but not on the choice of χ1 , . . . , χr ; see Proposition 3.1).

Now when χ1 , χ2 , χ3 ∈ H1(G), the cup product-restriction property for χ1 , χ3 ∈
H1(G) implies the vanishing triple Massey product property for ⟨χ1 , χ2 , χ3⟩ (Propo-
sition 6.2).

_eorem 1.1 (Main _eorem) Let a1 , . . . , ar ∈ F×. Suppose that one of the following
conditions holds:
(i) F is a global ûeld;
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(ii) p = 2 and r = 2.
_en the cup product-restriction property holds for the Kummer elements (a1), . . . , (ar)
in H1(F).

In particular, by restricting to r = 2, this gives alternative algebra-theoretic proofs
of the results of Hopkins, Wickelgren, Mináč, and Tân on the vanishing of triple
Massey products, and relates these works to the above-mentioned classical results
on Brauer groups. As remarked above, case (ii) was earlier proved in [24, Cor. 2.8]
and is brought here in order to relate the respective results on Massey products to
their algebra-theoretic counterparts (see §5). _e cup product-restriction property
for G = GF is also closely related to the subgroup Dec(L/F) of p Br(F), introduced
in [24, 25], where L is the ûxed ûeld of K in the separable closure of F.

In the case where p = 2 the cup product-restriction property for absolute Galois
groups of ûelds is essentially the property P2 studied in [8, 24]. In particular, in this
situation, case (i) of _eorem 1.1 was earlier proved in [8, Cor. 3.18].

On the other hand, constructions of Tignol [26] andMcKinnie [15] show that, for p
odd, there exist ûelds F for which the cup product-restriction propertywith r = 2 does
not hold (Example 3.4). _is shows that some assumptions on F, as in _eorem 1.1,
are needed.

2 Preliminaries in Galois Cohomology

Let F be again a ûeld containing a root of unity of order p. We abbreviate H i(F) =
H i(GF ,Z/p). We ûx an isomorphism between the group µp of the p-th roots of unity
and Z/p. _is isomorphism induces the Kummer isomorphism H1(F) ≅ F×/(F×)p .
Given a ∈ F×, let (a) ∈ H1(F) be the corresponding Kummer element.

Let Br(F) be the Brauer group of F and let p Br(F) be its subgroup consisting of
all elements with exponent dividing p. Given a ûeld extension L/F we write Br(L/F)
for the kernel of the restriction map Br(F) → Br(L). _e isomorphism µp ≅ Z/p
also induces in a standard way an isomorphism H2(F) ≅ p Br(F). For a, b ∈ F×, let
(a, b)F be the corresponding symbol F-algebra of degree p. _e cup product (a)∪(b)
in H2(F) then corresponds to the similarity class [(a, b)F] in p Br(F).

3 The Cup Product-Restriction Property

Weûrst show that the cup product-restriction property depends only on the subgroup
K = ⋂r

i=1 Ker(χ i), but not on the choice of χ1 , . . . , χr .

Proposition 3.1 Let G be a proûnite group and let K be an open subgroup of G.
Consider χ1 , . . . , χr , µ1 , . . . , µs ∈ H1(G) such that K = ⋂r

i=1 Ker(χ i) = ⋂s
j=1 Ker(µ j).

_en the cup product-restriction property holds for χ1 , . . . , χr if and only if it holds for
µ1 , . . . , µs .

Proof _ere is a perfect pairing

G/G p[G ,G] ×H1(G) → Z/p, (ḡ , ϕ) ↦ ϕ(g)
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[7, Cor. 2.2]. It induces a perfect pairing G/K × ⟨χ1 , . . . , χr⟩ → Z/p, and similarly for
the µ j . _erefore, ⟨χ1 , . . . , χr⟩ = ⟨µ1 , . . . , µs⟩. It follows that

χ1 ∪H1(G) + ⋅ ⋅ ⋅ + χr ∪H1(G) = µ1 ∪H1(G) + ⋅ ⋅ ⋅ + µs ∪H1(G);
i.e., the homomorphisms

Λ(χ i)∶H1(G)⊗r → H2(G), Λ(µ j)∶H1(G)⊗s → H2(G)
have the same image, and the assertion follows.

