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0. Introduction
Let /be an orientation preserving ^if'-diffeomorphism of the circle. If the rotation
number a = p(/) is irrational and log Df is of bounded variation then, by a well-
known theorem of Denjoy,/is conjugate to the rigid rotation Ra. The conjugation
means that there exists an essentially unique homeomorphism h of the circle such
that / = h~lRah. The general problem of relating the smoothness of h to that of/
under suitable diophantine conditions on a has been studied extensively (cf.
[Hi], [KO], [Y] and the references given there). At the bottom of the scale of
smoothness for / there is a theorem of M. Herman [H2] which states that if Df is
absolutely continuous and D log Df e V, p > 1, a = p(f) is of 'constant type' which
means 'the coefficients in the continued fraction expansion of a are bounded', and
if / is a perturbation of Ra, then h is absolutely continuous. Our purpose in this
paper is to give a different proof and an improved version of Herman's theorem.
The main difference in the result is that we do not need to assume that / is close
to Ra; the proof is very different from Herman's and is very much in the spirit of
[KO].

It is not hard to see that the condition of boundedness of the continued-fraction
coefficients of a is essential. Given a with unbounded coefficients one can construct
fe %2 such that h is purely singular (see e.g., [HS], [K], [L]).

This paper assumes a general understanding of the dynamics of circle rotations.
We shall refer to [KO] for some of the basic facts and notations (but not to the
main results of [KO] which assume more smoothness of/ and give more for h).

1. Notation, terminology and some background
Our setup is as follows: / = h'lRah is a diffeomorphism of the circle T = R/Z, h is
a homeomorphism and Ra is the rigid rotation by a. We assume that a, which is
defined mod 1, is irrational and, taking a representative in (0,1) we denote by an

the coefficients of the continued fraction expansion of a, so that

1
a =•
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and the denominators qn of the convergents satisfyt qn+l = anqn + qn_t.

Definition 1.1. An interval / = (t, T) is qn-small and its endpoints t, r are qn-close if

ifJU)}]lV a r e disjoint.
One checks easily that (t, T) is gn-small if, depending on the parity of n, either

t<T<f"'(t) or fq"-<(T) s /< T. The following simple observation is a convenient
starting point for 'the basic procedure' (see e.g. [KO]).

LEMMA 1.1. Let t, FeT and n > 1. Then there exist r e T and an integer 1,0< /< qn,
such that T is qn-close to t and t=f'(T).

We assume that log Df is absolutely continuous and D log Dfe V for some p>\.

Notations:
(a) K° = ||log £>/"•• H*,
(b) k\ = Sup | \] D log D/'(s)ds| = sup |log D / ' ( T ) -log D/'(/)| the supremum

being taken for all /, 0< / < <?„, and intervals (f, T) which are qn-small.
(c) K^ „ = Sup | J7 D log Df'(s) ds\ the supremum is taken now for / of the form

I = cqm<qm+l, m<n, and intervals (f, x) which are qn-small.

We have the following

LEMMA 1.2.

Ko
ns2K^, (1.1)

KisVlCi,,,,. (1.2)

Proo/ (1.2) follows immediately upon writing an arbitrary / in (0, qn) as £m cmqm

with cmqm<qm+l. (1.1) is closely related to Denjoy's original inequality: one uses
the fact that for some FeT, log Dfn(t) = 0, apply lemma 1.1 to obtain T and / as
described there, write

log D/»»(r) = Gog Df "'•(!)-log D/" - (T) ) + (log Df'(r)-log D/'(/"»(r)))
s

and both differences are bounded by Kn. •

We denote, for m<n,

Vr, t - t Vn T)n t ^

Vrr,At)=Vn(t)/Vm0), Vm.n = || Vm.n ( t) || ac ,

and note that (see e.g., [KO] Lemma A. 1.1) that there exists rj < 1 which depends
only on Var (log Df) such that for n - m > 2

77m-M<77"-m (1.4)

LEMMA 1.3. //"/ is qn-small, m <n, then, with /A = dt {the Haar measure of T),

J""u V(.
t Notice that the coefficient which we denote by a,, is denoted by most authors by a,, + , (so that, in their

notation, <?„+, = a,,+|<7,, + <?„_,).
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Proof. Let / ' = (to,f
m(to)) be a gm+1-interval which contains /. By (1.4) the relative

length of / in / ' is <i7n~m. The same estimate holds, for the same reason, for the
ratio /*(/'(/))//*(/ '(/ ')) and the lemma follows from the fact that £ /»( / ' ( / ' ) )<!
since they are disjoint. •

Denote 77, = 771"''"'.

