EQUIVALENT CONDITIONS FOR A RING TO BE A MULTIPLICATION RING

JOE LEONARD MOTT

In this paper a ring will always mean a commutative ring with identity element. Furthermore, a ring R is called a multiplication ring if, whenever A and B are ideals of R and A is contained in B, there is an ideal C such that $A=B C$. Noetherian multiplication rings have been studied by Asano (1), Krull (4, 5), and Mori (6, 7). Krull also studied non-Noetherian multiplication rings (3). In (8, 9), Mori studied non-Noetherian multiplication rings which did not necessarily contain an identity element.

The notation and terminology used will be in general that of (10). In particular, the symbol \subset will mean "contained in or equal," $<$ will denote proper containment, and $\not \subset$ will mean "not contained in or equal." If A is an ideal of R and P is a minimal prime ideal of A, then the intersection of all P-primary ideals containing A is called an isolated P-primary component of A (2, p. 737). The intersection of all isolated primary components of A is called the kernel of A (2, p. 738).

This paper is concerned with equivalent conditions for a ring to be a multiplication ring. The conditions are contained in the following theorem.

Theorem. The following statements are equivalent:
(I) A ring R is a multiplication ring.
(II) If P is a prime ideal of R containing an ideal A, then there is an ideal C such that $A=P C$.
(III) R is a ring in which the following three conditions are valid:
(a) every ideal is equal to its kernel,
(b) every primary ideal is a power of its radical, and
(c) if P is a minimal prime ideal of an ideal B and n is the least positive integer such that P^{n} is an isolated primary component of B and if $P^{n} \neq P^{n+1}$, then P does not contain the intersection of the remaining isolated primary components of B.

Proof. If R is a multiplication ring, then II follows. Therefore, suppose II is valid in R. The following properties (i) through (x) are consequences of II:
(i) For any ideal A of $R, R / A$ satisfies II.
(ii) If R is an integral domain, then R is a Dedekind domain.

[^0](iii) There are no ideals between a maximal ideal M and its square (1, p. 85). Furthermore, there are no ideals between M and M^{n} except powers of M, and R / M^{n} is a special primary ring ($1, \mathrm{p} .83$).
(iv) There is no prime ideal chain $P_{1}<P_{2}<P_{3}<R$.

If P_{1}, P_{2}, and P_{3} are prime ideals such that $P_{1} \subset P_{2}<P_{3}<R$, then in the Dedekind domain $R / P_{1}, \quad P_{2} / P_{1}<P_{3} / P_{1}$, and therefore $P_{2} / P_{1}=P_{1} / P_{1}$. Consequently, $P_{1}=P_{\text {. }}$.
(v) If M is a proper maximal ideal properly containing the prime ideal P, then

$$
P=\bigcap_{n=1}^{\infty} M^{n}
$$

and $M P=P$.
In $\bar{R}=R / P$,

$$
(0)=\bar{P}=\bigcap_{n=1}^{\infty} M^{n}
$$

and, consequently,

$$
P \supset \bigcap_{n=1}^{\infty} M^{n}
$$

Since $P \subset M$, there is an ideal C such that $P=M C$. Using the fact that P is a prime ideal and $M \not \subset P$, it follows that $C \subset P$, and $P=M P$. Therefore $P=M P=M^{2} P$, etc., so that

$$
P \subset \bigcap_{n=1}^{\infty} M^{n}
$$

Hence

$$
P=\bigcap_{n=1}^{\infty} M^{n} .
$$

(vi) Every ideal is equal to its kernel.

