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0. Introduction

Let f be an orientation preserving ¥'-diffeomorphism of the circle. If the rotation
number a = p(f) is irrational and log Df is of bounded variation then, by a well-
known theorem of Denjoy, f is conjugate to the rigid rotation R,. The conjugation
means that there exists an essentially unique homeomorphism h of the circle such
that f=h"'R,h. The general problem of relating the smoothness of h to that of f
under suitable diophantine conditions on a has been studied extensively (cf.
[H,],[KO], [Y] and the references given there). At the bottom of the scale of
smoothness for f there is a theorem of M. Herman [H,] which states that if Df is
absolutely continuous and D log Dfe L?, p> 1, a = p(f) is of ‘constant type’ which
means ‘the coefficients in the continued fraction expansion of a are bounded’, and
if f is a perturbation of R,, then h is absolutely continuous. Our purpose in this
paper is to give a different proof and an improved version of Herman’s theorem.
The main difference in the result is that we do not need to assume that f is close
to R, ; the proof is very different from Herman’s and is very much in the spirit of
[KO].

It is not hard to see that the condition of boundedness of the continued-fraction
coefficients of a is essential. Given a with unbounded coefficients one can construct
f€ % such that h is purely singular (see e.g., [HS], [K], [L]).

This paper assumes a general understanding of the dynamics of circle rotations.
We shall refer to [KO] for some of the basic facts and notations (but not to the
main results of [KO] which assume more smoothness of f and give more for h).

1. Notation, terminology and some background

Our setup is as follows: f=h"'R,h is a diffeomorphism of the circle T=R/Z, h is
a homeomorphism and R, is the rigid rotation by «. We assume that «, which is
defined mod 1, is irrational and, taking a representative in (0, 1) we denote by a,
the coefficients of the continued fraction expansion of a, so that

1

1
a,+- -+

a=

a,+
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and the denominators g, of the convergents satisfyt ¢,., = a,4, + ¢._;.

Definition 1.1. An interval I = (1, 7) is g,-small and its endpoints t, 7 are g,-close if
{f/(1)}=," are disjoint.

One checks easily that (¢, ) is g,-small if, depending on the parity of n, either
t=r=f%-(t)or f¥(7)=t= 1 The following simple observation is a convenient
starting point for ‘the basic procedure’ (see e.g. [KO]).

LeMMA 1.1. Let t,i€T and n=1. Then there exist T€T and an integer 1,0=1<q,,
such that r is g,-close to t and T= f'(7).

We assume that log Df is absolutely continuous and D log Df € L” for some p > 1.

Notations:

(a) KO =log Df |

(b) K, =Sup|{  Dlog Df'(s) ds|=sup|log Df'(r)—log Df'(t)] the supremum
being taken for all /,0<[<q,, and intervals (¢, 7) which are g,-small.

(¢) K..=Sup||l Dlog Df'(s) ds| the supremum is taken now for ! of the form
I=¢qm<{qm+1, m<n, and intervals (¢, 7) which are g,-small.

We have the following
LEmMmaA 1.2

K =2K!, (1.1)

n
=

>u
-l

- (1.2)

1
n

m=1

Proof. (1.2) follows immediately upon writing an arbitrary / in (0, g,) as ., ¢ngm
with ¢,,qm < gn+1. (1.1) is closely related to Denjoy’s original inequality: one uses
the fact that for some 7€ T, log Df%(f)=0, apply lemma 1.1 to obtain 7 and [ as
described there, write

log Df “:(t) = (log Df *(1) —log Df (7)) +(log Df (1) ~log Df'(f*()))
and both differences are bounded by K. a

We denote, for m <n,
() =15 ()= tl, 7 =[7.(l,

N (1) = () () N = [N () ] 0
and note that (see e.g., [KO] Lemma A.1.1) that there exists n <1 which depends
only on Var (log Df) such that for n—m=2

<nn_m' (1.4)

mn =

(1.3)

Lemma 1.3. If I is q,-small, m < n, then, with u = dt (the Haar measure of T),
eyt .
#( U f’(1)>5n"_"'-
j=0

+ Notice that the coefficient which we denote by a,, is denoted by most authors by a,,., (so that, in their
notation, ¢,+1 = @44, q,_)-
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Proof. Let I'=(t,, f%(t,)) be a g,,.,-interval which contains I. By (1.4) the relative
length of I in I’ is <"~ ™ The same estimate holds, for the same reason, for the
ratio w(f'(I))/u(f(I')) and the lemma follows from the fact that ¥ u(f'(I')) =1
since they are disjoint. O

Denote n,=7'"""".