Consequently, for every open subgroup K of G such that G/K is an elementary
abelian p-group, wemay deûne the cup product-restriction property for K to be the cup
product-restriction property for χ1 , . . . , χr , where χ1 , . . . , χr is any list of elements in
H1(G) such that K = ⋂r

i=1 Ker(χ i).

Example 3.2 Let χ = χ1 ∈ H1(G), so K = Ker(χ). _e cup product-restriction
property for χ means that the sequence

(3.1) H1(G)
χ∪
Ð→ H2(G) resÐ→ H2(K)

is exact. _is is trivial when χ = 0, so we assume that χ ≠ 0, and therefore (G ∶K) = p.
When p = 2 (3.1) is always exact and is in fact a segment of the inûnite Arason

exact sequence [2, Satz 4.5]:

⋅ ⋅ ⋅ resÐ→ H i(K) corÐ→ H i(G)
χ∪
Ð→ H i+1(G) resÐ→ H i+1(K) corÐ→ ⋅ ⋅ ⋅ .

When p is an arbitrary prime and F is a ûeld (containing as always a ûxed root of
unity of order p), we may write χ = (a) for some a ∈ F×. _en L = F(a1/p) is the
Z/p-Galois extension corresponding to K. _ere is an isomorphism

F×/NL/FL×
∼Ð→ Br(L/F), xNL/FL× ↦ [(a, x)F]

[4, p. 73, _. 1]. It follows that (3.1) is exact; i.e., the cup product-restriction property
for χ holds. _is is again a part of a more general fact: Based on results of Voevodsky
[27, §5], it was shown by Lemire, Mináč, and Swallow [12,_m. 6] that for every i ≥ 1
the following sequence is exact:

H i(L) corÐ→ H i(F)
χ∪
Ð→ H i+1(F) resÐ→ H i+1(L).

Remark 3.3 Suppose that F is a ûeld containing a root of unity of order p, and
L is a Galois extension of F with Gal(L/F) an elementary abelian p-group. As
in [24, 25] let Dec(L/F) be the subgroup of Br(L/F) generated by all subgroups
Br(L′/F), where L′ ranges over all cyclic p-extensions of F contained in L. _en
the cup product-restriction property holds for the subgroup GL of GF if and only if
Dec(L/F) = p Br(L/F).

Example 3.4 For p odd there are constructions due to McKinnie [15] and Tignol
[26,_. 1, Rem. 1.3(a)] (see also [19,21] for related works), of division algebras D over
a ûeld F which contains a root of unity of order p, such that

(i) D splits in L = F(a1/p
1 , a1/p

2 ) for certain a1 , a2 ∈ F×;
(ii) [D] /∈ Dec(L/F).
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In view of Remark 3.3, this means that the cup product-restriction property does not
hold for the subgroup K = GL of G = GF .

4 Global Fields

_roughout this section we assume that F is a global ûeld containing a root of unity of
order p. For every place v on F we write Fv for the completion of F relative to v, and
denote the canonical extension of v to Fv also by v. _ere is a canonical monomor-
phism invv ∶Br(Fv) → Q/Z that is an isomorphism for v non-archimedean. Restrict-
ing to p Br(F), we obtain a monomorphism invv ∶H2(Fv) → 1

pZ/Z. It is an isomor-
phism unless v is archimedean and p ≠ 2 (and in the latter case H2(Fv) = 0). Given a
ûnite extension E of Fv , there is a commutative square

Br(E) invu // Q/Z

Br(Fv)
invv //

resE

OO

Q/Z,

[E ∶ Fv]
OO

where the map on the right means multiplication by the degree [E ∶Fv] [22, Ch. XIII,
§3, Prop. 7]. Consequently, if p∣[E ∶Fv], then resE ∶H2(Fv) → H2(E) is the zero map.

We recall that, by classical results of Albert, Brauer, Hasse and Noether, the follow-
ing sequence is exact:

0→ Br(F) resÐ→⊕
v
Br(Fv)

∑v invvÐÐÐÐ→ Q/Z→ 0.

It gives rise to an exact sequence

(4.1) 0→ H2(F) resÐ→⊕
v
H2(Fv)

∑v invvÐÐÐÐ→ 1
pZ/Z.