LEMMA 1.4. ftililI = O(ijrm)-

Proof. RL,n is the integral of D log Df on a set U = Uj^o"'1 fJU) and by Lemma
1.3 n(U)<rtn~m- That means, with p'~x + p'l = 1,

Hiuiip-^r" (1.5)
and

* * m n — D\ogDfdt = \uD log Dfdt (1.6)

which proves the lemma. D

In the same way we prove that if t, T are ^n-close, 0< /< qm < qn, then

|log Df'(t)-log D/'(r) | <const. V"~m- (1.7)

As a corollary to Lemma 1.4 we can replace (1.2) by

K),=s "l Kl,n + O(vr
k). (1.8)

2. Condition sufficient for absolute continuity of the conjugation
Definition 2.1. Two measures /u., i* on the same a- algebra are L2-equivalent if fx, = <pxv
with (pxeL2(v) and f = <p2M with

LEMMA 2.2.t Let g be monotone increasing on [0,1] with g(0) =0, g(l) = 1. Assume
that for some sequence {bn} such that Y,b2

n<<x> we havet

- - 1. <bn for2 " < 5 < l - 2 ". (2.1)
g(s)-g(s-2 ")

Then g and g"1 are absolutely continuous with square-summable derivatives.

Proof. Denote by Gn the linear interpolations of g off {j2~"}fL0- Then {DGn} is a
martingale (relative to the partitions determined by {j2~"}j'L0, n = l , 2 , . . . ) and

:^' is a martingale relative to the g-image partitions.
Condition (2.1), for s = (2j+l)2~", implies that

and since i/»nlDGn_,, we have

II DO,, || i> = || ̂ B || 2Ll +1 | D G , , . , || 1 ^ ( 1 + 6; ) || D G n _ , l ib

and ||DGn||i^<n" (1 + ̂ 2). It follows that DGn converges in L2 (to Dg).

t An almost identical result appears in [C].
X We only need (2.1) for 1 of the form (2y +1)2"", 7 = 0 , . . . , 2 " " ' - l .
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The geometric meaning of \\fin\ s bnDGn is that every slope that we see in Gn_,
is replaced in Gn by two slopes, one bigger and one smaller, but the ratios of the
new slopes to the preceding lie in (l-bn, l + bn). If we look now at the inverse
mapping, all the slopes are replaced by their reciprocals and the ratios are now
bounded by ((l + bn)~', (1 -/>„)"') which is as good as above, and we conclude
Dg~xe L2, as we did for Dg. D

Remark. The condition £ b\<<x> is sharp: given a sequence {bn}, bn>0, such that
X b\ = 00, one can construct a singular g satisfying (2.1) (cf, [C]).

Recall that h denotes the homeomorphism which conjugates/ with Ra, and dh
is the/-invariant measure on T.

THEOREM 2.3. Assume X (onK°n)
2<oo. Then dh and dt are L2-equivalent.

Proof. Without loss of generality we may assume /i(0) = 0 so that h, the lifting of h
to R, and h~x map [0,1] onto [0,1]. We want to apply Lemma 2.2 with g = h~',
and we just need to show that the assumption £(anK°)2<oo implies (2.1) with

