The absolute continuity of the conjugation of certain diffeomorphisms of the circle

Y. KATZNELSON AND D. ORNSTEIN[†]

Mathematics Department, Stanford University, Stanford CA 94305, USA

(Received 22 June 1987 and revised 27 August 1988)

0. Introduction

Let f be an orientation preserving \mathscr{H}^1 -diffeomorphism of the circle. If the rotation number $\alpha = \rho(f)$ is irrational and log Df is of bounded variation then, by a wellknown theorem of Denjoy, f is conjugate to the rigid rotation R_{α} . The conjugation means that there exists an essentially unique homeomorphism h of the circle such that $f = h^{-1}R_{\alpha}h$. The general problem of relating the smoothness of h to that of f under suitable diophantine conditions on α has been studied extensively (cf. [H₁], [KO], [Y] and the references given there). At the bottom of the scale of smoothness for f there is a theorem of M. Herman [H₂] which states that if Df is absolutely continuous and D log Df $\in L^p$, p > 1, $\alpha = \rho(f)$ is of 'constant type' which means 'the coefficients in the continued fraction expansion of α are bounded', and if f is a perturbation of R_{α} , then h is absolutely continuous. Our purpose in this paper is to give a different proof and an improved version of Herman's theorem. The main difference in the result is that we do not need to assume that f is close to R_{α} ; the proof is very different from Herman's and is very much in the spirit of [KO].

It is not hard to see that the condition of boundedness of the continued-fraction coefficients of α is essential. Given α with unbounded coefficients one can construct $f \in \mathcal{H}^2$ such that h is purely singular (see e.g., [HS], [K], [L]).

This paper assumes a general understanding of the dynamics of circle rotations. We shall refer to [KO] for some of the basic facts and notations (but not to the main results of [KO] which assume more smoothness of f and give more for h).

1. Notation, terminology and some background

Our setup is as follows: $f = h^{-1}R_{\alpha}h$ is a diffeomorphism of the circle $\mathbf{T} = \mathbf{R}/\mathbf{Z}$, *h* is a homeomorphism and R_{α} is the rigid rotation by α . We assume that α , which is defined mod 1, is irrational and, taking a representative in (0, 1) we denote by a_n the coefficients of the continued fraction expansion of α , so that

$$\alpha = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$$

[†] Research partially supported by NSF Grant No. DMS86-05098.

and the denominators q_n of the convergents satisfy[†] $q_{n+1} = a_n q_n + q_{n-1}$.

Definition 1.1. An interval $I = (t, \tau)$ is q_n -small and its endpoints t, τ are q_n -close if $\{f^j(I)\}_{i=0}^{q_n-1}$ are disjoint.

One checks easily that (t, τ) is q_n -small if, depending on the parity of n, either $t \le \tau \le f^{q_{n-1}}(t)$ or $f^{q_{n-1}}(\tau) \le t \le \tau$. The following simple observation is a convenient starting point for 'the basic procedure' (see e.g. **[KO]**).

LEMMA 1.1. Let $t, \bar{t} \in \mathbf{T}$ and $n \ge 1$. Then there exist $\tau \in \mathbf{T}$ and an integer $l, 0 \le l < q_n$, such that τ is q_n -close to t and $\bar{t} = f'(\tau)$.

We assume that log Df is absolutely continuous and $D \log Df \in L^p$ for some p > 1.

Notations:

- (a) $\mathbf{K}_{n}^{0} = \|\log Df^{q_{n}}\|_{\infty}$
- (b) $\tilde{\mathbf{K}}_n^1 = \operatorname{Sup} |\int_t^{\tau} D \log Df'(s) ds| = \operatorname{sup} |\log Df'(\tau) \log Df'(t)|$ the supremum being taken for all $l, 0 \le l < q_n$, and intervals (t, τ) which are q_n -small.
- (c) $\bar{\mathbf{k}}_{m,n}^{l} = \operatorname{Sup} |\int_{t}^{\tau} D \log Df^{l}(s) ds|$ the supremum is taken now for *l* of the form $l = cq_{m} < q_{m+1}, m < n$, and intervals (t, τ) which are q_{n} -small.

