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Abstract

We introduce a formal limit, which we refer to as a fluid limit, of scaled stochastic
models for a cache managed with the least-recently-used algorithm when requests are
issued according to general stochastic point processes. We define our fluid limit as a
superposition of dependent replications of the original system with smaller item sizes
when the number of replications approaches ∞. We derive the average probability that
a requested item is not in a cache (average miss probability) in the fluid limit. We
show that, when requests follow inhomogeneous Poisson processes, the average miss
probability in the fluid limit closely approximates that in the original system. Also, we
compare the asymptotic characteristics, as the cache size approaches ∞, of the average
miss probability in the fluid limit to those in the original system.
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1. Introduction

Caching data is a widely used technique for scalability and efficiency in today’s computer
and communication systems, including the World Wide Web, sensor networks, and peer-to-peer
networks. It is important to optimize the cache algorithms, since the response times perceived
by users of these systems can be strongly affected by the cache algorithms. There have been
two dominant approaches for analytically evaluating the performance of cache algorithms:
stochastic analysis and competitive analysis. When stochastic analysis is applied properly,
we can understand the performance more precisely than with competitive analysis and also
gain insights into the fundamental characteristics of the cache algorithms. Today, however,
stochastic analysis is still limited in its applicability to cache algorithms. Our goal is to make
stochastic analysis more applicable to cache algorithms.

The least-recently-used (LRU) algorithm is a simple and popular cache algorithm and has
been studied extensively with stochastic analysis. The stochastic analysis of LRU originates
from the stochastic analysis of the move-to-front (MTF) list, where a requested item is moved
to the head of the list. The miss probability (the probability that a requested item is not in the
cache) for LRU with a cache of sizeK coincides with the probability that the requested item is
not at one of the firstK positions of the MTF list. McCabe [15] derived the first two moments of
the stationary position of a requested item in an MTF list with an ‘independent reference model’,
which is essentially equivalent to the model where items are requested according to independent
Poisson processes. The results of McCabe were extended to the probability distribution by
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Fluid limit for cache algorithm 817

Burville and Kingman [1] and to the generating function by Flajolet et al. [6] and Fill and
Holst [5]. Unfortunately, these distribution and generating functions are computationally hard
to evaluate numerically and provide little intuition due to the complexity of their expressions.

To gain greater insights from stochastic analysis and to evaluate performance more efficiently,
researchers have studied the asymptotic characteristics of the MTF list and LRU. Fill [4] showed
that the generating function of the stationary position of a requested item is simplified in the
limiting case where the number of items approaches ∞. Jelenković [9] studied the miss
probability for LRU in the limiting case where the cache size,K , approaches ∞. In particular,
when the request rates, λ̄i for i = 1, 2, . . . , have a heavy tail (i.e. λ̄i ∼ c/iα for i = 1, 2, . . .
with c > 0 and α > 1), it was shown that the miss probability for LRU decays following a
power law as K → ∞. Jelenković [9] also studied a fluid limit of the stationary position of
a requested item. Roughly speaking, investigating the fluid limit results in breaking up each
item into m items of size 1/m and formally taking the limit of m → ∞. In particular, when
the request rates have a light tail (i.e. λ̄i ∼ c exp(−ξiβ) for i = 1, 2, . . . with c, ξ, β > 0), it
was shown that the miss probability for LRU decays exponentially in the fluid limit. Hirade
and Osogami [8] showed that the miss probabilities for LRU and the 2Q cache algorithm [13]
can be closely approximated with those analyzed in a fluid limit.

An asymptotic analysis is also found to be useful in comparing the performance of cache
algorithms. For example, Jelenković and Radovanović [11] discussed the asymptotic optimality
of the persistent-access-caching algorithm asK → ∞ when the request rates have a heavy tail.

The prior work mentioned above assumes the independent reference model, but stochastic
analysis has also been applied for various dependent request processes. When the request
process forms a Markov chain, Lam et al. [14] and Rodrigues [18] respectively derived the
mean and the variance of the stationary position of a requested item in an MTF list, and Chu
and Knott [2] derived an expression for the stationary miss probability for LRU. Coffman and
Jelenković [3] derived the first two moments of the stationary position of a requested item in
an MTF list when the probability of requesting each item depends on the state of a modulating
process.

Similar to the case with the independent reference model, the analysis of the asymptotic
characteristics is found to provide insight into the fundamental nature of LRU. Jelenković and
Radovanović [10] and Sugimoto and Miyoshi [20] showed that, when the request rates have a
heavy tail, the miss probability for LRU is asymptotically insensitive to the type of dependencies
in the request process studied in Coffman and Jelenković [3] asK → ∞. Jelenković et al. [12]
characterized the critical cache sizes where the miss probability for LRU becomes insensitive
to the dependencies.

In this paper we define a fluid limit of a stochastic model for a cache managed with LRU
when the requests follow general stochastic point processes. Our fluid limit is a nontrivial
extension of the fluid limits for the independent reference model in [8] and [9]. We will explain
how the dependencies in the request process would disappear with a trivial extension of their
fluid limits. Then we formally derive an analytical expression, p̄(∞), for the average miss
probability for LRU in our fluid limit (Theorem 1). The definition of the fluid limit and the
analysis of p̄(∞) constitute the primary contributions of this paper. The analysis in a fluid limit
is useful in two ways, and our secondary contributions are to demonstrate the usefulness with
simulation and asymptotic analysis.

First, p̄(∞) can be used to approximate the average miss probability for LRU in the original
system, p̄, whose numerical analysis is intractable. We will study p̄(∞) when the requests
follow inhomogeneous Poisson processes (Theorem 2), which are nonstationary. All of the
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prior work on stochastic analysis of cache algorithms assumes stationary request processes for
tractability. Our numerical experiments will show that the error in approximating p̄ with p̄(∞)

is typically within 1% for N ≥ 128 and smaller for a larger N .
Second, p̄(∞) can provide insights into the fundamental nature of cache algorithms. We

find that asymptotic characteristics of LRU are often preserved in our fluid limit. Specifically,
we will see that, as K → ∞, p̄(∞) is asymptotically insensitive to particular dependencies in
the request processes when the request rates have a heavy tail (Theorem 3), which agrees with
the findings for p̄ in [3] and [20]. We also find that the asymptotic analysis of p̄(∞) appears
to be simpler than a corresponding analysis of p̄. This simplicity allows us to find that the
asymptotic insensitivity of p̄(∞) to the particular dependencies also holds for the case of a light
tail (Theorem 4). Note that asymptotic characteristics of p̄ asK → ∞ is not known even for the
independent reference model. Recall that Jelenković [9] studied the asymptotic characteristics
for the case of a light tail in his fluid limit.

The rest of the paper is organized as follows. In Section 2 we derive an expression for p̄. In
Section 3 we define the fluid limit and formally derive a general expression for p̄(∞). In Section 4
we evaluate the accuracy of approximating p̄ with p̄(∞) when requests follow inhomogeneous
Poisson processes. In Section 5 we show that p̄(∞) is asymptotically insensitive to particular
dependencies in the request process.

2. LRU with general stochastic point processes

In this section we derive an expression for the average miss probability for LRU when items
are requested according to general stochastic point processes, �. In Section 2.1 we define a
model of caching with LRU and state assumptions on �. In Section 2.2 we analyze the average
miss probability for LRU, which will be used in Section 3 to study the fluid limit.