Fix n. Take an interval [t, r] = [s — 2~", s + 2~"] and denote its fc-preimage by
[T, p] and the /i-preimage of the midpoint s by a. We are looking for an estimate
bn for |(p — O-)/(O- — T) —1|, and obtain it through an algorithm to find cr using powers
of/ We use the notation dm = \\qma|| (the distance of qma to the nearest integer on
R or to zero on T) and the relation am = [dm-Jdm\ Denote by / the smallest integer
such that d,<2l'" = t-r, and put c, = [2l'"/d,]. Since 21"" <</,_,, we have c,<a,.
Write tx = /, r, = r, t2 = r, — C/d,, r2 = tt + c,d,, and observe that [fl512] is mapped onto
[r2, rt] by a translation to the right by ctd, which is the same as R±c,qia, (the sign
depending on the parity of/). Thus (tu r,) and (t2, r2) are concentric and r2- t2<c,d,.
We now repeat the process for (t2, r2): the index / may have increased or remained
the same, however, if / remains, that is, r2 — t2>d,, the parameter c, is certainly
lower. Thus we obtain two sequences {/,} and {r,} such that tJ+l > tj and rj+l < r, and
the interval (/,, tj+x) is mapped onto (rJ+1, r,) by translation to the right by CijdnJh

that is, by R±Cim )a with l(j) monotone non-decreasing function of j , c(j< a)(j) and
is (strictly) decreasing on every/interval on which l(j) is constant. Finally, rj+1 —
tj+i < ctJd,U).

The entire scheme, with tl = t and rt = r is transported by h'1 and gives the
sequences {T,} and {p,} the first increasing to a; the second decreasing to it, and
[TJ, rj+l] is mapped onto [pJ+1, p,] by/±c'i<'"". This gives the estimate

. (2.2)

(2.3)

Combining the estimates (2.2) for all j , we obtain

p-o-
- 1

where wm are the relative weights of the unions of intervals for which l(j) = m. It
is not hard to see that wm-»0 exponentially, in fact since [x, p] is not g,-small
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(though it is <7,_,-small), and the interval whose relative measure is denoted by wm

is <7m_,-small and is contained in [T, p], we obtain by (1.4) wm s r/m~'~'.
The manipulation of the rest of the proof is simplest in the case of real interest

to us, namely when a n = 0 ( l ) . In this case the parameter /, which is defined by
d,<2'~"<dM, grows more or less linearly with n (to be precise: any value of /
corresponds to at most L values of n or L terms in the martingale, L depends only
on the bound for an) and the theorem follows from the following (obvious) lemma,
putting Kn=anK°n.

LEMMA 2.4. Assume T.^, K2
n<<x>. Define bn=Y^=n7]'~nKl, with 0 < T ? < 1 . Then

The proof in the general case follows from the fact that if an interval n, < n < n2

maintains the same value of /, the part bn(= c,K°) is largest for n = n, and drops by
a factor \ as we increase n by one. The part bn = ^ , wmam¥io

m is largest for n = n2

and drops by \ as we decrease n by one. Thus £^2 < 2(fcn| + />„,) which brings us back
to Lemma 2.4 as before. We leave the details to the reader. •

3. Estimates of ||log Df«\\x

Our main goal here is

THEOREM 3.1. Assume D log Dfe V, for some p>\. Then

£ (K°)2<oo. (3.1)

Notice that we do not assume any diophantine condition on a (except, of course,
of being irrational). On the other hand, if the coefficients an are bounded, then (3.1)
implies the condition which, by Theorem 2.3, guarantees the mutual absolute
continuity (in fact the L2-equivalence) of dh and dt.

We shall make use of the following proposition which seems to be in the spirit
of Littlewood-Paley, but as far as we know is new.

PROPOSITION 3.2. Let {Gn} be an If-bounded martingale, l < / > < 2 . Write gn =
Gn-Gn.i. Then

P (3-2)

We start with

LEMMA 3.3. Let V be a measurable set in a probability space, g e Lp( V), J v g d\x - 0
and A > 0 . Then (the integrals on the right in V):

[ g2d/i+[ \g\"dp). (3.3)

with cp > 0 depending only on p.