LEMMA 1.4. KL, = O(n?™™).

Proof. I=(},,v,, is the integral of D log Df on a set U =U;"=“(')'""1fj(1) and by Lemma
1.3 w(U)=n""". That means, with p"'+p~'=1,

Mol =ni™" (1.5)
and
K. = J Dlog Dfdtl = U 1yDlog Dfdt| < |1y, |Dlog DfYl, (1.6)
[5)
which proves the lemma. O

In the same way we prove that if ¢, r are g,-close, 0= /=< q,, <(q,, then
llog Df'(t) —log Df'(7)| = const. n?". (1.7)

As a corollary to Lemma 1.4 we can replace (1.2) by

Kl< ¥ K..+0(n™). (1.8)
=k

2. Condition sufficient for absolute continuity of the conjugation
Definition 2.1. Two measures u, v on the same o-algebra are L*-equivalent if u = ¢, v
with ¢, € L*(v) and v = @,u with @,€ L*(n).
LEMMA 2.2.1 Let g be monotone increasing on [0, 1] with g(0) =0, g(1) =1. Assume
that for some sequence {b,} such that ¥ b2 <o we have}
g(s+2™") —g(s) _
g(s)—g(s=27")

are absolutely continuous with square-summable derivatives.

1|<b, for2"=s=1-27" 2.1)

1

Then g and g~

Proof. Denote by G, the linear interpolations of g off {j27"};_,. Then {DG,} is a
martingale (relative to the partitions determined by {j27" f;o, n=1,2,...) and
DG, is a martingale relative to the g-image partitions.

Condition (2.1), for s =(2j+1)27", implies that

Id’n' =|DG, - DG,-,|= b,DG,_,
and since ¢, L DG, _,, we have
DGl 22 = ¢l 12+ | DG,y ]| 12 = (1 + b2) | DG, ]| 12
and || DG, |12<I; (1+ b}). It follows that DG, converges in L, (to Dg).

+ An almost identical result appears in [C].
1 We only need (2.1) for s of the form (2j+1)27", j=0,...,2" '—1.
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The geometric meaning of |¢,| < b,DG, is that every slope that we see in G,_,
is replaced in G, by two slopes, one bigger and one smaller, but the ratios of the
new slopes to the preceding lie in (1—b,,1+5,). If we look now at the inverse
mapping, all the slopes are replaced by their reciprocals and the ratios are now
bounded by ((1+b,)",(1—b,)"") which is as good as above, and we conclude
Dg~'e L?, as we did for Dg. a

Remark. The condition ¥ b <0 is sharp: given a sequence {b,}, b, >0, such that
¥ b2 =00, one can construct a singular g satisfying (2.1) (cf, [C]).

Recall that h denotes the homeomorphism which conjugates f with R,, and dh
is the f~invariant measure on T.

THEOREM 2.3. Assume ¥ (a,K%)> <. Then dh and dt are L*-equivalent.

Proof. Without loss of generality we may assume h(0) =0 so that A, the lifting of h
to R, and A~ map [0, 1] onto [0, 1]. We want to apply Lemma 2.2 with g=h"",
and we just need to show that the assumption ¥ (a,K%)? <o implies (2.1) with
¥ bl <o,

Fix n. Take an interval [, r}j=[s—-27",s+27"] and denote its };-preimage by
[, p] and the ﬁ-preimage of the midpoint s by o. We are looking for an estimate
b, for|(p —o)/(o— 1) — 1|, and obtain it through an algorithm to find o using powers
of f. We use the notation d,, = ||g. || (the distance of g,a to the nearest integer on
R or to zero on T) and the relation a,, =[d,,_,/d,.]. Denote by [ the smallest integer
such that d,<2'""=t—r, and put ¢;=[2'""/d,]. Since 2' " =d,_,, we have ¢, < a,.
Write t,=1t, ry,=r, t=r,—cd,, r,=1,+ cd,, and observe that [t,, t,] is mapped onto
[r», r;] by a translation to the right by ¢d, which is the same as R, 4., (the sign
depending on the parity of I). Thus (¢,, r;) and (¢, r,) are concentric and r, — t, < ¢d,.
We now repeat the process for (1,, r,): the index I may have increased or remained
the same, however, if !/ remains, that is, r,—t,> d,, the parameter ¢; is certainly
lower. Thus we obtain two sequences {t;}-and {r;} such that 1,.,> 1, and r;,, <r, and
the interval (1, t,.,) is mapped onto (r,.,, r;) by translation to the right by ¢, ;d;;),
that is, by R.,, 4« With I(j) monotone non-decreasing function of j, ¢, ; < a,;, and
is (strictly) decreasing on every j-interval on which I(j) is constant. Finally, r;,, —
f+1< €1 - .