2.1. Model and assumptions

We consider a system with N items of size 1 and a cache of size K , where 0 < K <

N ≤ ∞. The items are requested according to stochastic point processes, � = (�1, . . . , �N),
where �i = {t (i)� , � ∈ Z} denotes the request process for the ith item, ei . For each ei , we let
t
(i)
0 ≤ 0 < t

(i)
1 and t (i)� < t

(i)
�+1 for � ∈ Z, so that t (i)� denotes the epoch of the �th request for ei

after time 0 for � > 0, although t (i)� is also defined for � ≤ 0.
When a requested item is not in the cache, LRU removes the item that was requested least

recently from the cache, and the requested item is placed in the cache. When a requested item is
in the cache, the cache remains unchanged. We assume that exactlyK items are always stored in
the cache. Also, we assume that items are requested one at a time, since simultaneous requests
would require a tie-breaking rule. Formally, we assume that t (i)� �= t

(j)

�′ for (�, i) �= (�′, j).
In addition, we assume that t (i)� → ∞ and t (i)−� → −∞ as � → ∞, so that a finite number
of requests are issued in a bounded interval. When these assumptions hold, we say that � is
simple.

The metric of interest is the miss probability, the probability that a requested item is not in
the cache. In contrast to the prior work, � may be nonstationary in this paper. Thus, instead of
the stationary miss probability, which may not exist, we will study the average miss probability.
Specifically, let pi,� be the probability that the �th request for ei is a miss (i.e. the ei is not in
the cache). The average miss probability for ei is defined as p̄i ≡ limL→∞ 1/L

∑L
�=1 pi,�.

To formally study p̄i , we use notation from [19] and make additional assumptions about �.
Let θt be the shift operator that shifts time by t and relabels the indices so that the index of
the first request epoch after time 0 is 1. Formally, θt�i = {(t(i)

M(i)(t)+� − t), � ∈ Z}, where
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M(i)(t) is the maximum � such that t (i)� ≤ t . Let θt� = (θt�1, . . . , θt�N). We assume
that � is time-asymptotically stationary, so that there exists a distribution defined by P�(� ∈
E) ≡ limt→∞ 1/t

∫ t
0 P(θu� ∈ E) du. Note that a nonstationary � can be time-asymptotically

stationary. For simplicity, we assume that � is ergodic with respect to P�.
Finally, we assume that the average request rate, λ̄i , of ei satisfies 0 < λ̄i < ∞ for i =

1, . . . , N . Formally, λ̄i ≡ E�[M(i)(1)], whereM(i)(1) denotes the number of requests for ei in
(0, 1], and E� denotes the expectation with respect to P�. When N = ∞, we also assume that∑N
i=1 λ̄i < ∞.

2.2. Average miss probability

Under the above assumptions, �i is event-asymptotically stationary, so that the distribution
defined by P0,i (�i ∈ E) ≡ limL→∞ 1/L

∑L
�=1 P(θ

t
(i)
�

�i ∈ E) exists for 1 ≤ i ≤ N (see
Theorem 2.9 of [19]). Then p̄i can be expressed conveniently using P0,i .

Lemma 1. When � is simple, time-asymptotically stationary, ergodic, and
∑N
i=1 λ̄i < ∞, the

average miss probability of ei for LRU is p̄i = P0,i (
∑
j �=i I {t (j)1 < t

(i)
1 } ≥ K) for 1 ≤ i ≤ N ,

where I {·} is the indicator random variable.

We provide a formal proof in Appendix A, but Lemma 1 can be explained intuitively as
follows. We may see P0,i (E) as the probability of an event, E , when we ‘randomly observe
way out at’ [19] the epoch of a request for ei , letting the time of the observation be 0. The next
request for ei after the observation is at time t (i)1 and is a miss if and only if at least K distinct
items have been requested in the interval (0, t (i)1 ). Since items are requested one at a time, ej
is requested in the interval (0, t (i)1 ) if and only if t (j)1 < t

(i)
1 for any ej �= ei . Hence, the request

for ei at time t (i)1 is a miss if and only if
∑
j �=i I {t (k)1 < t

(i)
1 } ≥ K .

3. Fluid limit

In this section we introduce a fluid limit of the stochastic model for caching with LRU and
formally derive the average miss probability for LRU in the fluid limit.

3.1. Scaled systems and the fluid limit

We consider a sequence of scaled systems, where the mth scaled system has mN items,
ei,k for 1 ≤ k ≤ m and 1 ≤ i ≤ N , of size 1/m. The first scaled system corresponds to the
original system, and we call the scaled system with m → ∞ the fluid limit of the original
system. For 1 ≤ k ≤ m, let Ek = (e1,k, . . . , eN,k) and let �k = (	1,k, . . . , 	N,k) be the
request processes for Ek . Let t (i,k)� be the epoch of the �th request for ei,k after time 0, so that
	i,k = {t (i,k)� , � ∈ Z}.

Such scaled systems are also considered in [8] and [9]. For example, themth scaled system,
S(m), of [8] can be seen as a superposition of independent replications of the original system.
Specifically, in S(m), the �k for 1 ≤ k ≤ m are independent and stochastically identical to �.
Unfortunately, the dependencies in � would disappear in S(∞) in the sense that S(∞) with
general � is identical to that when�1, . . . , �N are independent. We formally prove the above
observation in Appendix B.

We will define our scaled system as a superposition of dependent replications of the original
system. Also, in contrast to [8] and [9], we will define a sequence of scaled systems for each
ei , so that the scaled systems for different items have different dependencies in �k . Let T (m)

i

be the mth scaled system for ei . For each ei , we will study the miss probability for the ei in
T (∞)
i . In T (m)

i , we assume that �k is stochastically identical to � (i.e. for 1 ≤ k ≤ m, it holds
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that P(�k ∈ E) = P(� ∈ E) for any measurable set, E ). However, we assume that the �k for
1 ≤ k ≤ m depend on each other. Specifically, in T (m)

i , we assume that 	i,k for 1 ≤ k ≤ m

have the same sample path (i.e. t (i,k)� = t
(i,k′)
� for any � ∈ Z and 1 ≤ k, k′ ≤ m) and that the �k

for 1 ≤ k ≤ m are conditionally independent given 	i,1. Formally, for any measurable sets,
Ek for 1 ≤ k ≤ m, it holds that

P(�k ∈ Ek for all k ∈ {1, . . . , m} | 	i,1) =
m∏
k=1

P(�k ∈ Ek | 	i,1). (1)

To clarify the assumptions on �, consider a way to simulate �(m) ≡ (�1, . . . ,�m) in T (m)
i

for a bounded interval, (0, T ]. We first simulate �i in the original system. This gives us
a sequence of epochs, �i(ω) = {t (i)1 (ω), . . . , t

(i)
Li(ω)