Lemma 4.1 Let S be a ûnite set of places on F and let a1 , . . . , ar ∈ F×. Suppose that
a1 /∈ (F×)p . _en there exists a place v0 on F such that v0 /∈ S and a1 , a′2 , . . . , a′r /∈
(F×v0)

p , where for each 2 ≤ i ≤ r, either a′i = a i or a′i = a1a i .

Proof _e restriction map H1(F) → ∏v/∈S H1(Fv) is injective [3, Ch. IX, _. 1].
Hence there is a place v0 /∈ S with (a1) ≠ 0 ∈ H1(Fv0). _en for every i with 2 ≤ i ≤ r
we have (a i) ≠ 0 ∈ H1(Fv0) or (a1a i) = (a1)+(a i) ≠ 0 ∈ H1(Fv0), and we can choose
a′i accordingly.

Proof of Case (i) of _eorem 1.1 Let a1 , . . . , ar ∈ F×. If a1 , . . . , ar ∈ (F×)p , then
the cup product-restriction property for (a1), . . . , (ar) ∈ H1(F) is trivial. We may
therefore assume that a1 /∈ (F×)p . Let L = F(a1/p

1 , . . . , a1/p
r ), and consider α ∈ H2(F)

with resL(α) = 0 inH2(L). We have to show that α ∈ (a1)∪H1(F)+⋅ ⋅ ⋅+(ar)∪H1(F).
To this end, let S be the set of all places v on F such that αFv ≠ 0, where αFv denotes

the restriction of α toH2(Fv). By (4.1), S is ûnite. Let v0 and a′2 , . . . , a′r be as in Lemma
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4.1. In particular, αFv0 = 0. Now L = F(a1/p
1 , (a′2)1/p , . . . , (a′r)1/p) and

(a1) ∪H1(F) + (a2) ∪H1(F) + ⋅ ⋅ ⋅ + (ar) ∪H1(F) =
(a1) ∪H1(F) + (a′2) ∪H1(F) + ⋅ ⋅ ⋅ + (a′r) ∪H1(F).

We may therefore replace a i by a′i , i = 2, . . . , r, to assume without loss of generality
that a1 , . . . , ar /∈ (F×v0)

p .
Next for 1 ≤ i ≤ r let S i = {v ∣ a1/p

i /∈ Fv}. _us, v0 ∈ (S1 ∩ ⋅ ⋅ ⋅ ∩ Sr) ∖ S.
If v ∈ S, then L /⊆ Fv , so a1/p

i /∈ Fv for some 1 ≤ i ≤ r. _is shows that S ⊆ S1∪⋅ ⋅ ⋅∪Sr .
Hence wemay decompose S = S′1 ⋅∪⋅ ⋅ ⋅ ⋅∪S′r with S′i ⊆ S i , i = 1, 2, . . . , r. Note that v0 /∈ S′i
for every i.
For every i, let

t i ∶= ∑
v∈S′i

invv(αFv ).

_en (4.1) gives rise to α i ∈ H2(F) with local invariants

invv((α i)Fv ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

invv(αFv ), if v ∈ S′i ,
−t i , if v = v0,
0, otherwise.

Claim 1: For every place w on F,

(4.2) invw(αFw ) =
r
∑
i=1

invw((α i)Fw ).

Indeed, whenw ∈ S′i for some i, this follows from the disjointness of S′1 , . . . , S′r . When
w = v0 we compute using (4.1),

invw(αFw ) = 0 = −∑
v
invv(αFv ) = − ∑

v∈S
invv(αFv )

= −
r
∑
i=1
∑
v∈S′i

invv(αFv ) = −
r
∑
i=1

t i =
r
∑
i=1

invw((α i)Fw ).

For all other places, the le�-hand side of (4.2) is zero, by the deûnition of S, and all
summands on the right-hand side are zero by the choice of α i . _is proves the claim.

We conclude from Claim 1 and from (4.1) that α = ∑r
i=1 α i in H2(F).

Claim 2: For every 1 ≤ i ≤ r and every place u on F(a1/p
i ), one has

(α i)F(a1/p
i )u = 0.

To see this, let v be the place on F that lies under u.

