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Convergence Rates of Cascade Algorithms
with Infinitely Supported Masks

Jianbin Yang and Song Li

Abstract. We investigate the solutions of refinement equations of the form

φ(x) =
∑

α∈Zs

a(α) φ(Mx − α),

where the function φ is in Lp(R
s)(1 ≤ p ≤ ∞), a is an infinitely supported sequence on Z

s called a

refinement mask, and M is an s × s integer matrix such that limn→∞ M−n
= 0. Associated with the

mask a and M is a linear operator Qa,M defined on Lp(R
s) by Qa,Mφ0 :=

∑
α∈Zs a(α)φ0(M · −α).

Main results of this paper are related to the convergence rates of (Qn
a,Mφ0)n=1,2,... in Lp(R

s) with mask a

being infinitely supported. It is proved that under some appropriate conditions on the initial function

φ0, Qn
a,Mφ0 converges in Lp(R

s) with an exponential rate.

1 Introduction

We are interested in refinement equations of the form

(1.1) φ(x) =
∑

α∈Zs

a(α) φ(Mx − α), x ∈ R
s,

where φ is the unknown function defined on the s-dimensional Euclidean space R
s, a

is an infinitely supported sequence on Z
s called a refinement mask, and M is an s × s

integer matrix such that limn→∞ M−n
= 0. Any solution of (1.1) is called a refinable

function, and the matrix M is called a dilation matrix.

In order to study the refinement equation (1.1), we employ the following iteration

scheme. From an initial function φ0 ∈ Lp(R
s) for 1 ≤ p ≤ ∞, let φn := Qn

a,Mφ0,

n = 1, 2, . . . , where Qa,M is a linear operator on Lp(R
s) as follows:

Qa,M f :=
∑

α∈Zs

a(α) f (M · −α), f ∈ Lp(R
s).

This iteration scheme is called a cascade algorithm or a subdivision scheme associated

with a and M. We say that the cascade algorithm associated with a and M converges
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in the Lp-norm if there exists a function f ∈ Lp(R
s) such that for any compactly

supported function φ0 in Lp(R
s) satisfying the Strang–Fix conditions of order 1,

lim
n→∞

‖Qn
a,Mφ0 − f ‖p = 0.

A typical choice of the initial function φ0 can be chosen by the hat function

φ0(x) :=
s∏

j=1

max{1 − |x j |, 0}, x = (x1, . . . , xs) ∈ R
s.

Let us recall the definition of Strang–Fix conditions (see [25]). Suppose that the

function g decays fast enough so that the partial derivative Dαĝ exists and is contin-

uous for |α| ≤ k. We say that g satisfies the Strang–Fix conditions of order k if

ĝ(0) = 1 and Dαĝ(2βπ) = 0 |α| ≤ k − 1, β ∈ Z
s\{0}.

The convergence of cascade algorithms is fundamental to wavelet theory and sub-

division. When mask a is finitely supported, the cascade algorithm has been ex-

tensively studied by many authors (see [2, 3, 8, 13, 15, 19, 24] and many references

therein). However, due to some desirable properties, infinitely supported masks in-

cluding masks with exponential decay such as Butterworth filters and masks with

polynomial decay such as various types of fractional splines are also of interest in

some applications in the area of digital signal processing ([4, 5, 7, 12, 27]). More re-

cently, the convergence of cascade algorithms associated with an infinitely supported

mask has been investigated by some authors (see [9–11, 21–23]).

The purpose of this paper is to investigate the convergence rates of cascade algo-

rithms in Lp(R
s) (1 ≤ p ≤ ∞) associated with an infinitely supported mask and

a dilation matrix. For the case when mask a exhibits polynomial decay, we mean

a ∈ Bk for some k ∈ Z+, where Bk denotes the linear space of all sequences u on Z
s

for which

‖u‖Bk
:=

∑

α∈Zs

|u(α)|(1 + |α|)k <∞.

Equipped with the norm ‖ · ‖Bk
, Bk becomes a Banach space ([18]).

For k ∈ Z+, let L∞,k(R
s) denote the linear space of all functions f such that

(1 + | · |)k f ( · ) ∈ L∞(R
s).

We point out that these L∞,k(R
s) spaces are closely related to Wiener Amalgam spaces

with polynomial weight, which are important in sampling and shift-invariant spaces

theory ([1]). For simplicity, we abbreviate L∞,k(R
s) as L∞,k.