(ω)}, where ω denotes a sample path and
Li(ω) denotes the number of the requests in (0, T ]. Then, for 1 ≤ k ≤ m, we let 	i,k(ω) =
�i(ω) be the simulated epochs of the requests for ei,k in T (m)

i (i.e. t (i,k)� (ω) = t
(i)
� (ω) for

1 ≤ � ≤ Li(ω)). Next we simulate �−i ≡ {�j | j �= i} in the original system in such a way
that�i(ω) and �−i have the desired dependency. The sample path, ω1, from the simulation of
�−i is used to construct the simulated epochs of the requests for {ej,1 | j �= i} in T (m)

i such
that 	j,1(ω1) = �j(ω1) = {t (j)1 (ω1), . . . , t

(j)

Lj (ω1)
(ω1)} for each j �= i. We repeat simulating

�−i in the same way, but independently of the previous repetitions. For 2 ≤ k ≤ m, the sample
path, ωk , from the kth repetition is used in the same way asω1 to construct the simulated epochs
of the requests for {ej,k | j �= i} in T (m)

i .
To avoid introducing a tie-breaking rule, we assume that, in T (m)

i , the items in {ej,k | j �=
i, 1 ≤ k ≤ m} ∪ {ei,1} are requested one at a time almost surely (recall that the items in
{ei,k | 1 ≤ k ≤ m} are requested simultaneously). This means, in the original system, that
there is no mass probability: P(t(i)� = t) = 0 for any �, t , and ei .

3.2. Miss probability in the fluid limit

We say that a request for ei is a miss in T (m)
i if and only if more than half of ei,k for 1 ≤ k ≤ m

are not in the cache upon the request. Let p(m)i,� be the probability that the �th request for ei is
a miss in T (m)

i . We study the average miss probability, p̄(m)i ≡ limL→∞ 1/L
∑L
�=1 p

(m)
i,� , of ei

as m → ∞. Note that p̄(∞)
i and p̄(∞)

j are defined with different fluid limits, T (∞)
i and T (∞)

j ,
respectively, for i �= j . Recall how the dependencies in {	i,k | 1 ≤ i ≤ N, k = 1, 2, . . . } are
constructed differently between T (∞)

i and T (∞)
j for i �= j .

Theorem 1. In addition to the conditions of Lemma 1, suppose that P(t(i)� = t) = 0 for any �,
t , and i. Then limm→∞ p̄

(m)
i = P0,i (

∑N
j=1 E[I {t (j)1 < t

(i)
1 } | �i] > K − 1

2 ).

The theorem should be compared against Lemma 1, which characterizes p̄i = p̄
(1)
i . In

particular, a random variable, I {t (j)1 < t
(i)
1 }, in p̄i is replaced with a conditional expectation,

E[I {t (j)1 < t
(i)
1 } | �i], in p̄(∞)

i . This suggests that some randomness disappears in T (∞)
i .

Roughly speaking, in T (∞)
i , whether or not a request for ei is a miss is determined only by �i

and by the expected impact that �i has on �−i via the dependencies between �i and �−i .

Proof of Theorem 1. Let C(m)i,� be the total size of distinct items that are requested after t (i,1)�−1
and before t (i,1)� in T (m). Note that p(m)i,� = P(C(m)i,� > K − 1

2 ). We will first show that, as
m → ∞,

C
(m)
i,�

d−→
N∑
j=1

E[I�(j) | �i], (2)

where ‘
d−→’ denotes convergence in distribution and I�(j) is the indicator random variable such
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that I�(j) = 1 if and only if ej is requested in the interval (t(i)�−1, t
(i)
� ) in the original system for

1 ≤ j ≤ N . Note that I�(i) = 0.
We prove the convergence in distribution by showing the convergence of the Laplace

transform, ϕ(m)i,� (s) ≡ E[exp(−sC(m)i,� )] for 0 ≤ s < ∞, of C(m)i,� . Let I�(j, k) be the indicator
random variable such that I�(j, k) = 1 if and only if ej,k is requested after t (i,1)�−1 and before
t
(i,1)
� . By definition, I�(i, k) = 0 for 1 ≤ k ≤ m. Then

ϕ
(m)
i,� (s) = E

[
exp

(
− s

m

N∑
j=1

m∑
k=1

I�(j, k)

)]
= E

[ m∏
k=1

exp

(
− s

m

N∑
j=1

I�(j, k)

)]
.

The conditional independence assumed in (1) implies that

ϕ
(m)
i,� (s) = E

[ m∏
k=1

E

[
exp

(
− s

m

N∑
j=1

I�(j, k)

) ∣∣∣∣ 	i,1
]]
.

Also, since the �k for 1 ≤ k ≤ m are stochastically identical, we obtain

ϕ
(m)
i,� (s) = E

[(
E

[
exp

(
− s

m

N∑
j=1

I�(j, 1)

) ∣∣∣∣ 	i,1
])m]

.

For 0 ≤ n ≤ N − 1, let Qn = P(
∑N
j=1 I�(j, 1) = n | 	i,1) be the conditional probability

that n distinct items in E1 are requested in the interval (t(i,1)�−1 , t
(i,1)
� ) given 	i,1. Then

ϕ
(m)
i,� (s) = E

[(N−1∑
n=0

Qn exp

(
− sn
m

))m]
.

Since
∑N−1
n=0 Qn = 1, the dominated convergence theorem can be used to show that

lim
m→∞ϕ

(m)
i,� (s) = E

[
lim
m→∞

(N−1∑
n=0

Qn exp

(
− sn
m

))m]
.

By Lemma 8 in Appendix A we obtain

lim
m→∞ϕ

(m)
i,� (s) = E

[
exp

(
−s

N−1∑
n=0

nQn

)]
.

Since
∑N−1
n=0 nQn = E[∑N

j=1 I�(j, 1) | 	i,1], we obtain

lim
m→∞ϕ

(m)
i,� (s) = E

[
exp

(
−s E

[ N∑
j=1

I�(j, 1)

∣∣∣∣ 	i,1
])]

. (3)

Therefore, the continuity theorem (see, e.g. p. 262 of [7]) implies that

C
(m)
i,�

d−→ E

[ N∑
j=1

I�(j, 1)

∣∣∣∣ 	i,1
]

as m → ∞.
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Since the pair (I�(j, 1),	i,1) and the pair (I�(j),�i) are stochastically identical, this estab-
lishes (2) via the linearity of expectation.

Now, (2) suggests that, as m → ∞,

p
(m)
i,� → P

( N∑
j=1

E[I�(j) | �i] > K − 1

2

)
= P(θ(i)�−1� ∈ Di ), (4)

where Di = {� | ∑N
j=1 E[I {t (j)1 < t

(i)
1 } | �i] > K − 1

2 }.
Since 0 ≤ p

(m)
i,1 ≤ 1, we can calculate p̄(m)i from the second request for ei , so that

p̄
(m)
i = lim

L→∞
1

L− 1

L∑
�=2

p
(m)
i,� .

Since � is time-asymptotically stationary, �(m) is time-asymptotically stationary for any m.
Hence, p̄(m)i exists for any m. Thus, we can exchange the limits to obtain

lim
m→∞ p̄

(m)
i = lim

L→∞
1

L− 1

L∑
�=2

lim
m→∞p

(m)
i,� , (5)

which together with (4) proves the theorem.