Proof. Taylor's theorem with second-order remainder, and direct observation for
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|A+x|p-Ap- /7Ap" 'x>cp (3.4)

x < —A give

~2x2 for|x|<A

for|x|>A

and the lemma follows by writing g for x in (3.4) and integrating over V. •

Proof of Proposition 3.2. Set bn = j( |Gn|p- |Gn_1|p) d/x so that I bn = sup ||Gn||p, and
applyt Lemma 3.3 to sets V which are level sets for Gn-, to obtain

and

J |P

gn

(3.5)

(3.6)

and since J|Gn_i|pcfyi is bounded and /><2 the Lp-norm of gn/Gn_, with respect
to the measure \Gn_,|p dfi is bounded by a constant times the L2-norm and we obtain

(1 gn

Gn_,
(3.7)

and finally, combining (3.5) and (3.7),

•

(3.1*)

and then, invoke Lemma

which completes the proof.

Proof of Theorem 3.1. By (1.1) it is enough to prove

l(Kn)2«x>.

We propose to prove (3.1*) by obtaining estimates of
1.2 and (1.8).

So let n > 0 be arbitrary, m< n (by (1.8) we shall need only consider n/2< m < «),
/ = cmqm < qm+i and / = (/, T) which is qn-small. By its definition Km „ is the supremum
of integrals of the form |J, D log Df'(s) ds\ and we now fix values of / and / that
give the supremum. Keeping in mind that

D\ogDf'(s)ds=\ D log Df(s)ds
J i J u

with t/ = U L o / J U ) , and we can then rewrite U as U]zo'f
j{E) with E =

U1"=V fkq'"(I)- Notice that the condition cmqm<qm+l implies that E is contained
in a gm-interval. We now look for a qm-interval J = (t,fm-'(t)) such that, writing
V = U?=o' f'(J), we have J v D log Dfdt = 0, (we obtain it by noting that the integral
is equal to log Dfq'"{f"'->(t))-\og Df">(t) which is continuous in I, has mean
value zero (relative to dh) and must therefore change signs). The measure fi( V) is
clearly bounded by 1 but, as V u / ' » ( V) is the entire circle and Dfq- is uniformly

•The martingale condition £(g,,|G,,_,) = 0 supplies the needed \vgdfi =0.
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bounded (^ exp (Var log Df) by Denjoy's inequality) we obtain also a lower bound
and hence by Lemma 1.3 we have

and writing

we have f $„,,„(/) dt = O.
The whole idea of the basic procedure is to evaluate a sum, here taking the form

of an integral on a set U, by comparing it to one of the same form which is known
to vanish. Thus, instead of evaluating J 1 yD log Dfds we evaluate J <i>mnD log Dfds.

By Lemma 1.1 there exist T which is qn-c\ose to a point in / and such that t=f'(r)
with 0</<<7m. We write J*=r'U) and

0 < j < /r-{J.
so that V = U?=o * fJ*U*)- The advantage of this notation is that/-'*(/*) is <?m-close
to fJ(E) (i.e., some points in the one are qm-close to points in the other.)

One can compare /u(/J(£) and pm,n/u(/J*(/*)) by noticing first that on the average
they are equal, which implies that fji(fJ(E))> pmnfj.(f

J*(J*)) for some values of j ,
while the opposite (non-strict) inequality holds for other (values of j). On the other
hand, for any tx efj'(E) and t2efJ'(J*), as f, and t2 are either qrm-close or at worst
both are <jm-close to some f3; and as for any j2 in our range we have j * —j* =j2 ~j\ +
eqm with e = ±1 or zero, we obtain (invoking (1.1) if e ^ 0)

\\og DfJ>-J<(t>)-log DfJ*-j<(t2)\<4Kl (3.9)

which implies

and, since for any j =j2 we can find j t such that the signs of

n{fHE))-P

are opposite, we obtain

J*))]|<4KL. (3.10)

Define y,, <bmn and <i>m „ successively by

* m , n = P m , n Z Tj l( / '"( J*)), (3 .11)

^m,n ^m,n ' ^m,n •

Notice that the choice of y, guarantees that

>„,,„= 0 on fJ(E)vfJ (J*) (3.12)

and as K^-»0, (3.10) implies that (for m> m0)

|%I^4K^. (3.13)
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Remember that we are trying to evaluate K^ „ which is now given as