When mask a is finitely supported, the convergence rates of cascade algorithms

have been considered by several authors. For the case M = 2 and the compactly

supported solution φ of (1.1) lies in W k
∞(R

s), Zhang showed in [28] that if the shifts

of φ are stable and Dµφ(2πβ) = Dµφ0(2πβ) for all β ∈ Z
s and |µ| < k, then ‖Qn

aφ0−
φ‖∞ ≤ C2−kn, where φ0 is a compactly supported continuous function. In [15], Jia

investigated the convergence rates of cascade algorithms in Lp(R
s) associated with
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an isotropic dilation matrix. Li ([20]) and Sun ([26]) characterized the convergence

rates of vector cascade algorithms in (Lp(R
s))r. Most approaches in these papers

were based on the theory of a shift-invariant space whose generator φ is compactly

supported. However, this technique cannot be applied to the case when the generator

has non-compact support, since it essentially relies on the fact that the restriction of

the shift-invariant space to a finite cube is finite dimensional.

In this paper, under the assumption that the solutions of (1.1) lie in L∞,k, we

characterize the convergence rates of cascade algorithms. Our characterizations ex-

tend some main results in [15] with finitely supported masks to the case in which

masks are infinitely supported. It is proved that under some appropriate conditions

on the initial function φ0, the cascade algorithm Qn
a,Mφ0 converges in Lp(R

s) with an

exponential rate. Furthermore, for the case in which a ∈ Bk, we extend Han’s result

in [6] with finitely supported masks to the case in which a has polynomial decay.

In fact, for the case a ∈ Bk, the solutions of refinement equation (1.1) in general

have noncompact support. In many cases, the solutions belong to L∞,k. For example,

Cohen ([4]) characterized the existence of L∞,k-solution of (1.1) with a ∈ Bk. Be-

sides, Unser and Blu ([27, Theorem 3.1]) showed that fractional splines φ of degree

α > −1 satisfy the refinement equation with a ∈ Bα+2 and φ ∈ L∞,α+2. Therefore,

it is interesting to characterize the convergence rates of cascade algorithms associated

with an infinitely supported mask under the assumption that the solutions of (1.1)

lie in L∞,k.

As usual, let Z+ denote the set of positive integers and let N0 denote the set of

nonnegative integers. For j = 1, . . . , s, let e j be the j-th coordinate unit vector in R
s.

The norm in R
s is defined by

|y| := |y1| + · · · + |ys|, y = (y1, . . . , ys) ∈ R
s.

Denote by ℓ(Z
s) the linear space of all (complex-valued) sequences on Z

s. Denote

by δ the sequence on Z
s given by δ(0) = 1 and δ(k) = 0 if k 6= 0. The difference

operator ∇ j on ℓ(Z
s) is defined by ∇ ja := a − a(· − e j), a ∈ Z

s. An element µ =

(µ1, . . . , µs) ∈ N
s
0 is called a multi-index. ∇µ is the difference operator ∇u1

1 · · · ∇µs
s .

For j = 1, . . . , s, D j denotes the partial derivative with respect to the j-th coordinate.

For µ = (µ1, . . . , µs) ∈ N
s
0, Dµ is the differential operator D

µ1

1 · · ·Dµs
s . For k ∈ N0,

denote by Πk the linear space of all polynomials of degree at most k.

For 1 ≤ p ≤ ∞, denote by Lp(R
s) the Banach space of all (complex-valued)

functions f such that ‖ f ‖p <∞, where

‖ f ‖p :=

(∫

Rs

| f (x)|pdx

) 1/p

for 1 ≤ p <∞,

and ‖ f ‖∞ is the essential supremum of f on R
s.

Analogously, denote by ℓp(Z
s) the Banach space of all complex-valued sequences

a = (a(α))α∈Zs such that ‖a‖p <∞, where

‖a‖p :=

(∑

α∈Zs

|a(α)|p

) 1/p

for 1 ≤ p <∞,

https://doi.org/10.4153/CMB-2011-081-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-081-6


Convergence Rates of Cascade Algorithms with Infinitely Supported Masks 427

and ‖a‖∞ is the supremum of a on Z
s.