We have the following

Lемма 1.2.

$$\mathbf{K}_{n}^{0} \leq 2\tilde{\mathbf{K}}_{n}^{1}, \qquad (1.1)$$

$$\mathbf{\tilde{K}}_{n}^{1} \leq \sum_{m=1}^{n-1} \bar{\mathbf{\tilde{K}}}_{m,n}^{1}.$$
(1.2)

Proof. (1.2) follows immediately upon writing an arbitrary l in $(0, q_n)$ as $\sum_m c_m q_m$ with $c_m q_m < q_{m+1}$. (1.1) is closely related to Denjoy's original inequality: one uses the fact that for some $\bar{t} \in \mathbf{T}$, log $Df^{q_n}(\bar{t}) = 0$, apply lemma 1.1 to obtain τ and l as described there, write

$$\log Df^{q_n}(t) = (\log Df^{q_n}(t) - \log Df^{q_n}(\tau)) + (\log Df^{l}(\tau) - \log Df^{l}(f^{q_n}(\tau)))$$

and both differences are bounded by $\tilde{\mathbf{K}}_n^1$.

We denote, for m < n,

$$\eta_n(t) = |f^{q_{n-1}}(t) - t|, \quad \eta_n = ||\eta_n(t)||_{\infty},$$

$$\eta_{m,n}(t) = \eta_n(t)/\eta_m(t), \quad \eta_{m,n} = ||\eta_{m,n}(t)||_{\infty},$$
(1.3)

and note that (see e.g., [KO] Lemma A.1.1) that there exists $\eta < 1$ which depends only on Var (log Df) such that for $n - m \ge 2$

$$\eta_{m,n} \le \eta^{n-m}. \tag{1.4}$$

LEMMA 1.3. If I is q_n -small, m < n, then, with $\mu = dt$ (the Haar measure of T),

$$\mu\left(\bigcup_{j=0}^{q_{m+1}-1}f^j(I)\right)\leq \eta^{n-m}.$$

[†] Notice that the coefficient which we denote by a_n is denoted by most authors by a_{n+1} (so that, in their notation, $q_{n+1} = a_{n+1}q_n + q_{n-1}$).

Proof. Let $I' = (t_0, f^{q_m}(t_0))$ be a q_{m+1} -interval which contains *I*. By (1.4) the relative length of *I* in *I'* is $\leq \eta^{n-m}$. The same estimate holds, for the same reason, for the ratio $\mu(f^i(I))/\mu(f^i(I'))$ and the lemma follows from the fact that $\sum \mu(f^i(I')) \leq 1$ since they are disjoint.

Denote $\eta_1 = \eta^{1-p^{-1}}$.

LEMMA 1.4. $\mathbf{\bar{K}}_{m,n}^{1} = O(\eta_{1}^{n-m}).$

Proof. $\bar{\mathbf{K}}_{m,n}^1$ is the integral of $D \log Df$ on a set $U = \bigcup_{j=0}^{c_m q_m - 1} f^j(I)$ and by Lemma 1.3 $\mu(U) \le \eta^{n-m}$. That means, with $p'^{-1} + p^{-1} = 1$,

$$\|\mathbf{1}_{U}\|_{p'} \le \eta_{1}^{n-m} \tag{1.5}$$

and

$$\bar{\mathbf{K}}_{m,n}^{1} = \left| \int_{U} D \log Df \, dt \right| = \left| \int 1_{U} D \log Df \, dt \right| \le \|1_{U}\|_{p} \|D \log Df\|_{p} \quad (1.6)$$

which proves the lemma.

In the same way we prove that if t, τ are q_n -close, $0 \le l \le q_m < q_n$, then

$$\left|\log Df^{l}(t) - \log Df^{l}(\tau)\right| \le \text{const. } \eta_{1}^{n-m}.$$
(1.7)

As a corollary to Lemma 1.4 we can replace (1.2) by

$$\tilde{\mathbf{K}}_{n}^{1} \leq \sum_{m=k}^{n-1} \bar{\mathbf{K}}_{m,n}^{1} + O(\eta_{1}^{n-k}).$$
(1.8)

2. Condition sufficient for absolute continuity of the conjugation

Definition 2.1. Two measures μ , ν on the same σ -algebra are L^2 -equivalent if $\mu = \varphi_1 \nu$ with $\varphi_1 \in L^2(\nu)$ and $\nu = \varphi_2 \mu$ with $\varphi_2 \in L^2(\mu)$.

LEMMA 2.2.† Let g be monotone increasing on [0, 1] with g(0) = 0, g(1) = 1. Assume that for some sequence $\{b_n\}$ such that $\sum b_n^2 < \infty$ we have \ddagger

$$\left|\frac{g(s+2^{-n})-g(s)}{g(s)-g(s-2^{-n})}-1\right| < b_n \quad \text{for } 2^{-n} \le s \le 1-2^{-n}.$$
(2.1)

Then g and g^{-1} are absolutely continuous with square-summable derivatives.