The entire scheme, with t;,=1 and r,=r is transported by h~' and gives the
sequences {7;} and {p;} the first increasing to o, the second decreasing to it, and
[, 7,41] is mapped onto [ p;,,, p;] by f~ i, This gives the estimate

+1

pi=p;
I < exp (o, KD ) = exp (ai K ;)- (2.2)

T+ 7T
Combining the estimates (2.2) for all j, we obtain

p—o

—1‘ =c¢Ki+ ¥ w,a.K%=b,+b,, (2.3)

o—-T m=1+1

where w,, are the relative weights of the unions of intervals for which I(j)=m. It
is not hard to see that w, >0 exponentially, in fact since [7, p] is not g;-small
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(though it is g,_,-small), and the interval whose relative measure is denoted by w,,
is g,,_;-small and is contained in {7, p], we obtain by (1.4) w,, <n™ """

The manipulation of the rest of the proof is simplest in the case of real interest
to us, namely when a,=0(1). In this case the parameter I, which is defined by
d,<2'""=d,_,, grows more or less linearly with n (to be precise: any value of [
corresponds to at most L values of n or L terms in the martingale, L depends only
on the bound for a,) and the theorem follows from the following (obvious) lemma,
putting K, = a,K).

LEMMA 2.4, Assume Y. _, K, <. Define b,=Y,_ 7' "K,, with 0<n<1. Then
Y bl<oo.

The proof in the general case follows from the fact that if an interval n,<n<n,
maintains the same value of I, the part b, (= ¢K?}) is largest for n = n, and drops by
a factor 5 as we increase n by one. The part b, =Z;’il w,,a,,KS, is largest for n = n,
and drops by 3 as we decrease n by one. Thus Z:. =2(b,, + b,,) which brings us back
to Lemma 2.4 as before. We leave the details to the reader. O

3. Estimates of |log Df? ||«
Our main goal here is

THEOREM 3.1. Assume D log Df € L?, for some p> 1. Then
Y (K})?<oo. (3.1)
n=1

Notice that we do not assume any diophantine condition on a (except, of course,
of being irrational). On the other hand, if the coefficients a, are bounded, then (3.1)
implies the condition which, by Theorem 2.3, guarantees the mutual absolute
continuity (in fact the L*-equivalence) of dh and dt.

We shall make use of the following proposition which seems to be in the spirit
of Littlewood-Paley, but as far as we know is new.

ProrposiTioN 3.2. Let {G,} be an L’-bounded martingale, 1 <p=<2. Write g, =
G,~G,_,. Then

Y |lgall7 <co. (3.2)
We start with

LEMMA 3.3. Let V be a measurable set in a probability space, ge L"(V), |, gdu =0
and A > 0. Then (the integrals on the right in V):

J (JA+glf =A%) du zc,,()\””zj
\ %

|gl<A

g2du+j

lgl=A

Igl”du)- (3.3)

with ¢, >0 depending only on p.

Proof. Taylor’s theorem with second-order remainder, and direct observation for
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x<—A give
[ AP72x? for x| <A
A+xP=AP—pAPT'x =g, (3.4)
|x]” forjx|=A
and the lemma follows by writing g for x in (3.4) and integrating over V. O

Proof of Proposition 3.2. Set b, =[(|G,|” —|G,_,|") du so that ¥ b, =sup || G, ||}, and
applyt Lemma 3.3 to sets V which are level sets for G, _, to obtain

J |gnl"du=c,'b, (3.5)
8012 1G

J g
lg.l<IG,_ 1 G

n—1
and since {|G,_,|” du is bounded and p=<2 the L’-norm of g,/ G,_, with respect
to the measure |G, ,|” du is bounded by a constant times the L?-norm and we obtain

(J’!8n|<|Gu|| G"—’

and finally, combining (3.5) and (3.7),

2/p
(J |gal” d,U«) =cb,

and

2
|GooP dpe < c;'b, (3.6)

p 1/p
IGnvll”du> T (3.7)

which completes the proof. O
Proof of Theorem 3.1. By (1.1) it is enough to prove

Z(lz(},)2<oo. (3.1%)
We propose to prove (3.1%) by obtaining estimates of l=(:,,,,, and then, invoke Lemma

1.2 and (1.8).

