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Abstract 

Image labeling is the process of manually assigning a class to subregions within an image for machine 

learning applications. When these subregions are complex shapes, this process is known as semantic 

segmentation. We propose a new software application, the Component Detection and Evaluation 

Framework (CDEF), for creating such semantic labels. The benefits of CDEF over existing tools are 

highlighted, and further improvements are proposed. 

Introduction 

In multiple domains of image processing and computer vision, labeled image data is essential for tuning 

and evaluating the performance of machine learning applications. Such labels are typically provided as 

enclosing shapes, i.e. rectangles, circles, or simple polygons. While this streamlines the labeling process, 

it misrepresents more complex components. When high accuracy is required, labels must be specified at 

the pixel-level – a process known as segmentation labeling or semantic segmentation. A detailed 

description of this process is explained in [1]. 

A wide variety of applications require segmentation-level accuracy, ranging from hardware assurance to 

medical imaging. Examples include Bill-of-Material (BoM) extraction [2], quality control during 

manufacturing [3]–[6], manuscript restoration / digitization [7]–[11], and effective patient diagnosis [12]–

[15]. In all these cases, imprecise annotations severely limit the development of automated solutions. 

Unfortunately, semantic segmentation suffers from a heavy tradeoff between accuracy and labeling rate. 

More so than simple shape annotation, pixel-level annotation typically requires consensus among multiple 

human annotators. In cases where accuracy is paramount, freehand boundary drawing rapidly becomes 

time-prohibitive without a large manual workforce and a set of objective segmentation criteria. These 

drawbacks drastically decrease throughput and raise the cost associated creating a large dataset to train 

and test a robust machine learning algorithm. 

While a host of software solutions address the need for bounding box annotation, few are designed to 

assist with pixel-level annotation. Moreover, products fitting this domain often lack features conducive 

toward a streamlined workflow. For this paper, several products were tested on their ability to create pixel-

level boundaries around surface-mount components on a PCB (e.g. resistors, capacitors, etc). The 

evaluated tools either could not easily process high-resolution images, suffered degraded performance 

when hundreds of distinct bounding boxes were drawn on the same image, or kept crucial annotation 

features behind an enterprise paywall. Such software solutions can be found at [16]. 
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To optimize the accuracy/labeling speed tradeoff, we propose the Component Detection and Evaluation 

Framework (CDEF). This tool is designed with ease, extensibility, and efficiency in mind. Its graphical 

user interface (GUI) is shown in Figure 1. 

Component Detection and Evaluation Framework (CDEF) Contributions 

Customizable interface. Major annotation functions are accessible through a configurable list of 

shortcuts and keystroke macros. Moreover, users can easily add custom functions to this list by utilizing 

the CDEF application programming interface (API). This contrasts with most other annotation software, 

where functionality is not user extendable. Importantly, these features easily accommodate left-handed 

users or those with international keyboard layouts. 

Through its configurable interface, CDEF provides time-saving utilities during manual annotation – 

directly reducing the cost of segmentation labeling. 

High reconfigurability. CDEF is intended as a general-purpose tool for various applications which 

require semantic segmentation of large images containing many objects. Toward this end, the CDEF API 

enables users to easily incorporate their own algorithms for preprocessing, feature extraction, object 

detection, etc. This allows users to adapt CDEF to suit their needs for various, highly specialized purposes. 

A demonstration of CDEF’s adaptability is shown in Fig. 1, where CDEF is used to annotate PCB 

components. 

Online parameter tuning. Most notably, the annotation tool provides an editor interface for all significant 

algorithm parameters, shown in Figure 2. This eliminates the need to reload the application each time a 

parameter is adjusted; instead, real-time performance evaluation is achievable as these values are altered. 

Users inserting their own algorithms can also specify which parameters they wish to be editable from the 

GUI. 

Contour control caters well to situations where localized image variations prevent a single set of algorithm 

parameters from applying to the entire image. 

Future Work 

With the application still under active development, multiple features will be incorporated in the coming 

months. Some significant improvements are listed below. 

Improved annotation intelligence. Object with the same classification (e.g. resistors in Figure 1) often 

share similar characteristics, but CDEF does not currently account for this. When users edit the boundary 

of one component, the application should apply similar edits to other objects of the same type. This 

decreases the required amount of manual input. Also, the tool should account for contour shape to remove 

irregularities. 

Intelligent contour refinement will increase the annotation accuracy without compromising speed or 

throughput. 
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Built-in evaluation tools. Future CDEF iterations will include performance analysis tools to compare a 

given set of labels (manual and automatic). This evaluation suite will contain methods of boundary 

comparison, offering metrics for determining algorithm strengths and weaknesses. Examples include 

component-wise boundary comparison, pixel-wise segmentation comparison, and component statistics 

(e.g. shape, size and other characteristics per label). 

These evaluation tools will enable robust algorithm analysis and assist users in choosing the optimal 

parameters for a given set of input images. 

Future developments constitute further ways to reduce the manual labor involved in segmentation 

labeling. With a larger user base, the FICS lab can more effectively determine which developments will 

best improve the workflow. If readers are interested in beta testing, they can contact the lead author for 

more information. 

 
Figure 1. Overview of the annotation tool. Main UI components include an overview of the whole image, 

a zoomed-in view of the currently selected component, and a table of current component properties. 
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Figure 2. Parameter editor window. From this dialog, users can specify algorithm parameters and save 

their states on-the-fly. 
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