Proof. Denote by G_n the linear interpolations of g off $\{j2^{-n}\}_{j=0}^{2^n}$. Then $\{DG_n\}$ is a martingale (relative to the partitions determined by $\{j2^{-n}\}_{j=0}^{2^n}$, n = 1, 2, ...) and DG_n^{-1} is a martingale relative to the g-image partitions.

Condition (2.1), for $s = (2j+1)2^{-n}$, implies that

$$|\psi_n| = |DG_n - DG_{n-1}| \le b_n DG_{n-1}$$

and since $\psi_n \perp DG_{n-1}$, we have

$$\|DG_n\|_{L^2}^2 = \|\psi_n\|_{L^2}^2 + \|DG_{n-1}\|_{L^2}^2 \le (1+b_n^2) \|DG_{n-1}\|_{L^2}^2$$

and $||DG_n||_{L^2}^2 \leq \prod_{i=1}^n (1+b_i^2)$. It follows that DG_n converges in L_2 (to Dg).

[†] An almost identical result appears in [C].

‡ We only need (2.1) for s of the form $(2j+1)2^{-n}$, $j = 0, ..., 2^{n-1}-1$.

The geometric meaning of $|\psi_n| \leq b_n DG_n$ is that every slope that we see in G_{n-1} is replaced in G_n by two slopes, one bigger and one smaller, but the ratios of the new slopes to the preceding lie in $(1-b_n, 1+b_n)$. If we look now at the inverse mapping, all the slopes are replaced by their reciprocals and the ratios are now bounded by $((1+b_n)^{-1}, (1-b_n)^{-1})$ which is as good as above, and we conclude $Dg^{-1} \in L^2$, as we did for Dg.

Remark. The condition $\sum b_n^2 < \infty$ is sharp: given a sequence $\{b_n\}$, $b_n > 0$, such that $\sum b_n^2 = \infty$, one can construct a singular g satisfying (2.1) (cf, [C]).

Recall that h denotes the homeomorphism which conjugates f with R_{α} , and dh is the f-invariant measure on T.

THEOREM 2.3. Assume $\sum (a_n \mathbf{K}_n^0)^2 < \infty$. Then dh and dt are L^2 -equivalent.

Proof. Without loss of generality we may assume h(0) = 0 so that \tilde{h} , the lifting of h to **R**, and \tilde{h}^{-1} map [0, 1] onto [0, 1]. We want to apply Lemma 2.2 with $g = \tilde{h}^{-1}$, and we just need to show that the assumption $\sum (a_n \mathbf{K}_n^0)^2 < \infty$ implies (2.1) with $\sum b_n^2 < \infty$.

Fix *n*. Take an interval $[t, r] = [s - 2^{-n}, s + 2^{-n}]$ and denote its \tilde{h} -preimage by $[\tau, \rho]$ and the \vec{h} -preimage of the midpoint s by σ . We are looking for an estimate b_n for $|(\rho - \sigma)/(\sigma - \tau) - 1|$, and obtain it through an algorithm to find σ using powers of f. We use the notation $d_m = ||q_m \alpha||$ (the distance of $q_m \alpha$ to the nearest integer on **R** or to zero on **T**) and the relation $a_m = [d_{m-1}/d_m]$. Denote by *l* the smallest integer such that $d_i < 2^{1-n} = t - r$, and put $c_i = [2^{1-n}/d_i]$. Since $2^{1-n} \le d_{i-1}$, we have $c_i \le a_i$. Write $t_1 = t$, $r_1 = r$, $t_2 = r_1 - c_1 d_1$, $r_2 = t_1 + c_1 d_1$, and observe that $[t_1, t_2]$ is mapped onto $[r_2, r_1]$ by a translation to the right by $c_i d_i$ which is the same as $R_{\pm c_i q_i \alpha_i}$ (the sign depending on the parity of l). Thus (t_1, r_1) and (t_2, r_2) are concentric and $r_2 - t_2 < c_l d_l$. We now repeat the process for (t_2, r_2) : the index l may have increased or remained the same, however, if l remains, that is, $r_2 - t_2 > d_1$, the parameter c_1 is certainly lower. Thus we obtain two sequences $\{t_i\}$ and $\{r_i\}$ such that $t_{i+1} > t_i$ and $r_{i+1} < r_i$, and the interval (t_j, t_{j+1}) is mapped onto (r_{j+1}, r_j) by translation to the right by $c_{l,j}d_{l(j)}$, that is, by $R_{\pm c_{l,j}q_{l,j},\alpha}$ with l(j) monotone non-decreasing function of $j, c_{l,j} \le a_{l(j)}$ and is (strictly) decreasing on every *j*-interval on which l(j) is constant. Finally, r_{i+1} $t_{i+1} < c_{l,i} d_{l(i)}$