4. Inhomogeneous Poisson requests

In this section we study the p̄(∞)
i derived in Section 3 in more detail for the particular

case when the requests follow inhomogeneous Poisson processes. In Section 4.1 we derive an
explicit expression for p̄(∞)

i in this particular case. Our derivation usesH = λG, an extension of
Little’s law, to convert the event-average expression in Theorem 1 to a time-average expression.
In Section 4.2 we study the accuracy of approximating p̄i with p̄(∞)

i .

4.1. Miss probability in the fluid limit

The expression of p̄(∞)
i in Theorem 1 can be made more explicit when a specific �

is assumed, which we will demonstrate for the case where � is a vector of independent
inhomogeneous Poisson processes. We will also consider a special case where � is a vector of
independent Poisson processes and compare our results against those in [8] and [9].

Theorem 2. In addition to the conditions of Lemma 1, suppose that �i is an inhomogeneous
Poisson process with rate λi(t) at time t for 1 ≤ i ≤ N . Let �i(t, u) ≡ ∫ u

t
λi(v) dv, and let

τi(t) be the maximum u such that
∑
j �=i (1 − exp(−�j(t, u))) ≤ K − 1

2 for 1 ≤ i ≤ N . Then

p̄
(∞)
i = 1

λ̄i
lim
T→∞

1

T

∫ T

0
exp(−�i(t, τi(t)))λi(t) dt,

where λ̄i = limT→∞ 1/T
∫ T

0 λi(t) dt .

Proof. We first consider p(∞)
i,� . By (4) and the independence of �i and �−i , we obtain

p
(m)
i,� → P

( N∑
j=1

E[I�(j) | (t(i)�−1, t
(i)
� )] > K − 1

2

)

as m → ∞ for � > 1. Since E[I�(j) | (t(i)�−1, t
(i)
� )] is the conditional probability that ej is
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requested in the interval, (t(i)�−1, t
(i)
� ), we find, by a property of the inhomogeneous Poisson

process (see, e.g. p. 246 of [16]), that E[I�(j) | (t(i)�−1, t
(i)
� )] = 1 − exp(−�j(t(i)�−1, t

(i)
� )).

Let λi,�−1(u) be the probability density function for the epoch of the (�− 1)th request of ei ,
and let T (i)� (t

(i)
�−1) be the epoch of the �th request for ei given t (i)�−1. By the Markovian property,

given t (i)�−1, T (i)� (t) is conditionally independent of �, so that we write T (i)(t) ≡ T
(i)
� (t), which

can be understood as the epoch of the first request for ei after time t . By conditioning on t (i)�−1
we obtain

p
(∞)
i,� =

∫ ∞

0
Pi(t)λi,�−1(t) dt, (6)

where Pi(t) ≡ P(
∑
j �=i (1 − exp(−�j(t, T (i)(t)))) > K − 1

2 ). Since 1 − exp(−�j(t, u)) is
nondecreasing with u for any t , we have Pi(t) = P(T (i)(t) > τi(t)) = exp(−�i(t, τi(t))),
where the last equality follows from the property of the inhomogeneous Poisson process.

Finally, we derive p̄(∞)
i . By (5) and (6), we obtain

p̄
(∞)
i = lim

L→∞
1

L− 1

L∑
�=2

∫ ∞

0
Pi(t)λi,�−1(t) dt. (7)

We will use H = λG, an extension of Little’s law, to show that the event-average expression
with (7) is equivalent to the time-average expression

p̄
(∞)
i = 1

λ̄i
lim
T→∞

1

T

∫ T

0
Pi(t)λi(t) dt. (8)

Let G� ≡ ∫ ∞
0 Pi(t)λi,�(t) dt . Observe that G� denotes the miss probability of the (� + 1)th

request for ei . Let H(t) ≡ ∑∞
�=1 Pi(t)λi,�(t). Since t (i)0 ≤ 0 < t

(i)
1 , there is a relationship

between λi,�(u) and λi(u) for u ≥ 0 such that λi(u) = ∑∞
�=1 λi,�(u). Hence, it follows that

H(t) = Pi(t)λi(t), which denotes the miss probability of a request for ei given that the request
is issued at time t , multiplied by λi(t).

Since � is time-asymptotically stationary and ergodic, H = λ̄iG holds (see Theorem 6.4
of [19]) for G ≡ limL→∞ 1/L

∑L
�=1G� and H ≡ limT→∞ 1/T

∫ T
0 H(t) dt . Thus, we can

conclude that (8) is valid, which completes the proof of the theorem.

To gain further insights into our fluid limit, we consider the case where λi(·) is a constant
(i.e. �i is a Poisson process) for each i. The following corollary can be compared against the
stationary miss probabilities in the fluid limits obtained in [8] and [9].

Corollary 1. If �i is an independent Poisson process with rate λ̄i for each ei , then p̄(m)i →
exp(−λ̄iτi(K)) as m → ∞, where τi(K) = C−1

i (K − 1
2 ) and C−1

i (·) is the inverse function
of Ci(t) ≡ ∑

j �=i (1 − exp(−λ̄j t)).
The corollary can be understood as follows. Suppose that ei,1 is requested and moved to

the head of the MTF list at time 0. Then, until ei,1 is requested again, the position of ei,1 in
the MTF list of T (∞)

i is Ci(t) at time t . Note that the term 1 − exp(−λ̄j t) is the probability
that, in the original system, ej is requested in the interval (0, t). Also, this term agrees with the
fraction of ej,k for 1 ≤ k ≤ m that are requested in (0, t) as m → ∞. In T (∞)

i , the position of
ei,1 reaches K − 1

2 at t = τi(K). The probability that the next request for ei,1 is issued after
t = τi(K) is exp(−λ̄iτi(K)). In the MTF list of T (∞)

i , ei,1 moves up following a deterministic
function until ei,1 is requested at a random time.
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Since our fluid limit differs from the fluid limits defined in [8] and [9], our p̄(∞)
i differs from

those derived in [8] and [9]. However, the only difference between our p̄(∞)
i and that in [8]

is that, in [8], τi(K) is replaced with τ(K) = C−1(K), where C−1(·) is the inverse function
of C(t) = ∑N

j=1(1 − exp(−λ̄j t)). The differences between the fluid limits in [8] and [9] are
discussed in [8]. We find that these differences are negligible for practical purposes.

4.2. Accuracy of approximation with fluid limit

Now we study the accuracy of approximating p̄i with p̄(∞)
i . Let ri ≡ λ̄i/

∑N
j=1 λ̄j denote

the fraction of the requests for ei . We will estimate the overall average miss probability, p̄ ≡∑N
i=1 ri p̄i , with a simulation, and we will compare it against p̄(∞) ≡ ∑N

i=1 ri p̄
(∞)
i evaluated

numerically. Recall that p̄(∞)
i is defined for each T (∞)

i . We will refer to the formal average,
p̄(∞), as the overall average miss probability in the fluid limit. The error (%) of p̄(∞) is defined
as 100|p̄(∞) − p̄|/p̄.

For each data point, the simulation is run at least 20 times, where 104N requests are generated
in each run. Hence, on average, each item receives 104 requests in each run. When the 20
runs do not suffice to provide the confidence level that the estimated value is within 1% with
probability 0.95, additional runs are executed until this confidence level is achieved. Before the
first run, we warm up the system by generating requests until every item is requested at least
once. Each new run is started from the last state of the previous run.