The Fourier transform of a function in L1(R
s) is defined by

f̂ (ξ) :=

∫

Rs

f (x)e−ix·ξdx, ξ ∈ R
s,

where x · ξ is the inner product of two vectors x and ξ in R
s. The domain of the

Fourier transform can be naturally extended to functions in L2(R
s) and tempered

distributions.

We denote the space of all continuous functions on R
s by C(R

s). For k ∈ N0,

denote by Ck(R
s) the space of all functions f ∈ C(R

s) for which Dµ f ∈ C(R
s) for

all |µ| ≤ k. Moreover, denote by Ck
c (R

s) the space of all functions in Ck(R
s) with

compact support. We denote by W m
p (R

s) the usual Sobolev space and by | f |m,p the

seminorm of a function f ∈ W m
p (R

s).

For y ∈ R
s, the difference operator is defined by

∇y f := f − f ( · − y),

where f is a function defined on R
s. Let k be a positive integer. The k-th modulus of

continuity of f in Lp(R
s) is defined by

ωk( f , h)p := sup
|y|≤h

‖∇k
y f ‖p, h ≥ 0.

For 1 ≤ p ≤ ∞, 0 < ν ≤ 1, we denote by Lip(ν, Lp(R
s)) the Lipschitz space of all

functions f ∈ Lp(R
s) such that

w1( f , h)p ≤ Chν , ∀ h > 0,

where C is a positive constant independent of h. For a general ν > 0, write ν = r +η,

where r is an integer and 0 < η ≤ 1. Denote by Lip(ν, Lp(R
s)) the Lipschitz space of

all functions f such that Dµ f ∈ Lip(η, Lp(R
s)) for all multi-indices µ with |µ| = r.

Let M be a fixed integer matrix with m = | det M|. Then the coset space Z
s/MZ

s

consists of m elements. Let γk + MZ
s, k = 0, 1, . . . ,m − 1 be the m distinct elements

of Z
s/MZ

s with γ0 = 0. We denote Γ = {γk, k = 0, 1, . . . ,m − 1}. Thus, each

element α ∈ Z
s can be uniquely represented as γ + Mε, where γ ∈ Γ and ε ∈ Z

s.

We say that mask a satisfies the basic sum rule if

∑

α∈Zs

a(γ + Mα) =
∑

α∈Zs

a(Mα) ∀γ ∈ Γ.

The concept of stability plays an important role in the study of refinable functions.

Let φ ∈ Lp(R
s); we say that the shifts of φ are stable if there exist positive constants

Ap and Bp such that for all finitely supported sequences a,

Ap‖a‖p ≤
∥∥∥
∑

α∈Zs

a(α)φ( · − α)
∥∥∥

p
≤ Bp‖a‖p.
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2 Quasi-Projection Operators

When mask a is an infinitely supported sequence, the iterated functions Qn
aφ0 are in

general not compactly supported. In fact, under some conditions on a, solutions of

(1.1) are polynomially decaying [4, 27]. Thus, in order to discuss the cascade algo-

rithm associated with an finitely supported mask and a dilation matrix, we investigate

the quasi-projection operator whose generator decays polynomially fast.

Let φ ∈ L∞,k for some k ∈ Z+, and let g be a compactly supported function in

Lq(R
s). Let Pg,φ be a linear operator on Lp(R

s) defined by

Pg,φ f :=
∑

α∈Zs

〈
f , g( · − α)

〉
φ( · − α), f ∈ Lp(R

s),

where 〈 f , g〉 :=
∫

Rs f (x)g(x)dx and 1/p + 1/q = 1. Such an operator Pg,φ is called

a quasi-projection operator and is a bounded operator on Lp(R
s).

Let M be an s × s matrix with its entries in C. We say that M is isotropic if M is

similar to a diagonal matrix diag {λ1, . . . , λs} with |λ1| = · · · = |λs|.
The following lemma will be needed in our study of convergence rates of cascade

algorithms associated with an infinitely supported mask and an isotropic dilation

matrix.