The entire scheme, with $t_1 = t$ and $r_1 = r$ is transported by \tilde{h}^{-1} and gives the sequences $\{\tau_i\}$ and $\{\rho_j\}$ the first increasing to σ , the second decreasing to it, and $[\tau_j, \tau_{j+1}]$ is mapped onto $[\rho_{j+1}, \rho_j]$ by $f^{\pm c_{i,j}q_{l(j)}}$. This gives the estimate

$$\left|\frac{\rho_{j} - \rho_{j+1}}{\tau_{j+1} - \tau_{j}}\right|^{\pm 1} \le \exp\left(c_{l,j}\mathbf{K}_{l(j)}^{0}\right) \le \exp\left(a_{l(j)}\mathbf{K}_{l(j)}^{0}\right).$$
(2.2)

Combining the estimates (2.2) for all *j*, we obtain

$$\left|\frac{\rho-\sigma}{\sigma-\tau}-1\right| \le c_l \mathbf{K}_l^0 + \sum_{m=l+1}^{\infty} w_m a_m \mathbf{K}_m^0 = \bar{b}_n + \bar{b}_n, \qquad (2.3)$$

where w_m are the relative weights of the unions of intervals for which l(j) = m. It is not hard to see that $w_m \rightarrow 0$ exponentially, in fact since $[\tau, \rho]$ is not q_l -small

(though it is q_{l-1} -small), and the interval whose relative measure is denoted by w_m is q_{m-1} -small and is contained in $[\tau, \rho]$, we obtain by (1.4) $w_m \leq \eta^{m-l-1}$.

The manipulation of the rest of the proof is simplest in the case of real interest to us, namely when $a_n = 0(1)$. In this case the parameter l, which is defined by $d_l < 2^{1-n} \le d_{l-1}$, grows more or less linearly with n (to be precise: any value of lcorresponds to at most L values of n or L terms in the martingale, L depends only on the bound for a_n) and the theorem follows from the following (obvious) lemma, putting $\bar{K}_n = a_n K_n^0$.

LEMMA 2.4. Assume $\sum_{n=1}^{\infty} \tilde{K}_n^2 < \infty$. Define $\bar{b}_n = \sum_{l=n}^{\infty} \eta^{l-n} \bar{K}_l$, with $0 < \eta < 1$. Then $\sum \bar{b}_n^2 < \infty$.

The proof in the general case follows from the fact that if an interval $n_1 \le n \le n_2$ maintains the same value of l, the part $\overline{b}_n (= c_l \mathbf{K}_l^0)$ is largest for $n = n_1$ and drops by a factor $\frac{1}{2}$ as we increase n by one. The part $\overline{b}_n = \sum_{l+1}^{\infty} w_m a_m \mathbf{K}_m^0$ is largest for $n = n_2$ and drops by $\frac{1}{2}$ as we decrease n by one. Thus $\sum_{n_1}^{n_2} \le 2(b_{n_1} + b_{n_2})$ which brings us back to Lemma 2.4 as before. We leave the details to the reader.

3. Estimates of $\|\log Df^{q_n}\|_{\infty}$ Our main goal here is

THEOREM 3.1. Assume $D \log Df \in L^p$, for some p > 1. Then

$$\sum_{n=1}^{\infty} (\mathbf{K}_n^0)^2 < \infty.$$
(3.1)

Notice that we do not assume any diophantine condition on α (except, of course, of being irrational). On the other hand, if the coefficients a_n are bounded, then (3.1) implies the condition which, by Theorem 2.3, guarantees the mutual absolute continuity (in fact the L^2 -equivalence) of dh and dt.

We shall make use of the following proposition which seems to be in the spirit of Littlewood-Paley, but as far as we know is new.