If A is an ideal of R, suppose $A \neq A^{*}$, where A^{*} denotes the kernel of A. Let $a \in A^{*} \backslash A$, and consider the ideal $A^{\prime}=A:(a)$. Let M be a minimal prime ideal of A^{\prime}; then by a theorem of Krull (2, p. 738), M properly contains a minimal prime ideal P of A. Thus M is a maximal ideal,

$$
P=\bigcap_{n=1}^{\infty} M^{n}
$$

and $P=M P$. Since $A^{\prime} \subset M$, there is an ideal C such that $A^{\prime}=M C$. If $C \subset A^{\prime}$, then $A^{\prime}=M A^{\prime}=M^{2} A^{\prime}$, etc., so that

$$
A^{\prime} \subset \bigcap_{n=1}^{\infty} M^{n}=P
$$

This would imply that M is not a minimal prime ideal of A^{\prime}. Therefore, $C \not \subset A^{\prime}$, and hence $(a) C \not \subset A$. On the other hand, $(a) C \subset(a) \subset P$ since $a \in A^{*}$. As a consequence, there is an ideal S such that

$$
(a) C=P S=M P S=M(a) C=(a) A^{\prime} \subset A
$$

This contradiction proves $A=A^{*}$.
(vii) If M is a proper maximal ideal, and if A is an ideal contained in M^{n}, then there is an ideal C such that $A=M^{n} C$. Furthermore, if $A \not \subset M^{n+1}$, then $C \not \subset M$.

The proof of the above statement will be by induction. The statement is obviously true for $n=1$. Suppose $A \subset M^{k}$ implies $A=M^{k} C$. Then if $A \subset M^{k+1}, A=M^{k} C$ since $M^{k+1} \subset M^{k}$. If $M^{k+1}=M^{k}$, obviously $A=M^{k+1} C$. Suppose that $M^{k+1} \neq M^{k}$. Since M^{k+1} is an M-primary ideal containing $A=M^{k} C$ and $M^{k} \not \subset M^{k+1}$, it follows that $C \subset M$. Hence $C=M C^{\prime}$ and $A=M^{k+1} C^{\prime}$.

If $A \subset M^{n}$ and $A \not \subset M^{n+1}$, then $A=M^{n} C$ by the above, but $C \not \subset M$ because if $C \subset M$, then $C=M B$ and this would imply that $A=M^{n+1} B \subset$ M^{n+1}.
(viii) If M is a maximal ideal and $M^{n} \neq M^{n+1}$ for each positive integer n, then

$$
P=\bigcap_{n=1}^{\infty} M^{n}
$$

is a prime ideal.
Suppose $x \notin P$ and $y \notin P$. Then there are positive integers k and n such that $x \in M^{k}$ and $y \in M^{n}$, but $x \notin M^{k+1}$ and $y \notin M^{n+1}$. Consequently, there are ideals B and C, not contained in M, such that $(x)=M^{k} B$ and $(y)=M^{n} C$. Therefore, $(x y)=M^{n+k} B C$, where $B C \not \subset M$. As a result, $x y \notin P$ and P is a prime ideal.
(ix) If Q is a P-primary ideal, then Q is a power of P.

It is well known that if P is a non-maximal prime ideal in a ring in which every ideal is equal to its kernel, then $P=P^{2}$ and $Q=P$ (9, p. 99). Assume P is a maximal ideal. The following two cases will be considered: $(a) P^{n} \neq P^{n+1}$ for every positive integer n and (b) $P^{n}=P^{n+1}$ for some positive integer n.

If $P^{n} \neq P^{n+1}$ for each positive integer n, then Q is not contained in every power of P since Q is not contained in the prime ideal

$$
P^{\prime}=\bigcap_{n=1}^{\infty} P^{n} .
$$

Therefore, there is an integer k such that $Q \subset P^{k}$ but $Q \not \subset P^{k+1}$. This implies $Q=P^{k} C$, where $C \not \subset P$. If C is a proper ideal of R, any proper prime divisor P of C must contain Q and hence must contain the maximal ideal P. This would imply $P=P^{\prime}$ and therefore $C \subset P$. This contradiction shows that $C=R$ and $Q=P^{k}$.

If $P^{n}=P^{n+1}$ for some integer n, suppose k is the least positive integer such that $P^{k}=P^{k+1}$. There are two cases to consider here. Either $Q \subset P^{k}$ or $Q \not \subset P^{k}$.