Case 1: v ∈ S i . _en p = [Fv(a1/p
i )∶Fv] ∣ [F(a1/p

i )u ∶Fv], so as we have seen,
res∶H2(Fv) → H2(F(a1/p

i )u) is the zero map. In particular, (α i)F(a1/p
i )u = 0.
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Case 2: v /∈ S i . _en a1/p
i ∈ Fv and v ≠ v0. Hence F(a1/p

i )u = Fv . _e choice of α i
implies that invv((α i)Fv ) = 0, so again, (α i)F(a1/p

i )u = (α i)Fv = 0.

We conclude from Claim 2 and from (4.1) that (α i)F(a1/p
i ) = 0, i = 1, 2, . . . , r.

_erefore α i ∈ (a i) ∪H1(F) (Example 3.2). It follows that

α =
r
∑
i=1
α i ∈ (a1) ∪H1(F) + ⋅ ⋅ ⋅ + (ar) ∪H1(F).

5 The Case p = 2
Let p = 2 and let F be a ûeld of characteristic ≠ 2. By a classical result of Albert
[1], every central simple F-algebra of degree 4 and exponent 2 is F-isomorphic to a
tensor product of two quaternion F-algebras. _is was extended by Tignol [23, _. 1]
as follows. Recall that an involution on a central simple F-algebra is of the ûrst kind
if it is the identity on F.

_eorem 5.1 (Tignol) Let A be a central simple F-algebra with involution of the ûrst
kind that is split by a Galois extension M of F with Galois group (Z/2Z)2. Let L1 , L2 be
quadratic extensions of F with M = L1L2. _en there are quaternion F-algebras Q1 ,Q2
such that L i ⊂ Q i ⊂ A, i = 1, 2, and A ≅F Q1 ⊗F Q2.

For a closely related result see [20, Cor. 5].
_e case p = 2, r = 2 of the _eorem 1.1 is an easy corollary of _eorem 5.1. In a

diòerent terminology it was obtained by Tignol in [24, Cor. 2.8], however we provide
a short proof showing its relation to _eorem 5.1.

Proof of Case (ii) of _eorem 1.1 Let a1 , a2 ∈ F× and denote M = F(
√
a1 ,

√
a2).

_us in the terminology of sequence (1.1), K = GM . Since the sequence (1.1) is always
a complex, we need to show that for every central simple F-algebra A of exponent 2
that splits in M the similarity class [A] of A in 2 Br(F) is contained in (a1)∪H1(G)+
(a2) ∪ H1(G). We may assume that A does not split in F. If a1 , a2 have F2-linearly
dependent cosets in F×/(F×)2, then we are done by Example 3.2. So assume that
a1 , a2 have F2-linearly independent cosets in F×/(F×)2.

Since A splits in M, it is similar to a central simple F-algebra A′ of degree [M ∶F] =
4 that contains M [4, p. 64, _. 7]. _e exponent of A′ is also 2, and therefore it has
an involution of the ûrst kind [1, Ch. X, _. 19]. Let L i = F(

√a i), i = 1, 2. _eorem
5.1 yields quaternion F-subalgebras Q1 ,Q2 of A′ that contain L1 , L2, respectively, and
such that A′ ≅F Q1⊗FQ2. _enQ1 ≅F (a1 , x)F andQ2 ≅F (a2 , y)F for some x , y ∈ F×
[4, p. 104, _. 4]. _erefore, [A] = [A′] = (a1) ∪ (x) + (a2) ∪ (y), as desired.

Remark 5.2 _ere are no known direct generalizations of _eorem 5.1 and [20,
Cor. 5] for odd primes. For instance, when p = 3, it seems that the best result to date
is that a central simple F-algebra that contains amaximal subûeld L that is Galois over
F with Gal(L/F) ≅ Z/3×Z/3 (i.e., A is aZ/3×Z/3-crossed product over F) is similar
to the tensor product of ≤ 31 symbol algebras of degree 3 over F [13].
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6 Massey Products

We recall the deûnition and basic properties ofMassey products of degree 1 cohomol-
ogy elements. For more information see, e.g., Fenn [9], Kraines [11], Dwyer [5] (and
in a more general setting, May [14]). Note that the various sources use diòerent sign
conventions.