PROPOSITION 3.2. Let $\{G_n\}$ be an L^p -bounded martingale, $1 . Write <math>g_n = G_n - G_{n-1}$. Then

$$\sum \|g_n\|_p^2 < \infty. \tag{3.2}$$

We start with

LEMMA 3.3. Let V be a measurable set in a probability space, $g \in L^{p}(V)$, $\int_{V} g d\mu = 0$ and $\lambda > 0$. Then (the integrals on the right in V):

$$\int_{V} \left(|\lambda + g|^{p} - \lambda^{p} \right) d\mu \geq c_{p} \left(\lambda^{p-2} \int_{|g| \leq \lambda} g^{2} d\mu + \int_{|g| \geq \lambda} |g|^{p} d\mu \right).$$
(3.3)

with $c_p > 0$ depending only on p.

Proof. Taylor's theorem with second-order remainder, and direct observation for

 $x < -\lambda$ give

$$|\lambda + x|^{p} - \lambda^{p} - p\lambda^{p-1}x \ge c_{p} \begin{cases} \lambda^{p-2}x^{2} & \text{for } |x| < \lambda \\ |x|^{p} & \text{for } |x| \ge \lambda \end{cases}$$
(3.4)

and the lemma follows by writing g for x in (3.4) and integrating over V. \Box

Proof of Proposition 3.2. Set $b_n = \int (|G_n|^p - |G_{n-1}|^p) d\mu$ so that $\sum b_n = \sup ||G_n||_p^p$, and apply[†] Lemma 3.3 to sets V which are level sets for G_{n-1} to obtain

$$\int_{|g_n| > |G_{n-1}|} |g_n|^p \, d\mu \le c_p^{-1} b_n \tag{3.5}$$

and

$$\int_{|g_n| < |G_{n-1}|} \left| \frac{g_n}{G_{n-1}} \right|^2 |G_{n-1}|^p \, d\mu < c_p^{-1} b_n \tag{3.6}$$

and since $\int |G_{n-1}|^p d\mu$ is bounded and $p \le 2$ the L^p -norm of g_n/G_{n-1} with respect to the measure $|G_{n-1}|^p d\mu$ is bounded by a constant times the L^2 -norm and we obtain

$$\left(\int_{|g_n| < |G_{n-1}|} \left| \frac{g_n}{G_{n-1}} \right|^p |G_{n-1}|^p \, d\mu \right)^{1/p} \le c b_n^{1/2} \tag{3.7}$$

and finally, combining (3.5) and (3.7),

$$\left(\int |g_n|^p \, d\mu\right)^{2/p} \leq c b_n$$

which completes the proof.

Proof of Theorem 3.1. By (1.1) it is enough to prove

$$\sum (\tilde{\mathbf{K}}_n^1)^2 < \infty. \tag{3.1*}$$

We propose to prove (3.1^*) by obtaining estimates of $\tilde{\mathbf{K}}_{m,n}^1$ and then, invoke Lemma 1.2 and (1.8).

So let n > 0 be arbitrary, m < n (by (1.8) we shall need only consider n/2 < m < n), $l = c_m q_m < q_{m+1}$ and $I = (t, \tau)$ which is q_n -small. By its definition $\overline{\mathbf{K}}_{m,n}$ is the supremum of integrals of the form $|\int_I D \log Df^l(s) ds|$ and we now fix values of I and l that give the supremum. Keeping in mind that

$$\int_{U} D \log Df'(s) \, ds = \int_{U} D \log Df(s) \, ds$$

with $U = \bigcup_{j=0}^{l-1} f^j(I)$, and we can then rewrite U as $\bigcup_{j=0}^{q_m-1} f^j(E)$ with $E = \bigcup_{k=0}^{c_m-1} f^{kq_m}(I)$. Notice that the condition $c_m q_m < q_{m+1}$ implies that E is contained in a q_m -interval. We now look for a q_m -interval $J = (\bar{t}, f^{q_{m-1}}(\bar{t}))$ such that, writing $V = \bigcup_{i=0}^{q_m-1} f^i(J)$, we have $\int_V D \log Df dt = 0$, (we obtain it by noting that the integral is equal to $\log Df^{q_m}(f^{q_{m-1}}(\bar{t})) - \log Df^{q_m}(\bar{t})$ which is continuous in \bar{t} , has mean value zero (relative to dh) and must therefore change signs). The measure $\mu(V)$ is clearly bounded by 1 but, as $V \cup f^{q_m}(V)$ is the entire circle and Df^{q_m} is uniformly

[†] The martingale condition $E(g_n | G_{n-1}) = 0$ supplies the needed $\int_V g d\mu = 0$.