We consider the settings where the value of λi(·) fluctuates as a trigonometric function,
λi(t) = 2 sin2(πt/σ +πi/ν), for each ei . Observe that, for any ei , the period of λi(·) is σ and
its average rate is λ̄i = 1, so that ei is expected to be requested σ times in a period. The phase
of λi(0) is chosen depending on (i mod ν). Therefore, items are classified into ν types, and
items with different types become popular (requested frequently) in different epochs.

In Figure 1, we set σ = 4 and ν = 8 for each ei . In the top row of Figure 1 the solid lines
show p̄(∞) and the crosses show p̄. The number of items, N , is set as shown in each column.
The horizontal axis represents the cache size, K . Although we have defined p̄ and p̄(∞) only
for 1 ≤ K ≤ N − 1, Figure 1 shows the range of 0 ≤ K ≤ N . Here, we define p̄ = p̄(∞) = 0
for K = 0 and p̄ = p̄(∞) = 1 for K = N . Observe that the solid lines and crosses are on top
of each other when N ≥ 128. We can see that p̄(∞) slightly underestimates p̄ for N = 32.

This high accuracy of approximation would not be obtained if the dependency of λi(t) on
t was ignored (i.e. each �i was replaced with a Poisson process having the same λ̄i as �i).
Recall that, in the settings of Figure 1, we have λ̄i = 1 for any i. Now, suppose that each item is
independently requested with a Poisson process with a common rate. Then, since each item is
equally likely to be requested at each moment, the overall miss probability would be 1 −K/N ,
which is shown with dotted lines in the top row of Figure 1. In this particular case, the overall
miss probability in the fluid limit of [8] would also agree with 1 −K/N . By Corollary 1, the
overall miss probability in our fluid limit would be 1 − (K − 1

2 )/(N − 1), which is shown with
dashed lines in the top row of Figure 1. Observe that the dotted lines and the dashed lines are
on top of each other and can be tremendously deviated from the solid line particularly when
K ≈ N/2.

The bottom row of Figure 1 shows the error (%) of p̄(∞) with solid lines. Observe that the
error of p̄(∞) is within 5% for N = 32 and within 1% for N ≥ 128. We find that, in general,
the error of p̄(∞) is smaller for a largerN . This makes intuitive sense, since the original system
approaches its fluid limit as N → ∞. We find that p̄(∞) ≤ p̄ for all of the data points in
Figure 1. Also, observe that the error of p̄(∞) is relatively large at K ≈ N/2 and K ≈ N .
The dashed lines and the dotted lines show the analogous errors when the dependency of the
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Figure 1: The accuracy of approximating p̄ with p̄(∞) when requests follow inhomogeneous Poisson
processes with λi(t) = 2 sin2(πt/4 + πi/8) for each ei , where N is set as shown in each column. In the
top row, the solid lines show p̄(∞) and the crosses show p̄. The bottom row shows the error (%) of p̄(∞).

request rates on time are ignored. These errors often exceed 5% (sometimes 14%) and are not
shown in the range of the figure.

We find that most of the qualitative findings from Figure 1 hold for other settings of λi(·). In
general, as σ becomes larger, p̄ becomes smaller, but the error of p̄(∞) is relatively insensitive
to σ . Also, we find that, for a large σ , the error of p̄(∞) has a single peak atK ≈ N/2. We find
that p̄ is less sensitive to ν than to σ , and the sensitivity to ν is hard to characterize. Overall,
we find that the error of p̄(∞) is within 5% for all cases studied with N ≥ 32.

5. Large cache asymptotics with fluid limit

In this section we study the request processes that are similar to those studied in [3], [10],
[12], and [20]. For 1 ≤ i ≤ N , let J (·) be a stationary and ergodic semi-Markov chain on a
finite state space that determines the request rate for ei at time t with λi(J (t)). Thus, given
J (·),�i is an inhomogeneous Poisson process with rate λi(J (t)) at time t . Observe that the�i
for i = 1, . . . , N are conditionally independent given J (·). Note that � is stationary, which
is also assumed in [3], [10], [12], and [20], so that the stationary miss probability exists (see
Lemma 2.1 of [20]) and agrees with the average miss probability. In Section 5.1 we state the
results of our asymptotic analysis. In Section 5.2 we provide proofs of the results.

5.1. Results

We study asymptotic characteristics of the overall average miss probability in the fluid limit,
p̄(∞)(K) ≡ ∑∞

i=1 ri p̄
(∞)
i for a cache of size K as K → ∞. We assume that N = ∞ and that∑N

j=1 λ̄j = 1 (without loss of generality), so that ri = λ̄i . Once again, recall that p̄(∞)(K) is
a formal weighted average of p̄(∞)

i for i = 1, 2, . . . , where p̄(∞)
i and p̄(∞)

j are defined with
different fluid limits for i �= j .
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We first derive p̄(∞)
i for the particular request processes under consideration with no

assumptions on λ̄1, λ̄2, . . ..

Lemma 2. Let �i(u; J ) ≡ ∫ u
0 λi(J (v)) dv, and let τi(K; J ) be the maximum u such that∑

j �=i (1 − exp(−�j(u; J ))) ≤ K − 1
2 . In addition to the conditions in Lemma 1, suppose

that �i is an inhomogeneous Poisson process with rate λi(J (t)) at time t for 1 ≤ i ≤ N ,
where J (·) is a stationary and ergodic semi-Markov chain on a finite state space. Then
limm→∞ p̄

(m)
i = E[exp(−�i(τi(K; J ); J ))λi(J (0))]/λ̄i .

Now, we consider the case when the distribution of λ̄i over i has a heavy tail. Below,
a ∼x b denotes limx→∞ a/b = 1, and a ∼<x b denotes limx→∞ a/b ≤ 1. Also, �(z) ≡∫ ∞

0 e−yyz−1 dy denotes the gamma function. We find that p̄(∞)(K) decays with a power law
as K → ∞ and is asymptotically insensitive to J (·).
Theorem 3. In addition to the conditions in Lemma 2, suppose that λ̄i ∼i c/i

α for i =
1, 2, . . . , where α > 1 and c > 0. Then p̄(∞)(K) is asymptotically insensitive to J (·) as
K → ∞, and it holds that p̄(∞)(K) ∼K cα

−1�(1 − 1/α)αK1−α .

Theorem 3, which is obtained for the fluid limit, is in agreement with the asymptotic results
for the original system derived in [10] and [20]. However, an asymptotic analysis of p̄(∞), such
as Theorem 3, appears to be simpler than the corresponding asymptotic analysis of p̄.

Next, we consider the case when the distribution of λ̄i has a light tail. This case has not
been fully investigated in the prior work. Jelenković [9] studied asymptotic properties of the
overall stationary miss probability in his fluid limit when λ̄i has the light tail, assuming that
requests follow the independent reference model (equivalently, independent Poisson processes),
but no asymptotic results are known for other request processes. We find that p̄(∞)(K) decays
exponentially as K → ∞ and is asymptotically insensitive to J (·).
Theorem 4. In addition to the conditions in Lemma 2, suppose that λ̄i ∼i c exp(−ξiβ) for
i = 1, 2, . . . , where c, ξ, β > 0. Then p̄(∞)(K) is asymptotically insensitive to J (·) as
K → ∞, and it holds that

p̄(∞)(K) ∼K ce
γ β−1ξ−1K1−β exp(−ξKβ),

where γ ≡ ∫ ∞
0 exp(−y) ln y dy ≈ 0.577 is Euler’s constant.