Lemma 2.1 Let φ ∈ L∞,k+s+1 for some k ∈ Z+, and let g be a compactly supported

function in Lq(R
s) (1 ≤ q ≤ ∞). Let M be an isotropic dilation matrix with m :=

| det M|. For n = 1, 2, . . . , let Pn
g,φ be the quasi-projection operator given by

P
n
g,φ f :=

∑

α∈Zs

〈
f ,mng(Mn · −α)

〉
φ(Mn · −α),

where f ∈ Lp(R
s) and 1/p + 1/q = 1. If Pg,φq = q for all q ∈ Πk−1, then there exists

a constant C such that

‖Pn
g,φ f − f ‖p ≤ Cωk( f ,m−n/s)p

for n = 1, 2, . . . and f ∈ Lp(R
s) ( f ∈ C(R

s) in the case p = ∞). In particular, if

f ∈ Lip(µ, Lp(R
s)) with 0 < µ ≤ k, then

‖Pn
g,φ f − f ‖p ≤ C(m−1/s)µn.

Proof Let ρ ∈ Ck
c (R

s) such that
∫

Rs ρ(x)dx = 1. For n = 1, 2, . . . , let A n
ρ be the

linear operator on Lp(R
s) (C(R

s) in the case p = ∞) given by

A
n
ρ f (x) :=

∫

Rs

( f −∇k
y f )(x)mnρ(Mn y)dy, f ∈ Lp(R

s), x ∈ R
s.

By [16, Lemma 2.1], A n
ρ f ∈ Ck(R

s) and there exists a constant C independent of n

and f such that

(2.1) ‖ f − A
n
ρ f ‖p ≤ Cωk( f ,m−n/s)p.
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Since φ ∈ L∞,k+s+1, we have

ess sup
x∈[0,1)s

∑

α∈Zs

|φ(x + α)|
(

1 + |x + α|
) k
<∞.

Let K(x, y) :=
∑

α∈Zs φ(x − α)g(y − α). Then, Pg,φ f =
∫

Rs K(x, y) f (y)dy. It is

easy to check that the kernel K(x, y) satisfies the conditions in [18, Theorem 2.1].

Besides, Pg,φq = q for all q ∈ Πk−1. Thus,

(2.2) ‖Pn
g,φA

n
ρ f − A

n
ρ f ‖p ≤ Cm− nk

s |A n
ρ f |k,p.

By [16, Lemma 2.2], we have

(2.3) m− nk
s |A n

ρ f |k,p ≤ Cωk( f ,m−n/s)p.

Clearly, for a nontrivial function f ∈ Lp(R
s), we have

‖Pn
g,φ f (Mn·)‖p

‖ f (Mn·)‖p

=
‖(Pg,φ f )(Mn·)‖p

‖ f (Mn·)‖p

=
‖Pg,φ f ‖p

‖ f ‖p

≤ C.

Thus, we obtain

‖Pn
g,φA

n
ρ f − P

n
g,φ f ‖p ≤ ‖Pn

g,φ‖‖A
n
ρ f − f ‖p

≤ C‖A n
ρ f − f ‖p ≤ Cωk( f ,m−n/s)p.

(2.4)

Combining (2.1)–(2.4), we conclude that

‖Pn
g,φ f − f ‖p ≤ Cωk( f ,m−n/s)p.

If f ∈ Lip(µ, Lp(R
s)), then ωk( f , h)p ≤ Chµ for any h > 0. This immediately implies

that

‖Pn
g,φ f − f ‖p ≤ C(m−1/s)µn.

The proof of Lemma 2.1 is complete.

Remark 2.2 Lemma 2.1 was established by Jia in [15] in the case when φ ∈ Lp(R
s)

is compactly supported.

3 Convergence Rates of Cascade Algorithms

In this section, we shall characterize the convergence rates of cascade algorithms as-

sociated with an infinitely supported mask and a dilation matrix. It is proved that

under some appropriate conditions on the initial function φ0, Qn
a,Mφ0 converges in

Lp(R
s) with an exponential rate.
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Theorem 3.1 Let φ ∈ Lip(µ, Lp(R
s)) ∩ L∞,k+s+1 be the normalized solution of re-

finement equation (1.1) with an infinitely supported mask a and an isotropic dilation

matrix M, where µ > 0, 1 ≤ p ≤ ∞ and k is the integer such that k − 1 < µ ≤ k. Let

m := | det M|. Suppose that φ0 is a compactly supported function in Lp(R
s) satisfying

the Strang–Fix conditions of order k. If the shifts of φ are stable and Dν φ̂0(0) = Dν φ̂(0)

for all |ν| < k, then there exists a constant C > 0 such that

‖Qn
aφ0 − φ‖p ≤ C(m−1/s)µn ∀n ∈ N.