686

bounded ($\leq \exp(\text{Var} \log Df)$ by Denjoy's inequality) we obtain also a lower bound and hence by Lemma 1.3 we have

$$\rho_{m,n} = \mu(U)/\mu(V) \le C\eta^{n-m},$$

and writing

$$\Phi_{m,n} = \mathbb{1}_U - \rho_{m,n} \mathbb{1}_V$$

we have $\int \Phi_{m,n}(t) dt = 0$.

The whole idea of the basic procedure is to evaluate a sum, here taking the form of an integral on a set U, by comparing it to one of the same form which is known to vanish. Thus, instead of evaluating $\int 1_U D \log Df \, ds$ we evaluate $\int \Phi_{mn} D \log Df \, ds$.

By Lemma 1.1 there exist τ which is q_n -close to a point in I and such that $\bar{t} = f^l(\tau)$ with $0 \le l < q_m$. We write $J^* = f^{-l}(J)$ and

$$j^* = \begin{cases} j & l \le j < q_m \\ j + q_m & 0 \le j < l, \end{cases}$$
(3.8)

so that $V = \bigcup_{j=0}^{q_m-1} f^{j^*}(J^*)$. The advantage of this notation is that $f^{j^*}(J^*)$ is q_m -close to $f^j(E)$ (i.e., some points in the one are q_m -close to points in the other.)

One can compare $\mu(f^{j}(E) \text{ and } \rho_{m,n}\mu(f^{j^{*}}(J^{*}))$ by noticing first that on the average they are equal, which implies that $\mu(f^{j}(E)) \ge \rho_{m,n}\mu(f^{j^{*}}(J^{*}))$ for some values of j, while the opposite (non-strict) inequality holds for other (values of j). On the other hand, for any $t_1 \in f^{j_1}(E)$ and $t_2 \in f^{j_1^{*}}(J^{*})$, as t_1 and t_2 are either q_m -close or at worst both are q_m -close to some t_3 ; and as for any j_2 in our range we have $j_2^{*} - j_1^{*} = j_2 - j_1 + \varepsilon q_m$ with $\varepsilon = \pm 1$ or zero, we obtain (invoking (1.1) if $\varepsilon \neq 0$)

$$\log Df^{j_2 - j_1}(t_1) - \log Df^{j_2^* - j_1^*}(t_2) | < 4\tilde{\mathbf{K}}_m^1$$
(3.9)

which implies

$$\left|\log\left(\mu(f^{j_2}(E))/\mu(f^{j_1}(E))\right) - \log\left(\mu(f^{j_2^*}(J^*))/\mu(f^{j_1^*}(J^*))\right)\right| \le 4\tilde{\mathbf{K}}_m^1$$

and, since for any $j = j_2$ we can find j_1 such that the signs of

$$\mu(f^{j_1}(E)) - \rho_{m,n}\mu(f^{j_1^*}(J^*))$$
 and $\mu(f^{j_2}(E)) - \rho_{m,n}\mu(f^{j_2^*}(J^*))$

are opposite, we obtain

$$\left|\log \mu(f^{j}(E)) - \log \left[\rho_{m,n} \mu(f^{j^{*}}(J^{*}))\right]\right| \le 4\tilde{\mathbf{K}}_{m}^{1}.$$
(3.10)

Define γ_j , $\tilde{\Phi}_{m,n}$ and $\bar{\Phi}_{m,n}$ successively by

$$\rho_{m,n}(1+\gamma_{j}) = \mu(f^{j}(E))/\mu(f^{j^{*}}(J^{*})),$$

$$\tilde{\Phi}_{m,n} = \rho_{m,n} \sum \gamma_{j} 1_{(f^{j^{*}}(J^{*}))},$$

$$\bar{\Phi}_{m,n} = \Phi_{m,n} + \tilde{\Phi}_{m,n}.$$
(3.11)