5.2. Proofs

We first prove Lemma 2, which will be used to prove Theorem 3 and Theorem 4.

Proof of Lemma 2. Let p̄(m)i (J ) be the conditional average miss probability for ei in T (m)
i

given J . Then p̄
(m)
i = E[p̄(m)i (J )]. Since 0 ≤ p̄

(m)
i (J ) ≤ 1, the dominated convergence

theorem can be used to show that limm→∞ p̄
(m)
i = E[limm→∞ p̄

(m)
i (J )]. By Theorem 2 we

obtain

p̄
(m)
i → 1

λ̄i
E

[
lim
T→∞

1

T

∫ T

0
exp(−�i(t, τi(t, K; J ); J ))λi(J (t)) dt

]

as m → ∞, where we define �i(t, u; J ) ≡ ∫ u
t
λi(J (v)) dv, and τi(t, K; J ) is the maximum

u such that
∑
j �=i (1 − exp(−�j(t, u; J ))) ≤ K − 1

2 . Because �i(t, τi(t, K; J ); J ) ≥ 0 for
0 ≤ t , we have 0 ≤ exp(−�i(t, τi(t, K; J ); J )) ≤ 1 for 0 ≤ t . Also, because J (·) is defined
on a finite state space, there exists λ(max) < ∞ such that 0 ≤ λi(J (t)) ≤ λ(max). Therefore, the
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dominated convergence theorem can be used to show that

lim
m→∞ p̄

(m)
i = 1

λ̄i
lim
T→∞

1

T

∫ T

0
E[exp(−�i(t, τi(t, K; J ); J ))λi(J (t))] dt.

The pair (λi(J (t)),�(t, τi(t, K; J ); J )) has the same joint distribution as the pair (λi(J (0)),
�(0, τi(0,K; J ); J )), since J (·) is stationary. Therefore, we obtain

lim
m→∞ p̄

(m)
i = 1

λ̄i
lim
T→∞

1

T

∫ T

0
E[exp(−�i(0, τi(0,K; J ); J ))λi(J (0))] dt

= 1

λ̄i
E[exp(−�i(0, τi(0,K; J ); J ))λi(J (0))],

which proves the theorem, since �i(0, u; J ) = �i(u; J ) and τi(0,K; J ) = τi(K; J ).
In our proof of Theorem 3, we will use the following three lemmas.

Lemma 3. Let J (·) be an ergodic semi-Markov chain on a finite state space. Then∣∣∣∣1

t

∫ t

0
λi(J (u)) du− λ̄i

∣∣∣∣
/
λ̄i → 0

almost surely (a.s.) as t → ∞ uniformly for i = 1, 2, . . . , where

λ̄i ≡ lim
T→∞

1

T

∫ T

0
λi(t) dt.

Lemma 4. Let gi(t) = ∑
j �=i (1 − exp(−λ̄j t)). If λ̄i ∼i c/i

α with α > 1 and c > 0, then

gi(t) ∼t c
1/α�(1 − 1/α)t1/α .

Lemma 5. Let f (t) = ∑∞
i=1 λ̄i exp(−λ̄i t). If λ̄i ∼i c/i

α with α > 1 and c > 0, then
f (t) ∼t c

1/αα−1�(1 − 1/α)t−1+1/α .

Lemma 4 is a direct consequence of Corollary 1 of [9]. Note that gi(t) is asymptotically
insensitive to i in Lemma 4, because 1 − exp(−λ̄i t) → 0 as t → ∞ for any i. Lemma 5 can
be proved similar to Lemma 3.1 of [20]. We provide proofs of Lemma 3 and Lemma 5 in
Appendix A.

Proof of Theorem 3. We first study Ci(t; J ) ≡ ∑
j �=i (1 − exp(−�j(t; J ))) as t → ∞.

Lemma 3 implies that, for any ε, there exists t0 such that, for all t > t0, we have∑
j �=i
(1 − exp(−(1 − ε)λ̄j t)) ≤ Ci(t; J ) ≤

∑
j �=i
(1 − exp(−(1 + ε)λ̄j t)) (9)

a.s. for any ei . Hence, Lemma 4 suggests that

(1 − ε)1/αc1/α�

(
1 − 1

α

)
t1/α ∼<t Ci(t; J ) ∼<t (1 + ε)1/αc1/α�

(
1 − 1

α

)
t1/α

a.s. uniformly for i = 1, 2, . . . . Taking ε → 0, we obtain

Ci(t; J ) ∼t c
1/α�

(
1 − 1

α

)
t1/α (10)

a.s. uniformly for i = 1, 2, . . . .
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Recall that τi(K; J ) is the maximum t such that Ci(t; J ) ≤ K − 1
2 . Because Ci(t; J ) is

continuous with respect to t , we have K ∼K Ci(τi(K; J ); J ). Also, because τi(K; J ) → ∞
a.s. as K → ∞, (10) implies that Ci(τi(K); J ) ∼K c

1/α�(1 − 1/α)(τi(K; J ))1/α a.s. Thus,
we have

τi(K; J ) ∼K τ(K) ≡ Kα

c�(1 − 1/α)α
(11)

a.s. uniformly for i = 1, 2, . . . .
Finally, we consider p̄(∞). The uniform convergence of (11) and Lemma 3 imply that, for

any ε, there exists K0 such that, for all K > K0, we have

(1 − ε)λ̄iτ (K) ≤ �j(τi(K; J ); J ) ≤ (1 + ε)λ̄iτ (K) (12)

a.s. for i = 1, 2, . . . . Now, Lemma 2 and inequality (12) imply that, for all K > K0, we have

p̄(∞)(K) ≤
∞∑
i=1

E[exp(−(1 − ε)λ̄iτ (K))λi(J (0))]

=
∞∑
i=1

E[λi(J (0))] exp(−(1 − ε)λ̄iτ (K))

= 1

1 − ε

∞∑
i=1

(1 − ε)λ̄i exp(−(1 − ε)λ̄iτ (K)), (13)

where the last equality (specifically, λ̄i = E[λi(J (0))]) follows from the stationality of J (·).
By Lemma 5 we obtain p̄(∞)(K) ∼<K (1 − ε)1/α−1c1/αα−1�(1 − 1/α)t−1+1/α . Similarly,
we obtain an asymptotic lower bound, p̄(∞)(K) ∼>K (1 + ε)1/α−1c1/αα−1�(1 − 1/α)t−1+1/α .
Taking ε → 0, we complete the proof of the theorem.

Our proof of Theorem 4 follows a slightly different procedure than that of Theorem 3. In
Theorem 3, an asymptotic expression for τi(K; J ) in (11) is obtained from an asymptotic
expression for Ci(t; J ) in (10). If we were to follow the same procedure as the proof of
Theorem 3, the asymptotic upper bound would not match the asymptotic lower bound in
Theorem 4. This difference stems from the fact that Ci(t; J ) is asymptotically polynomial
in Theorem 3 and asymptotically poly-logarithmic in Theorem 4. Therefore, we will study the
asymptotic property of the inverse function ofCi(t; J ), which is the same approach as the proof
of Theorem 6 of [9]. Our proof relies on Lemma 3 and the following two lemmas.