Kl,n = IJ *™.B£> log Dfds = I j log (3.14)

and we estimate separately j<l>mnD log Dfds and J<J>mnD log Dfds. For the latter
we need to point out not only that ((3.13))

||4>m,n||coS4Pm,nKL, (3.15)

but also that jj changes very slowly with j . Specifically, if we fix b and impose
\ji-j2\<qb then, by Lemma 1.4,

|y,,-yJ = o(V~fc). (3-16)

For sufficiently large b we write B = \^Jfkqh(J), kqb<qm, and by (3.16)

<J>m,nD log Dfds = j <!)m,nD log ds+ 0(7,—fc)pM.n. (3.17)

B is contained in a qb-small interval and we can invoke [KO] Theorem 3.9 and
(3.15) to obtain for m > m(e),

I <Dm,nD log Dfds (3.18)

where we may take e arbitrarily small, (determine b by Theorem 3.9 of [KO] and
take m > b). The only thing we shall want from e is to be small enough (less than
some constant that we specify later) we can fix it as well as b once and for all,
absorb the factor i)~b into the constant, and remembering that pm „ < CJ).r?"~m (3.18)
becomes

<f>m,nD log Dfds (3.19)

For the estimate of \<£>mnD log Dfds we denote by Pj = Pj(f) the partition of the
circle determined by the points {/'(O)}^"1, and by {Gj} the martingale expansion
of D log Df relative to {Pj} (that means that on each interval-atom of Pj, G, is equal
to the mean value of D log Df on that interval). We write g, = G, -Gj^x and keep
in mind that g, has integral zero on every /^_,(/)-interval. As ||G,-||P < \\D log Df\\p

we may apply Proposition 3.2 and conclude that for our specific {gj}, (3.2) is valid.
We now estimate \<$>mngjds. Both <£„,„ and g, are simple functions, g, being

measurable Pj and with integral zero on any f>_, atom. Thus, whenever 4>mn is
constant on a P^, atom we get no contribution from that atom to \<S>mngjds.
Similarly, when/' '(£)u/' '*(J*) is contained in a Pj atom (or, more generally, when
gj is constant on/*(£)u/**(7*)) we invoke (3.12) and again get zero contribution
to the integral. As we verify below, all this implies:

<S>m,ngjds

We check this case by case:

(3.20)

II ft |
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For j < m, the contribution to the integral of a given Pt atom happen only when
fk(E)vfk*(J*) is partly in the atom but not completely, which happens for two
values of k at most. fk(E) has relative measure in the atom bounded by 77"~J,
fk*{J*) has its relative measure bounded by r)m~J and $ m n is bounded by /?„,,„=£
Cri"-m on it (outside /*(£)) .

For je[m, n] the integral on Ufk(E) is estimated as in the proof of Lemma 1.4;
that on (Jfk*{J*) is (trivially) much smaller.

For j > n one again estimates the measure of the union of the Pj-i atoms on which
<J>mn is not constant.

All that we need to do now is put it all together: by (3.14)

m,nD log Dfds + j <J>m,nD log Dfds (3.21)

and we can estimate the first integral by adding up the estimates (3.20) for all j
(recall that D log D / = £ gj), and the second by (3.19) and obtain

: vn-i\\gJ\\P+vrm i \\gJ\\P+ i v<-
m j=m j—n+\

with C a constant which depends only on the variation of log Df.

Summing for m e [n/2, n] we obtain (see (1.8))

n <Ce 1 17 Km + sn, (3.22)

where

with

'nv
n/2 j<n/2

i — n

By the (trivial) inequality

(3.23)

(the norm of the matrix (bnJ) is its norm as operator on I2) applied to (cnj) and
by (3.2) we obtain £ s2

n < 00.
By (3.23) the matrix R whose entries are Ce-q"'"1 for n/2<m<n, and zero

elsewhere has norm on I2 bounded by 2Ce{\-r))~x<\ for e fixed small enough.
By (3.22),

(I-R){K]
n}el2

and multiplying by (/ - R)'x we obtain {KJ,} e I2. •
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