So let n > 0 be arbitrary, m < n (by (1.8) we shall need only consider n/2<m <n),
1= ¢nqm < gm+1and I = (1, 7) which is g,-small. By its definition ]=(,,,,,, is the supremum
of integrals of the form |{, D log Df'(s) ds| and we now fix values of I and ! that
give the supremum. Keeping in mind that

J Dlong’(s)ds=j D log Df(s) ds

with U= UJI of(I), and we can then rewrite U as Uq”’o f(E) with E=
U '0' f*an(I). Notice that the condition Cmdm < qm+ implies that E is contained
in a q,,,-mterval We now look for a g,-interval J = (7, f%-(f)) such that, writing
V=U%o"f(J), we have [, D log Dfdt =0, (we obtain it by noting that the integral
is equal to log Df % (f9-1(f)) —log Df % (¥) which is continuous in #, has mean
value zero (relative to dh) and must therefore change signs). The measure u(V) is
clearly bounded by 1 but, as Vu f%(V) is the entire circle and Df % is uniformly

+ The martingale condition E(g,|G,_,) =0 supplies the needed jv gdu=0.
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bounded (= exp (Var log Df) by Denjoy’s inequality) we obtain also a lower bound
and hence by Lemma 1.3 we have
P = (U)/ n(V)=Cn" 7,
and writing
q)mm = lU ——pm,nlv
we have Itb,,.,,,(t) dt=0.

The whole idea of the basic procedure is to evaluate a sum, here taking the form
of an integral on a set U, by comparing it to one of the same form which is known
to vanish. Thus, instead of evaluating | 1,D log Df ds we evaluate | ®,, ,D log Df ds.

By Lemma 1.1 there exist 7 which is g,-close to a point in I and such that 7= f'(7)
with 0=<1I<g,,. We write J*=£"'(J) and

] I<j<gq,
j*= {’. 1 (3.8)
jtqm 0sj<l

so that V= U;’;'glfj*(J*). The advantage of this notation is that f7*(J*) is g,,-close
to f/(E) (i.e., some points in the one are g,-close to points in the other.)

One can compare u(f/(E) and p,,,,,,,u(fj*(J*)) by noticing first that on the average
they are equal, which implies that ,u.(fj(E))Zp,,,,,,p,(f"*(.I*)) for some values of j,
while the opposite (non-strict) inequality holds for other (values of j). On the other
hand, for any t, € f/(E) and t,€ f/1(J*), as t, and 1, are either gq,,-close or at worst
both are g,,-close to some t5; and as for any j, in our range we have j¥ —j¥=j,—j, +
£q,, With € =x1 or zero, we obtain (invoking (1.1) if £ #0)

llog Df*>~(1,) — log Df'*7(1,)] < 4K, (3.9)
which implies
llog (u(f(E))/ u(f"(E))) —log (#(f’z(f*))/ﬂ(ij(J*)))lS4lz(1,.
and, since for any j =j, we can find j, such that the signs of
w(fP(E)) = prut (f11(J*)) and  w(f(E)) = pmapt (f3(J*))

are opposite, we obtain

log 1 (f(E)) ~10g [t (7" (J*)]| = 4Kb, . (3.10)

Define v;, (I'),,,,,, and ®,,, successively by
Pmn(1+ %) = n(f1(EN/ u(f7(J*)),

‘i’m,n = Pn & Y100 (3.11)
O, =0, ,+D,.,..