Notice that the choice of γ_i guarantees that

$$\int \bar{\Phi}_{m,n} = 0 \quad \text{on} \quad f^{j}(E) \cup f^{j^{*}}(J^{*})$$
(3.12)

and as $\tilde{\mathbf{K}}_{m}^{1} \rightarrow 0$, (3.10) implies that (for $m > m_{0}$) $|\gamma_{j}| \le 4 \tilde{\mathbf{K}}_{m}^{1}$. (3.13) Remember that we are trying to evaluate $\bar{\mathbf{K}}_{m,n}^1$ which is now given as

$$\bar{\mathbf{K}}_{m,n}^{1} = \left| \int \Phi_{m,n} D \log Df \, ds \right| = \left| \int (\bar{\Phi}_{m,n} - \tilde{\Phi}_{m,n}) D \log Df \, ds \right|$$
(3.14)

and we estimate separately $\int \overline{\Phi}_{m,n} D \log Df \, ds$ and $\int \widetilde{\Phi}_{m,n} D \log Df \, ds$. For the latter we need to point out not only that ((3.13))

$$\|\tilde{\Phi}_{m,n}\|_{\infty} \leq 4\rho_{m,n}\tilde{\mathbf{K}}_{m}^{1}, \qquad (3.15)$$

but also that γ_j changes very slowly with *j*. Specifically, if we fix *b* and impose $|j_1-j_2| < q_b$ then, by Lemma 1.4,

$$|\gamma_{j_1} - \gamma_{j_2}| = O(\eta^{m-b}). \tag{3.16}$$

For sufficiently large b we write $B = \bigcup f^{kq_b}(J)$, $kq_b < q_m$, and by (3.16)

$$\int \tilde{\Phi}_{m,n} D \log Df \, ds = \int_{B} \tilde{\Phi}_{m,n} D \log Df^{q_{b}} \, ds + O(\eta^{m-b}) \rho_{m,n}. \tag{3.17}$$

B is contained in a q_b -small interval and we can invoke [KO] Theorem 3.9 and (3.15) to obtain for $m > m(\varepsilon)$,

$$\left|\int \tilde{\Phi}_{m,n} D \log Df \, ds\right| \leq \varepsilon \rho_{m,n} \tilde{\mathbf{K}}_{m}^{1} + O(\eta^{m-b}) \rho_{m,n}, \qquad (3.18)$$

where we may take ε arbitrarily small, (determine b by Theorem 3.9 of [KO] and take m > b). The only thing we shall want from ε is to be small enough (less than some constant that we specify later) we can fix it as well as b once and for all, absorb the factor η^{-b} into the constant, and remembering that $\rho_{m,n} \leq C_* \eta^{n-m}$ (3.18) becomes

$$\left|\int \tilde{\Phi}_{m,n} D \log Df \, ds\right| \leq \varepsilon C_* \eta^{n-m} \tilde{\mathbf{K}}_m^1 + O(\eta^n). \tag{3.19}$$

For the estimate of $\int \bar{\Phi}_{m,n} D \log Df \, ds$ we denote by $P_j = P_j(f)$ the partition of the circle determined by the points $\{f^i(0)\}_{i=0}^{q_n-1}$, and by $\{G_j\}$ the martingale expansion of $D \log Df$ relative to $\{P_j\}$ (that means that on each interval-atom of P_j , G_j is equal to the mean value of $D \log Df$ on that interval). We write $g_j = G_j - G_{j-1}$ and keep in mind that g_j has integral zero on every $P_{j-1}(f)$ -interval. As $||G_j||_p \le ||D \log Df||_p$ we may apply Proposition 3.2 and conclude that for our specific $\{g_j\}$, (3.2) is valid.

We now estimate $\int \bar{\Phi}_{m,n} g_j \, ds$. Both $\bar{\Phi}_{m,n}$ and g_j are simple functions, g_j being measurable P_j and with integral zero on any P_{j-1} atom. Thus, whenever $\bar{\Phi}_{m,n}$ is constant on a P_{j-1} atom we get no contribution from that atom to $\int \bar{\Phi}_{m,n} g_j \, ds$. Similarly, when $f^k(E) \cup f^{k^*}(J^*)$ is contained in a P_j atom (or, more generally, when g_j is constant on $f^k(E) \cup f^{k^*}(J^*)$) we invoke (3.12) and again get zero contribution to the integral. As we verify below, all this implies:

$$\left| \int \bar{\Phi}_{m,n} g_j \, ds \right| \leq \begin{cases} C \eta^{n-j} \|g_j\|_1 & j < m \\ C \eta_1^{n-m} \|g_j\|_p & n \ge j \ge m. \\ C \eta_1^{j-m} \|g_j\|_p & j > n \end{cases}$$
(3.20)

We check this case by case:

For j < m, the contribution to the integral of a given P_j atom happen only when $f^k(E) \cup f^{k^*}(J^*)$ is partly in the atom but not completely, which happens for two values of k at most. $f^k(E)$ has relative measure in the atom bounded by η^{n-j} , $f^{k^*}(J^*)$ has its relative measure bounded by η^{m-j} and $\Phi_{m,n}$ is bounded by $\rho_{m,n} \leq C\eta^{n-m}$ on it (outside $f^k(E)$).