We ûrst recall that a diòerential graded algebra over a ring R (R-DGA) is a graded
R-algebra C● = ⊕∞

s=0 Cs equipped with R-module homomorphisms ∂s ∶Cs → Cs+1

such that (C● ,⊕∞
s=0 ∂s) is a complex satisfying the Leibnitz rule ∂r+s(ab) = ∂r(a)b +

(−1)ra∂s(b) for a ∈ Cr , b ∈ Cs . Set Z r = Ker(∂r), Br = Im(∂r−1), and Hr = Z r/Br ,
and let [c] denote the class of c ∈ Z r in Hr .

We ûx an integer n ≥ 2. Consider a system c i j ∈ C1, where 1 ≤ i ≤ j ≤ n and
(i , j) ≠ (1, n). For any i , j satisfying 1 ≤ i ≤ j ≤ n (including (i , j) = (1, n)), we deûne

c̃ i j = −
j−1
∑
r=i
c ircr+1, j ∈ C2 .

One says that (c i j) is a deûning system of size n inC● if ∂c i j = c̃ i j for every 1 ≤ i ≤ j ≤ n
with (i , j) ≠ (1, n). We also say that the deûning system (c i j) is on c11 , . . . , cnn . Note
that c i i is then a 1-cocycle, i = 1, 2, . . . , n. Further, c̃1n is a 2-cocycle ([11, p. 432], [9,
p. 233]. Its cohomology class depends only on the cohomology classes [c11], . . . , [cnn]
[11, _. 3]. Given c1 , . . . , cn ∈ Z1, the n-fold Massey product of ⟨[c1], . . . , [cn]⟩ is the
subset of H2 consisting of all cohomology classes [c̃1n] obtained from deûning sys-
tems (c i j) of size n on c1 , . . . , cn in C●. _is construction is functorial in the natural
sense. When this subset is nonempty, one says that ⟨[c1], . . . , [cn]⟩ is deûned. Note
that ⟨[c1], . . . , [cn]⟩ contains 0 if and only if there is an array (c i j), 1 ≤ i ≤ j ≤ n, in
C1 such that ∂c i j = c̃ i j for every 1 ≤ i ≤ j ≤ n (including (i , j) = (1, n)). In this case
one says that the Massey product ⟨[c1], . . . , [cn]⟩ is trivial.

When n = 2, ⟨[c1], [c2]⟩ is always deûned and consists only of −[c1][c2].
Next we record some well-known facts on the case n = 3.

Proposition 6.1 Let c1 , c2 , c3 ∈ Z1.
(i) ⟨[c1], [c2], [c3]⟩ is deûned if and only if [c1][c2] = [c2][c3] = 0.
(ii) If (c i j) is a deûning system on [c1], [c2], [c3], then ⟨[c1], [c2], [c3]⟩ = [c̃13] +

[c1]H1 + [c3]H1.

Proof (i) Having a deûning system on c1 , c2 , c3 means that there exist c12 , c23 ∈ C1

with ∂c12 = −c1c2 and ∂c23 = −c2c3, i.e., c1c2 , c2c3 ∈ B2.

(ii) Suppose that (c′i j) is another deûning system on c1 , c2 , c3. For d12 = c′12 − c12
and d23 = c23 − c′23 we have ∂d12 = c̃′12 − c̃12 = −c1c2 + c1c2 = 0. _us d12 ∈ Z1, and
similarly d23 ∈ Z1. By a direct calculation [c̃′13] = [c̃13] + [c1][d23] + [c3][d12].
Conversely, for every d12 , d23 ∈ Z1, the system (c′i j) is also a deûning system on

c1 , c2 , c3, where we take c′i i = c i , c′12 = c12 − d12 and c′23 = c23 + d23. One has [c̃′13] =
[c̃13] + [c1][d23] + [c3][d12].
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Now for the ûxed prime number p, let G be a proûnite group acting trivially on
Z/p. Let C● = ⊕∞

s=0 Cs(G ,Z/p) be the Z/p-DGA of continuous cochains from G to
Z/p, with the cup product. _us, in our previous notation, H i = H i(G).

Proposition 6.2 Let χ1 , χ2 , χ3 ∈ H1(G). Suppose that the triple Massey product
⟨χ1 , χ2 , χ3⟩ is deûned and that the cup product-restriction property holds for χ1 , χ3.
_en 0 ∈ ⟨χ1 , χ2 , χ3⟩.