Proof Our proof of Theorem 3.1 follows [15]. Since φ ∈ Lip(µ, Lp(R
s)) ∩ L∞,k+s+1,

by the Riemann–Lebesgue lemma and the Leibniz formula for differentiation, we

conclude that φ satisfies the Strang–Fix conditions of order k ([14, Theorem 6.3]).

Then we can find a compactly supported function g ∈ Lq(R
s) such that for any

0 < |ν| < k, Dν ĝ(0) = 0 and ĝ(0) = 1. Thus, we have Dν(1 − ĝφ̂)(0) = 0. Similar

to the proof of [15, Lemma 3.2], we can prove that for any q ∈ Πk−1, ĝφ̂(q̂(iD)δ) =

q̂(iD)δ, where δ stands for the Dirac distribution. This is equivalent to

(3.1) φ̂(−iD)q ∗ g = q.

By using the Poisson summation formula, we have

(3.2)
∑

α∈Zs

q ∗ g(α)φ( · − α) = φ̂(−iD)q ∗ g.

Combining (3.1) and (3.2), we see that

∑

α∈Zs

q ∗ g(α)φ( · − α) = q ∀q ∈ Πk−1.

Thus, the quasi-projection operator given by

Pg,φ f :=
∑

α∈Zs

〈 f , g( · − α)〉φ( · − α)

reproduces all polynomials of order at most k − 1, i.e., Pg,φq = q for all q ∈ Πk−1.

In addition, since Dν φ̂0(0) = Dν φ̂(0) for all |ν| < k, we have Dν(1 − ĝφ̂0)(0) = 0

for all |ν| < k. By using the same method as above, we also have Pg,φ0
q = q for all

q ∈ Πk−1.

For n = 1, 2, . . . , let

fn :=
∑

α∈Zs

bn(α)φ(Mn · −α) and gn :=
∑

α∈Zs

bn(α)φ0(Mn · −α),

where bn(α) = 〈φ,mng(Mn · −α)〉. In light of Lemma 2.1, we have

‖ fn − φ‖p ≤ C1(m−1/s)µn and ‖gn − φ‖p ≤ C2(m−1/s)µn.
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Note that Qn
a,Mφ =

∑
α∈Zs Sn

a,Mδ(α)φ(Mn · −α) = φ, where Sa,M is defined by

(3.3). Since the shifts of φ are stable, we obtain

‖ fn − φ‖p =

∥∥∥
∑

α∈Zs

(bn − Sn
a,Mδ)(α)φ(Mn · −α)

∥∥∥
p
≥ C3m− n

p ‖bn − Sn
a,Mδ‖p.

On the other hand, applying [17, Theorem 2.1], we find that

‖Qn
a,Mφ0 − gn‖p =

∥∥∥
∑

α∈Zs

(Sn
a,Mδ − bn)(α)φ0(Mn · −α)

∥∥∥
p

≤

(∫

[0,1)s

(∑

α∈Zs

|φ0(x − α)|

) p

dx

) 1/p

m− n
p ‖Sn

a,Mδ − bn‖p.

Since φ0 is a compactly supported function in Lp(R
s), we have

(∫

[0,1)s

(∑

α∈Zs

|φ0(x − α)|

) p

dx

) 1/p

< +∞.

It follows that ‖Qn
a,Mφ0 − gn‖p ≤ C4‖ fn − φ‖p.

Therefore, we conclude that

‖Qn
a,Mφ0 − φ‖p ≤ ‖Qn

a,Mφ0 − gn‖p + ‖gn − φ‖p

≤ C4‖ fn − φ‖p + ‖gn − φ‖p ≤ C(m−1/s)µn.

Remark 3.2 We point out that under assumptions that the normalized solution

φ of (1.1) lies in L∞,k+s+1 and the shifts of φ are stable, Theorem 3.1 characterizes

the convergence rates of cascade algorithms with an infinitely supported mask and

an isotropic dilation matrix. In particular, if mask a is finitely supported, then φ
is compactly supported. In this case, when the shifts of φ are linearly independent,

Theorem 3.1 was established by Jia in [15].

For the case when mask a is finitely supported, Han [6] also investigated the con-

vergence rates of cascade algorithms in Lp(R
s) in terms of the joint spectral radius,

using a different method. In the following theorem, we shall extend his result to the

case in which a ∈ Bk.