Notice that the choice of y; guarantees that
j ®,.,=0 on f(E)uf"(J*) (3.12)

and as lz(},,—>0, (3.10) implies that (for m > m,)
|y = 4K, (3.13)
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Remember that we are trying to evaluate I=(:,,,,, which is now given as

T _
Km,n -

J ®,,.D log Df ds J (®,,,—®,.,) D log Df ds (3.14)

and we estimate separately | ®,,,D log Dfds and ij'),,,‘,,D log Df ds. For the latter
we need to point out not only that ((3.13))

1Dl = 4P n K, (3.15)

but also that vy, changes very slowly with j. Specifically, if we fix b and impose
|j1—Jj2l < g, then, by Lemma 1.4,

1%, = ¥l = O(n™"). (3.16)
For sufficiently large b we write B=\_ f*¥(J), kg, < g., and by (3.16)

I &, D log Df ds = J ®,,.D log Df * ds+ O(1™ ) ppnn. (3.17)
B

B is contained in a g,-small interval and we can invoke [KO] Theorem 3.9 and
(3.15) to obtain for m> m(e),

< epm KL+ 0(1" ) o, (3.18)

J ®,,..D log Df ds

where we may take ¢ arbitrarily small, (determine b by Theorem 3.9 of [KO] and
take m > b). The only thing we shall want from ¢ is to be small enough (less than
some constant that we specify later) we can fix it as well as b once and for all,
absorb the factor 1 ® into the constant, and remembering that Pmn=Cyn" ™ (3.18)
becomes

J (Bm’,,D log Df ds SEC*n"_'"l:(:,,+O(n"). (3.19)

For the estimate of | ®,, ,D log Df ds we denote by P, = P,(f) the partition of the
circle determined by the points {f‘(O)}?;;l, and by {G;} the martingale expansion
of D log Df relative to { P;} (that means that on each interval-atom of P;, G; is equal
to the mean value of D log Df on that interval). We write g; = G, — G, and keep
in mind that g; has integral zero on every P,_,(f)-interval. As |G|, =<||D log Dfl,
we may apply Proposition 3.2 and conclude that for our specific {g;}, (3.2) is valid.

We now estimate | ®,,,g;ds. Both ®,,, and g; are simple functions, g being
measurable P, and with integral zero on any P,_, atom. Thus, whenever ®,,, is
constant on a P,_, atom we get no contribution from that atom to | ®,,.g; ds.
Similarly, when f*(E) U f¥(J*) is contained in a P; atom (or, more generally, when
g; is constant on FYE)Uf¥(J*)) we invoke (3.12) and again get zero contribution
to the integral. As we verify below, all this implies:

gl j<m
={Cnm "lgl, n=zjz=m. (3.20)

Cni™"lgll, Jj>n

J’ ®,, .8 ds

We check this case by case:
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For j < m, the contribution to the integral of a given P; atom happen only when
FYE)Uf¥(J*) is partly in the atom but not completely, which happens for two
values of k at most. f*(E) has relative measure in the atom bounded by "~
f¥'(J*) has its relative measure bounded by "~/ and ®,,, is bounded by p,,, <
Cn"~™ on it (outside f*(E)).

For j € [m, n] the integral on | f*(E) is estimated as in the proof of Lemma 1.4,
that on | f*"(J*) is (trivially) much smaller.

For j > n one again estimates the measure of the union of the P,_; atoms on which
®,,, is not constant.

All that we need to do now is put it all together: by (3.14)

+ (3.21)

K).=< J ®,,.D log Df ds J ®,,.D log Df ds
and we can estimate the first integral by adding up the estimates (3.20) for all j
(recall that D log Df =Y g;), and the second by (3.19) and obtain

Rhw=C 3wl ni™ 5 lglot $ nilglten Rt ]
j=m j=n+

j<m

with C a constant which depends only on the variation of log Df.
Summing for me[n/2, n] we obtain (see (1.8))

Ki=Ce Y 5" "KL +s,, (3.22)
n/2<m<n
where
n n
sn‘_‘zcn,j”gj“p_'_E"’l
]
with
ny"? j<n/2

;j=<{mi”7 n/2<j=n
ni"  ns=j
By the (trivial) inequality
”(an)” S% sup Ibn,nfkl (3-23)
(the norm of the matrix (b, ;) is its norm as operator on I’) applied to (c.;) and
by (3.2) we obtain ¥ 52 < oo,
By (3.23) the matrix R whose entries are Cen"~"™ for n/2<<m<n, and zero

elsewhere has norm on [ bounded by 2Ce(1—7)"' <3 for ¢ fixed small enough.
By (3.22),

(I-R){KM}e P
and multiplying by (I — R)™' we obtain {lz(l,}e I8 a
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