Proof Take α ∈ ⟨χ1 , χ2 , χ3⟩. Let K = Ker(χ1) ∩ Ker(χ3). _e functoriality of the
Massey product implies that

resK(α) ∈ ⟨resK(χ1), resK(χ2), resK(χ3)⟩ = ⟨0, resK(χ2), 0⟩ = {0}.
By the exactness of (1.1), α ∈ Im(Λ(χ1 , χ3)); that is, α = χ1 ∪ β1 + χ3 ∪ β3 for some
β1 , β3 ∈ H1(G). Now Proposition 6.1 implies that

0 = α − χ1 ∪ β1 − χ3 ∪ β3 ∈ ⟨χ1 , χ2 , χ3⟩.

Dwyer [5] relates n-fold Massey products in C●(G ,Z/p) to unipotent upper tri-
angular n+1-dimensional representations ofG as follows ([5] works in a discrete con-
text and withmore a general coeõcients ring; see [6, §8] for the proûnite context, and
[28] for a generalization to the case of non-trivial actions). For n ≥ 2 let Un+1(Fp)
be as before the group of all unipotent upper triangular (n + 1) × (n + 1)-matrices
over Fp . Its center consists of all matrices which are 0 on all oò-diagonal entries,
except possibly for entry (1, n + 1). Let Ūn+1(Fp) be the quotient of Un+1(Fp) by
this center. Its elements may be viewed as unipotent upper triangular (n + 1) × (n +
1)-matrices with the (1, n + 1)-entry deleted. We notice that Un+1(Fp) is a p-group,
and its Frattini subgroup is the kernel of the epimorphism Un+1(Fp) → (Z/p)n ,
(c i j) ↦ (c12 , c23 , . . . , cn ,n+1), and similarly for Ūn+1(Fp).

Given an array (c i j), 1 ≤ i ≤ j ≤ n, in C1(G ,Z/p), we deûne a continuous map
γ∶G → Un+1(Fp) by γ(σ)i j = (−1) j−i c i , j−1(σ) for σ ∈ G and for 1 ≤ i < j ≤ n + 1.
_en c̃ i j = ∂c i j for every i < j if and only if γ∶G → Un+1(Fp) is a homomorphism.
Similarly, c̃ i j = ∂c i j for every i < j with (i , j) ≠ (1, n) if and only if the induced map
γ̄∶G → Ūn+1(Fp) is a homomorphism. We write γ i j , γ̄ i j for the projections of γ, γ̄,
respectively, on the (i , j)-coordinate.

Proposition 6.3 Let χ1 , . . . , χn ∈ H1(G) be Fp-linearly independent.
(i) ⟨χ1 , . . . , χn⟩ is deûned if and only if there exists a continuous homomorphism

γ̄∶G → Ūn+1(Fp) such that γ̄ i , i+1 = χ i , i = 1, 2, . . . , n.
(ii) ⟨χ1 , . . . , χn⟩ is trivial if and only if there exists a continuous homomorphism

γ∶G → Un+1(Fp) such that γ i , i+1 = χ i , i = 1, 2, . . . , n.
Moreover, such homomorphisms γ, γ̄ are necessarily surjective.

Proof (i) and (ii) follow from the above discussion. _e surjectivity of γ and γ̄ fol-
lows by a Frattini argument.

_is and Proposition 6.1(i) imply the following facts, mentioned in the Introduc-
tion, which are also implicit in [17, Cor. 3.2].
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Corollary 6.4 Let χ1 , χ2 , χ3 ∈ H1(G) be Fp-linearly independent. _en
(i) ⟨χ1 , χ2 , χ3⟩ is deûned if and only if there exist continuous epimorphisms

γ′ , γ′′∶G → U3(Fp) such that γ′12 = χ1, γ′23 = χ2, γ′′12 = χ2, γ′′23 = χ3;
(i) ⟨χ1 , χ2 , χ3⟩ is trivial if and only if there exists a continuous epimorphism γ∶G →

U4(Fp) such that γ12 = χ1, γ23 = χ2 and γ34 = χ3.
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