If $Q \subset P^{k}=P^{2 k}$, then for each $a \in P^{k}$ there is an ideal C such that $(a)=$ $P^{k} C=P^{2 k} C=P^{k}(a)$. Therefore, there is an element $p \in P$ such that $a=$ $p a=p^{2} a$, etc. Consequently, $a \in Q$ since $p^{s} \in Q$ for some integer s. Hence $P^{k} \subset Q$ and, as a result, $Q=P^{k}$.

If $Q \neq P^{k}$, then $Q+P^{k}$ is a P-primary ideal properly containing P^{k} ($\mathbf{1 0}$, p. 154). Therefore, by (iii) $Q+P^{k}=P^{t}$ for some integer $t>k$. Thus, there is an integer m such that $t \geqslant m>k$ and $Q \subset P^{m}$ but $Q \not \subset P^{m+1}$. There is an ideal C such that $Q=P^{m} C$ and $C \not \subset P$. As before, it will follow that $C=R$ and $Q=P^{m}$.
(x) If P is a minimal prime ideal of an ideal B and n is the least positive integer such that P^{n} is an isolated primary component of B andi f $P^{n} \neq P^{n+1}$, then P does not contain the intersection of the remaining isolated primary components of B.

Since B is equal to its kernel, let $B=P^{n} \cap B^{\prime}$, where

$$
B^{\prime}=\bigcap_{\alpha} P_{\alpha}^{n_{\alpha}}
$$

is the intersection of all the isolated primary components of B except P^{n}, Since $B \subset P^{n}$ and $B \not \subset P^{n+1}$, there is an ideal C such that $B=P^{n} C$, where $C \not \subset P$. It follows that $C \subset P_{\alpha}{ }^{n_{\alpha}}$ for each α since $B \subset P_{\alpha}{ }^{n_{\alpha}}$ and $P^{n} \not \subset P_{\alpha}$. Therefore $C \subset B^{\prime}$ and $B^{\prime} \not \subset P$ since $C \not \subset P$.

Properties (vi), (ix), and (x) show that II implies III.
Assume III is valid and A and B are ideals such that $A<B$. Since A and B are equal to their kernels, let

$$
B=\left(\bigcap_{\alpha} P_{\alpha}^{\lambda_{\alpha}}\right) \cap\left(\bigcap_{\beta} P_{\beta}^{\prime \sigma_{\beta}}\right)
$$

and

$$
A=\left(\bigcap_{\alpha} P_{\alpha}^{\mu_{\alpha}}\right) \cap\left(\cap_{\tau} P_{\tau}^{\prime, \nu_{\tau}}\right)
$$

where $P^{\prime \prime}$ is a minimal prime ideal of A but not of B, P^{\prime} is a minimal prime ideal of B but not of A, and P is a minimal prime ideal of both A and B. Also, the exponents $\lambda_{\alpha}, \mu_{\alpha}, \sigma_{\beta}$, and ν_{τ} denote the least positive integers such that $P_{\alpha}{ }^{\lambda_{\alpha}}, P_{\beta}{ }^{\prime \sigma_{\beta}}$ are isolated primary components of B and $P_{\alpha}{ }^{\mu_{\alpha}}, P_{\tau}{ }^{\prime \prime \nu_{\tau}}$ are isolated primary components of A. Clearly $\lambda_{\alpha} \leqslant \mu_{\alpha}$ for each α since $P_{\alpha}{ }^{\mu_{\alpha}} \subset P_{\alpha}{ }^{\sigma_{\alpha}}$. Let

$$
C=\left(\bigcap_{\alpha} P_{\alpha}^{\mu_{\alpha}-\lambda_{\alpha}}\right) \cap\left(\bigcap_{\tau} P_{\tau}^{\prime \prime v_{\tau}}\right) .
$$

Then for $x \in B C$,

$$
x=\sum_{i=1}^{n} b_{i} c_{i},
$$

where $b_{i} \in B$ and $c_{i} \in C$ for each i. Therefore $b_{i} \in P_{\alpha}{ }^{\lambda_{\alpha}}, c_{i} \in P_{\alpha}{ }^{\mu_{\alpha}-\lambda_{\alpha}}$, and $c_{i} \in P_{\tau}{ }^{\prime \prime \nu \tau}$ for each α, τ, and consequently $b_{i} c_{i} \in P_{\alpha}^{\mu_{\alpha}}$ and $b_{i} c_{i} \in P_{\tau}{ }^{\prime \prime \nu} \tau$. Hence $x \in P_{\alpha}^{\mu_{\alpha}}$ and $x \in P_{\tau}{ }^{\prime \prime \nu_{\tau}}$ for each α, τ, and, as a result, $B C \subset A$. It is obvious that $A \subset C$.

