A nonlinear complementarity problem in mathematical programming in Hilbert space

Sribatsa Nanda and Sudarsan Nanda

Abstract

In this paper we prove the following existence and uniqueness theorem for the nonlinear complementarity problem by using the Banach contraction principle. If $T: K \rightarrow H$ is strongly monotone and lipschitzian with $k^{2}<2 c<k^{2}+1$, then there is a unique $y \in K$, such that $T_{y} \in K^{*}$ and $(T y, y)=0$ where H is a Hilbert space, K is a closed convex cone in H, and K^{*} the polar cone.

1. Introduction and statement of the theorem

Let H be a real Hilbert space and let K be a closed convex cone in H with the vertex at 0 . The polar of K is the cone K^{*}, defined by

$$
K^{*}=\{y \in H:(x, y) \geq 0 \text { for every } x \in K\}
$$

A mapping $T: H \rightarrow H$ is said to be monotone on K if $(T x-T y, x-y) \geq 0$ for all $x, y \in K$ and strictly monotone if strict inequality holds whenever $x \neq y \cdot T$ is called strongly monotone if there is a constant $c>0$ such that $(T x-T y, x-y) \geq c\|x-y\|^{2}$. T is said to be lipschitzian if there is a constant. $k>0$ such that $\|T x-T y\| \leq k\|x-y\|$ for all $x, y \in H$ whenever $x \neq y$, and a contraction if $0<k<1$.

The purpose of this note is to prove the following existence and uniqueness theorem for the nonlinear complementarity problem.

Received 6 March 1979.

THEOREM. Let $T: K \rightarrow H$ be strongly monotone and lipschitzian with $k^{2}<2 c<k^{2}+1$. Then there is a unique y_{0} such that

$$
\begin{equation*}
y_{0} \in K, \quad T y_{0} \in K^{*}, \text { and }\left(T y_{0}, y_{0}\right)=0 \tag{1.1}
\end{equation*}
$$

2. Proof of the theorem

Since K is a nonempty closed convex set in H, for every $y \in K$ there is a unique $x \in K$ closest to $y-T y$; that is,

$$
\|x-y+T y\| \leq\|z-y+T y\|
$$

for every $z \in K$. Let the correspondence $y \mapsto x$ be denoted by θ. Let z be any element of K and let $0 \leq \lambda \leq 1$. Since K is convex, $(1-\lambda) x+\lambda z \in K$. Define a function $h:[0,1] \rightarrow R^{+}$by the rule

$$
h(\lambda)=\|y-T y-(1-\lambda) x-\lambda z\|^{2} .
$$

Then h is a twice continuously differentiable function of λ and

$$
h^{\prime}(\lambda)=2(y-T y-\lambda z-(1-\lambda) x, x-z)
$$

Since x is the unique element closest to $y-T y$, we must have $h^{\prime}(0) \geq 0$, and therefore

$$
\begin{equation*}
(y-T y-x, x-z) \geq 0 \tag{2.1}
\end{equation*}
$$

for every $z \in K$. Let y_{1} and y_{2} be two elements of K and $y_{1} \neq y_{2}$. Let $\theta\left(y_{1}\right)=x_{1}$ and $\theta\left(y_{2}\right)=x_{2}$. Putting $y=y_{1}$ and $z=\theta\left(y_{2}\right)$ in (2.1) we get

$$
\begin{equation*}
\left(y_{1}-\pi y_{1}-\theta\left(y_{1}\right), \theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right) \geq 0 . \tag{2.2}
\end{equation*}
$$

Again, putting $y=y_{2}$ and $z=\theta\left(y_{1}\right)$ in (2.1), we get

$$
\begin{equation*}
\left(y_{2}-T y_{2}-\theta\left(y_{2}\right), \theta\left(y_{2}\right)-\theta\left(y_{1}\right)\right) \geq 0 . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3) we have

$$
\left(y_{1}-T_{y_{1}}-\theta\left(y_{1}\right)-y_{2}+y_{2}+\theta\left(y_{2}\right), \theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right) \geq 0 .
$$

Hence

$$
\begin{aligned}
\left(y_{1}-T y_{1}-y_{2}+T y_{2}, \theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right) & \geq\left(\theta\left(y_{1}\right)-\theta\left(y_{2}\right), \theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right) \\
& =\left\|\theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right\|^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|\theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right\|^{2} & \leq \|\left(y_{1}-T y_{1}-y_{2}+T y_{2}, \theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right) \mid \\
& \leq\left\|y_{1}-T y_{1}-y_{2}+T y_{2}\right\|\left\|\theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right\| .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|\theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right\| \leq\left\|T y_{1}-T y_{2}-y_{1}+y_{2}\right\| \tag{2.4}
\end{equation*}
$$

Since T is strongly monotone and lipschitzian, it follows from the inequality (2.4) that

$$
\begin{aligned}
\left\|\theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right\|^{2} & \leq\left\|T y_{1}-T y_{2}-y_{1}+y_{2}\right\|^{2} \\
& =\left(T y_{1}-T y_{2}-y_{1}+y_{2}, T y_{1}-T y_{2}-y_{1}+y_{2}\right) \\
& =\left\|T y_{1}-T y_{2}\right\|^{2}+\left\|y_{1}-y_{2}\right\|^{2}-2\left(T y_{1}-T y_{2}, y_{1}-y_{2}\right) \\
& \leq\left(k^{2}+1-2 c\right)\left\|y_{1}-y_{2}\right\|^{2} .
\end{aligned}
$$

Since $k^{2}<2 c<k^{2}+1$, we have $0<k^{2}+1-2 c<1$. Putting $a^{2}=k^{2}+1-2 c$ in the above inequality we obtain

$$
\left\|\theta\left(y_{1}\right)-\theta\left(y_{2}\right)\right\| \leq a\left\|y_{1}-y_{2}\right\|
$$

where $0<a<1$. Thus θ is a contraction. Now applying the Banach contraction principle (see, for example, [1]) we conclude that θ has a unique fixed point, say y_{0}. Now putting $y=y_{0}$ in (2.1) we get

$$
\begin{equation*}
\left(T y_{0}, z-y_{0}\right) \geq 0 \tag{2.5}
\end{equation*}
$$

for every $z \in K$. Since $0 \in K$ we have from (2.5) that $\left(T_{0}, y_{0}\right) \leq 0$. Again since K is a convex cone, $2 y_{0} \in K$ and therefore putting $z=2 y_{0}$ in (2.5) we get $\left(T y_{0}, y_{0}\right) \geq 0$. Thus $\left(T y_{0}, y_{0}\right)=0$ and $\left(T y_{0}, z\right) \geq 0$ for every $z \in K$, showing that $T y_{0} \in K^{*}$. Therefore y_{0} is the unique solution to the complementarity problem (1.1) and this completes the proof.

Reference

[1] Casper Goffman, George Pedrick, First course in functional analysis (Prentice/Hall of India, New Delhi, 1974).

Department of Mathematics, Regional Engineering College, Rourkela, Orissa, India.