For $j \in [m, n]$ the integral on $\bigcup f^k(E)$ is estimated as in the proof of Lemma 1.4; that on $\bigcup f^{k^*}(J^*)$ is (trivially) much smaller.

For j > n one again estimates the measure of the union of the P_{j-1} atoms on which $\overline{\Phi}_{m,n}$ is not constant.

All that we need to do now is put it all together: by (3.14)

$$\bar{\mathbf{K}}_{m,n}^{1} \leq \left| \int \bar{\Phi}_{m,n} D \log Df \, ds \right| + \left| \int \tilde{\Phi}_{m,n} D \log Df \, ds \right| \tag{3.21}$$

and we can estimate the first integral by adding up the estimates (3.20) for all j (recall that $D \log Df = \sum g_i$), and the second by (3.19) and obtain

$$\bar{\mathbf{K}}_{m,n}^{1} \leq C \left[\sum_{j < m} \eta^{n-j} \|g_j\|_p + \eta_1^{n-m} \sum_{j=m}^n \|g_j\|_p + \sum_{j=n+1}^\infty \eta_1^{j-m} \|g_j\|_p + \varepsilon \eta^{n-m} \tilde{\mathbf{K}}_m^{1} + \eta^n \right]$$

with C a constant which depends only on the variation of log Df.

Summing for $m \in [n/2, n]$ we obtain (see (1.8))

$$\tilde{\mathbf{K}}_{n}^{1} \leq C \varepsilon \sum_{n/2 < m < n} \eta^{n-m} \tilde{\mathbf{K}}_{m}^{1} + s_{n}, \qquad (3.22)$$

where

$$s_n = \sum_j c_{n,j} \|g_j\|_p + \frac{n}{2} \eta^n$$

with

$$c_{n,j} \leq \begin{cases} n\eta^{n/2} & j < n/2 \\ \eta_1^{n-j} & n/2 \le j \le n \\ \eta_1^{j-n} & n \le j. \end{cases}$$

By the (trivial) inequality

$$\|(b_{n,j})\| \le \sum_{k} \sup_{n} |b_{n,n-k}|$$
(3.23)

(the norm of the matrix $(b_{n,j})$ is its norm as operator on l^2) applied to $(c_{n,j})$ and by (3.2) we obtain $\sum s_n^2 < \infty$.

By (3.23) the matrix R whose entries are $C \varepsilon \eta^{n-m}$ for n/2 < m < n, and zero elsewhere has norm on l^2 bounded by $2C\varepsilon(1-\eta)^{-1} < \frac{1}{2}$ for ε fixed small enough. By (3.22),

$$(I-R)\{\mathbf{\tilde{\tilde{K}}}_{n}^{1}\} \in l^{2}$$

and multiplying by $(I-R)^{-1}$ we obtain $\{\mathbf{\tilde{\tilde{K}}}_{n}^{1}\} \in l^{2}$.

REFERENCES

- [C] L. Carleson. On mappings, conformal at the boundary. J. d'Analyse Math. 19 (1967), 1-13.
- [H₁] M. R. Herman. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5-234.
- [H₂] M. R. Herman. Sur les difféomorphismes du cercle de nombre de rotation de type constant. Conference on Harmonic Analysis in Honor of A. Zygmund, Vol. II, (1981), 708-725.
- [HS] J. Hawkins & K. Schmidt. On C²-diffeomorphisms which are of type III₁. Invent. Math. 66 (1982), 511-518.
- [K] Y. Katznelson. The action of diffeomorphism of the circle on the Lebesgue measure. J. d'Analyse Math. 36 (1979), 156-166.
- [KO] Y. Katznelson & D. Ornstein. The differentiability of the conjugation of certain diffeomorphisms of the circle. *Ergod. Th. & Dynam. Sys.* this issue, preceding paper.
 - [L] V. F. Lazutkin. Examples of diffeomorphisms of a circle. Vestnik Leningrad Univ. Math. 10 (1982), 55-62.
 - [Y] J.-C. Yoccoz. Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne. Ann. Sci. École Norm. Sup. 4 17 (1984), 333-359.