Lemma 6. Let g(t) ≡ ∫ ∞
0 (1 − exp(−λ̄x t)) dx + δ, where |δ| < ∞. If λ̄x ∼x c exp(−ξxβ),

where c, ξ, β > 0, then g−1(v + δ′) ∼v e−γ c−1 exp(ξvβ) for any |δ′| < ∞.

Lemma 7. Let f (t) ≡ ∫ ∞
0 λ̄x exp(−λ̄x t) dx. If λ̄x ∼x c exp(−ξxβ), where c, ξ, β > 0, then

f (t) ∼t (ln(ct))1/β−1ξ−1/ββ−1t−1.

Lemma 6 is a trivial extension of Lemma 6 of [9], and Lemma 7 is equivalent to Lemma 3
of [9] by Equation (7.49) of [9].

Proof of Theorem 4. We first study τi(K; J ) = C−1
i (K − 1

2 ; J ), where C−1
i (·; J ) is the in-

verse function ofCi(t; J ) ≡ ∑
j �=i (1 − exp(−�j(u; J ))). Observe that inequality (9) remains

valid for t > t0 when λ̄i has a light tail. Let

C(t, ε) ≡
∞∑
j=1

(1 − exp(−(1 + ε)λ̄j t)) =
∫ ∞

0
(1 − exp(−(1 + ε)λ̄xt)) dx,

https://doi.org/10.1239/aap/1282924064 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924064


Fluid limit for cache algorithm 829

where we extend the domain of λ̄i to nonnegative real numbers, so that λ̄x = λ̄x�. Note
that λ̄x ∼x c exp(−ξxβ). Let D(t, ε) ≡ C(t,−ε) − 1. Then inequality (9) implies that
D(t, ε) ≤ Ci(t; J ) ≤ C(t, ε) a.s. for any i and t > t0. LetC−1(·, ε) andD−1(·, ε) respectively
denote the inverse functions of C(·, ε) and D(·, ε). Since Ci(τi(K; J ); J ) = K − 1

2 , there
exists K0 such that

C−1(K − 1
2 , ε

) ≤ τi(K; J ) ≤ D−1(K − 1
2 , ε

)
a.s. for all K > K0.

Let τ̂ (K) ≡ e−γ c−1 exp(ξKβ). Applying Lemma 6 with δ = 0 and δ′ = −1 toC−1(K − 1
2 , ε),

we obtain C−1(K − 1
2 , ε) ∼K τ̂ (K)/(1 + ε). Applying Lemma 6 with δ = −1 and δ′ = −1

to D−1(K − 1
2 , ε), we obtain D−1(K − 1

2 , ε) ∼K τ̂ (K)/(1 − ε). Taking ε → 0, we obtain
τi(K; J ) ∼K τ̂ (K) uniformly for i = 1, 2, . . . .

The uniform convergence of τi(K; J ) and Lemma 3 imply that inequality (13) with τ(K)
replaced with τ̂ (K) remains valid when λ̄i has a light tail. Hence, Lemma 7 implies that

p̄(∞)(K) ∼<K
1

1 − ε

(ln((1 − ε)cτ̂ (K)))1/β−1

ξ1/ββτ̂ (K)
.

Substituting τ̂ (K) into the above inequality, we obtain

p̄(∞)(K) ∼<K
1

1 − ε

ceγ

ξβ
K1−β exp(−ξKβ)

(
1 − γ − ln(1 − ε)

ξKβ

)1/β−1

.

Similarly, we obtain an asymptotic lower bound:

p̄(∞)(K) ∼>K
1

1 + ε

ceγ

ξβ
K1−β exp(−ξKβ)

(
1 − γ − ln(1 + ε)

ξKβ

)1/β−1

.

Now the theorem follows by taking ε → 0.

6. Conclusion

We have introduced and demonstrated the usefulness of a fluid limit of a stochastic model
for LRU with possibly nonstationary and dependent request processes. In particular, our
numerical experiments show that the average miss probability derived in the fluid limit closely
approximates that in the original system for a moderate cache size. For a large cache, we find
that the average miss probability in the fluid limit often has the same asymptotic characteristics
as those in the original system and that the asymptotic analysis is often simpler in the fluid limit
than in the original system.

Our expectation is that the fluid limit and the average miss probability derived in the fluid limit
will find applications beyond those investigated in this paper. An interesting future direction is
to seek an optimal cache algorithm with dependent and nonstationary request processes in the
fluid limit. To this end, Hirade and Osogami [8] showed that, in their fluid limit, the 2Q cache
algorithm [13] can be made to have a lower miss probability than LRU by choosing the right
value of the parameter of 2Q, assuming that the requests follow independent Poisson processes.
However, it was also shown that the 2Q that has the minimum stationary miss probability can
have a high transient miss probability, which suggests the importance of studying the optimality
with nonstationary request processes.
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Appendix A. Technical lemma and proofs

Proof of Lemma 1. Since the �th request for ei is a miss if and only if at least K distinct
items are requested in (t(i)�−1, t

(i)
� ), we have

pi,� = P

(∑
j �=i

I {there exist κ such that t (i)�−1 < t(j)κ < t
(i)
� } ≥ K

)
.

Let Ei = {� | ∑
j �=i I {t (j)1 < t

(i)
1 } ≥ K}. Since there exists κ such that t (i)�−1 < t

(j)
κ < t

(i)
� if

and only if the first request for ej after time t (i)�−1 is before t (i)� , we obtain pi,� = P(θ(i)t�−1
� ∈ Ei ).

Since 0 ≤ pi,1 ≤ 1, we can calculate p̄i as the average miss probability from the second
request for ei : p̄i = limL→∞(1/(L− 1))

∑L
�=2 P(θ(i)t�−1

� ∈ Ei ) = P0,i (Ei ), which completes
the proof of the lemma.

Proof of Lemma 3. Let {1, . . . , U} be the state space of J . For 1 ≤ u ≤ U , let Vu(t; J )
be the time that J spends at state u by time t . Then, for any i, we have

∫ t
0 λi(J (u)) du =∑U

u=1 λi(u)Vu(t, J ). Let πu be the stationary probability that J is at state u. Then λ̄i =∑U
u=1 λi(u)πu for any i. Therefore, we have

∣∣∣∣1

t

∫ t

0
λi(J (u)) du− λ̄i

∣∣∣∣ =
∣∣∣∣1

t

U∑
u=1

λi(u)Vu(t, J )−
U∑
u=1

λi(u)πu

∣∣∣∣

≤
U∑
u=1

λi(u)

∣∣∣∣Vu(t, J )t
− πu

∣∣∣∣. (14)

Since J is an ergodic semi-Markov chain, Vu(t; J )/t → πu a.s. as t → ∞. Now the lemma
follows from inequality (14), since U is finite.

Proof of Lemma 5. We first consider an asymptotic upper bound for the special case where
λ̄i = c/iα . Let η(x) = cx−α exp(−ctx−α). Then η(·) is increasing in [0, (ct)1/α) and
decreasing in [(ct)1/α,∞), so that η(x) ≤ η((ct)1/α) = 1/(et). Let i0 = (ct)1/α�. Then

f (t) ≤
∫ i0

0
cx−α exp(−ctx−α) dx + 1

et
+

∫ ∞

i0

cx−α exp(−ctx−α) dx

=
∫ ∞

0
cx−α exp(−ctx−α) dx + 1

et
.