Let M be a dilation matrix and a ∈ Bk for some k ∈ Z+. The subdivision operator

associated with M and a is a linear operator on ℓp(Z
s) defined by

(3.3) Sa,Mu(α) :=
∑

β∈Zs

a(α− Mβ)u(β), α ∈ Z
s, u ∈ ℓp(Z

s).

For 1 ≤ p ≤ ∞, we define

ρ(a,M; p) := max
{

lim sup
n→∞

‖∇µSn
a,Mδ‖

1
n
p : |µ| = 1

}
.
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The quantity ρ(a,M; p) plays an important role in the study of subdivision schemes

and wavelets (see [10] and many references therein for detail).

Similar to the case when mask a is finitely supported, for the case a ∈ Bk, it is

easy to prove that if a satisfies the basic sum rule and ρ(a,M; p) < | det M|1/p, then

the cascade algorithm associated with a and M converges in Lp(R
s). Moreover, the

following theorem shows that if the normalized solution φ of (1.1) lies in L∞,k, then

the cascade algorithm converges with an exponential rate.

Theorem 3.3 Let a ∈ Bk for some k > s + 1 and ρ(a,M; p) < m1/p, where M is a

dilation matrix with m := | det M|. Let a satisfy the basic sum rule and
∑

α∈Zs a(α) =

m. Suppose φ ∈ L∞,k is the normalized solution of (1.1). If φ0 ∈ L∞,k satisfies the

Strang–Fix condition of order 1, then r := ρ(a,M; p)m−1/p < 1 and for any 0 < ǫ <
1 − r, there exists a constant C > 0 such that

‖Qn
a,Mφ0 − φ‖p ≤ C(r + ǫ)n ∀n ∈ N.

Proof Since φ0 ∈ L∞,k, we have

(1 + |x|)k |Qa,Mφ0(x)| ≤
∑

α∈Zs

|a(α)φ0(Mx − α)|
(

1 + |M−1Mx|
) k

≤
∑

α∈Zs

|a(α)φ0(Mx − α)|
(

1 + |Mx|
) k

≤
∑

α∈Zs

|φ0(Mx − α)|
(

1 + |Mx − α|
) k
|a(α)|(1 + |α|)k

≤ C
∑

α∈Zs

|a(α)|
(

1 + |α|
) k

= C‖a‖Bk
.

It follows that Qa,Mφ0 ∈ L∞,k. Similarly, we have Qa,Mφ ∈ L∞,k.

In addition, since a satisfies the basic sum rule and φ0 satisfies the Strang–Fix

conditions of order 1, we obtain
∑

α∈Zs

Qa,Mφ0( · + α) =
∑

α∈Zs

∑

β∈Zs

a(β)φ0(M · −Mα− β)

=

∑

β∈Zs

(∑

α∈Zs

a(β − Mα)

)
φ0(M · −β) =

∑

β∈Zs

φ0(M · −β) = 1.

Thus, Qa,Mφ0 also satisfies the Strang–Fix conditions of order 1. Let ψ0 := Qa,Mφ0 −
φ; we conclude that

∑

α∈Zs

ψ0(x + α) = 0 a.e. x ∈ R
s.

By virtue of [10, Lemma 2] or [11, Lemma 3.1], there exists a set of functions h j ,

j = 1, . . . , s, with each h j ∈ L∞,k−1 such that

ψ0 =

s∑

j=1

∇ jh j .
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Observe that Qa,Mφ = φ. It follows that

‖Qn+1
a,Mφ0 − φ‖p = ‖Qn+1

a,Mφ0 − Qn
a,Mφ‖p = ‖Qn

a,Mψ0‖p = ‖
s∑

j=1

∇ jQ
n
a,Mh j‖p

≤ m− n
p

s∑

j=1

‖∇ jS
n
a,Mδ‖p

(∫

[0,1)s

(∑

α∈Zs

|h j(x − α)|
) p

dx

) 1/p

.

Since h j ∈ L∞,k−1, it is easy to see that

(∫

[0,1)s

(∑

α∈Zs

|h j(x − α)|

) p

dx

) 1/p

<∞.

Therefore, for any 0 < ǫ < 1 − r, there exists a constant C such that

‖Qn
a,Mφ0 − φ‖p ≤ Cm−n/p(ρ(a,M; p) + ǫ)n ≤ C(r + ǫ)n.

This completes the proof of Theorem 3.3.
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