Changing the variable with y = ct/xα , we obtain

f (t) ≤ c1/αt−1+1/α

α

∫ ∞

0
e−yy−1/α dy + 1

et
.

Since the integral in the above expression is a gamma function, �(1 − 1/α), we obtain

f (t) ∼<t
c1/α�(1 − 1/α)t−1+1/α

α
. (15)

Next, we consider the general case, where λ̄i ∼i c/i
α . For any ε, there exists j0 such that

(1 − ε)c/iα < λ̄i < (1 + ε)c/iα for all i > j0. Hence,

f (t) ≤
j0∑
i=1

λ̄i exp(−λ̄i t)+
∞∑

i=j0+1

(1 + ε)ci−α exp

(
− (1 − ε)ct

iα

)
.
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Let λ� ≡ min(λ̄1, . . . , λ̄j0). Since λ̄i ≤ c for any i, we obtain

f (t) ≤ j0c exp(−λ�t)+ 1 + ε

1 − ε

∞∑
i=1

(1 − ε)ci−α exp

(
− (1 − ε)ct

iα

)
.

By inequality (15) we obtain

f (t) ∼<t
1 + ε

1 − ε

((1 − ε)c)1/α�(1 − 1/α)t−1+1/α

α
.

By taking ε → 0 we obtain f (t) ∼<t c1/αα−1�(1 − 1/α)t−1+1/α .
The corresponding asymptotic lower bound can be proved similarly, but also follows from

a simpler argument. Since e−x ≥ 1 − x for any x, we have f (t) ≥ ∑∞
i=1 λ̄i (1 − λ̄i )

t . Now
Lemma 3.1 of [20] can be used to derive the asymptotic lower bound, which completes the
proof of the lemma.

Lemma 8. Let ζ(m) ≡ (
∑M
j=0 cj exp(−jχ/m))m, where

∑M
j=0 cj = 1, |χ | < ∞, and 0 ≤

M ≤ ∞. Then ζ(m) → exp(−χ ∑M
r=0 jcj ) as m → ∞.

Proof. It suffices to show that ln ζ(m) → −χ ∑M
j=0 jcj asm → ∞. Changing the variable

with x = χ/m, we obtain

lim
m→∞ ln ζ(m) = χ lim

x↓0

ln(
∑M
j=0 cj exp(−jx))

x
.

Since ln(
∑M
j=0 cj ) = 0, we use l’Hôpital’s rule to obtain

lim
m→∞ ln ζ(m) = −χ lim

x↓0

∑M
j=0 jcj exp(−jx)∑M
j=0 cj exp(−jx) = −χ

M∑
j=0

jcj ,

where the last expression follows from
∑M
j=0 cj = 1.

Appendix B. Fluid limit defined with independent replications

In this section we prove that the dependencies in � would disappear in the fluid limit defined
with S(m). Recall that, in S(m), the �k for 1 ≤ k ≤ m are independent and identically distributed
(i.i.d.) as �. Specifically, the following proposition holds for S(∞).

Proposition 1. Suppose that �̂j = {t̂�, � ∈ Z} is identically distributed as �j for 1 ≤ j ≤ N

and that �̂1, . . . , �̂N and �i are mutually independent. Let qi,k,� be the miss probability of
the �th request for ei,k in S(m). Then

q̄
(m)
i,k ≡ lim

L→∞
1

L

L∑
�=1

q
(m)
i,k,� → P0,i

( N∑
j=1

E[I {t̂ (j )1 < t
(i)
1 } | t (i)1 ] ≥ K

)

as m → ∞ for any k.

Observe that the expression of q̄(∞)
i,k is independent of the dependencies between�i and�j

for i �= j .
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Proof of Proposition 1. Since the �k for 1 ≤ k ≤ m are i.i.d., we consider the miss
probability for ei,1. In S(m), let C̃(m)i,� be the total size of distinct items that are requested
in (t(i,1)�−1 , t

(i,1)
� ). Note that q(m)i,1,� = P(C̃(m)i,� ≥ K).

We study the convergence of C̃(m)i,� , given (t(i,1)�−1 , t
(i,1)
� ), as m → ∞ by showing the conver-

gence of its Laplace transform, ψ̃(m)i,� (s) ≡ E[exp(−sCi,�) | t (i,1)�−1 , t
(i,1)
� ] for 0 ≤ s < ∞. Let

Ĩ�(j, k) be the indicator random variable such that Ĩ�(j, k) = 1 if and only if ej,k is requested
in (t(i,1)�−1 , t

(i,1)
� ). Note that Ĩ�(i, 1) = 0. Then

ψ̃
(m)
i,� (s) = E

[
exp

(
− s

m

N∑
j=1

m∑
k=1

Ĩ�(j, k)

) ∣∣∣∣ t (i,1)�−1 , t
(i,1)
�

]

= E

[
exp

(
− s

m

N∑
j=1

Ĩ�(j, 2)

) ∣∣∣∣ t (i,1)�−1 , t
(i,1)
�

]m−1

× E

[
exp

(
− s

m

N∑
j=1

Ĩ�(j, 1)

) ∣∣∣∣ t (i,1)�−1 , t
(i,1)
�

]
,

where the last equality holds since the �k for 1 ≤ k ≤ m are i.i.d. Similar to (3), we can show
that

lim
m→∞ E

[
exp

(
− s

m

N∑
j=1

Ĩ�(j, 2)

) ∣∣∣∣ t (i,1)�−1 , t
(i,1)
�

]m−1

= exp

(
−s E

[ N∑
j=1

Ĩ�(j, 2)

∣∣∣∣ t (i,1)�−1 , t
(i,1)
�

])
.

Also, by the dominated convergence theorem, we can exchange the limit and the expectation
to obtain

lim
m→∞ E

[
exp

(
− s

m

N∑
j=1

Ĩ�(j, 1)

) ∣∣∣∣ t (i,1)�−1 , t
(i,1)
�

]
= 1.

Therefore, as m → ∞, we have ψ(m)i,� (s) → exp(−s E[∑N
j=1 Ĩ�(j, 2) | t (i,1)�−1 , t

(i,1)
� ]).

Now, the continuity theorem and the linearity of expectation imply that, asm → ∞, we have
C̃
(m)
i,�

d−→ ∑N
j=1 E[Ĩ�(j, 2) | t (i,1)�−1 , t

(i,1)
� ]. Since �1 and �2 are independent in S(m), it follows

that C̃(∞)
i,� does not depend on the dependencies in the �. In particular, Ĩ�(j, 2) is identically

distributed as I {there exists κ such that t (i)�−1 < t̂
(j)
κ < t

(i)
� } given (t(i)�−1, t

(i)
� ). Therefore, we

have

q
(m)
i,k,� = P(C̃(m)i,� ≥ K)

→ P

( N∑
j=1

E[I {there exists κ such that t (i)�−1 < t̂(j)κ < t
(i)
� } | t�−1, t�] ≥ K

)
.

Now the proposition can be proved in the same way as Lemma 1.
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