Any minimal prime ideal P of $B C$ must contain B or C. If $B \subset P$, then P is a minimal prime of B and also of A. Hence $P=P_{\alpha}$ for some α. If $B \not \subset P$, then $C \subset P$ and P is a minimal prime ideal of A and also of C. In this case $P=P_{\tau}^{\prime \prime}$ for some τ. In particular, any minimal prime ideal of $B C$ must be a minimal prime ideal of A. Therefore, let

$$
B C=\left(\bigcap_{\alpha} P_{\alpha}^{\mu_{\alpha^{\prime}}}\right) \cap\left(\cap_{\tau} P_{\tau}^{\prime \prime \nu_{\tau}^{\prime}}\right)
$$

be the kernel of $B C$ and let $\mu_{\alpha}{ }^{\prime}$ and $\nu_{\tau}{ }^{\prime}$ be the minimal exponents such that $P_{\alpha}^{\mu_{\alpha}{ }^{\prime}}$ and $P^{\prime \prime \nu_{r}^{\prime}}$ are isolated primary components of $B C$. Clearly, $\mu_{\alpha} \leqslant \mu_{\alpha}{ }^{\prime}$ and $\nu_{\tau} \leqslant \nu_{\tau}^{\prime}$. Furthermore, $P^{\prime \prime \nu_{\tau}}$ is an isolated primary component of C, since $A \subset C \subset P^{\prime \prime \nu_{\tau}}$ and $P^{\prime \prime \nu_{\tau}}$ is an isolated primary component of A. Thus, since $B \not \subset P_{\tau}{ }^{\prime \prime}$ and $B C \subset P_{\tau}{ }^{\prime \prime \nu_{\tau}^{\prime}}$, it follows that $C \subset P^{{ }^{\prime \prime} \nu_{\tau}^{\prime}}$. This being the case, one concludes that $\nu_{\tau}^{\prime} \leqslant \nu_{\tau}$ and hence $\nu_{\tau}^{\prime}=\nu_{\tau}$. If $P_{\alpha}{ }^{\mu_{\alpha}}=P_{\alpha}{ }^{\mu_{\alpha}+1}$, then clearly $\mu_{\alpha}=\mu_{\alpha}{ }^{\prime}$. Suppose that $P_{\alpha}{ }^{\mu_{\alpha}} \neq P_{\alpha}{ }^{\mu_{\alpha}+1}$. Since every ideal is equal to its kernel, every non-maximal prime is idempotent. Thus, one sees that P_{α} is a maximal ideal. Let

$$
\begin{aligned}
& C^{\prime \prime}=\left(\bigcap_{\delta \neq \alpha} P_{\delta}^{\mu_{\delta}-\lambda_{\delta}}\right) \cap\left(\cap_{\tau} P_{\tau}^{\prime, \nu_{\tau}}\right), \\
& B^{\prime}=\left(\bigcap_{\delta \neq \alpha} P_{\delta}^{\lambda_{\delta}}\right) \cap\left(\bigcap_{\beta}^{\prime} P_{\beta}^{\prime \sigma_{\beta}}\right)
\end{aligned}
$$

and

$$
A^{\prime}=\left(\bigcap_{\delta \neq \alpha} P_{\delta}^{\mu_{\delta}}\right) \cap\left(\bigcap_{\tau} P_{\tau}^{\prime \nu_{\tau}}\right)
$$

Then by $\operatorname{III}(c), P_{\alpha} \not \supset A^{\prime}$, and since P_{α} is maximal, $P_{\alpha}{ }^{{ }_{\alpha}}+A^{\prime}=R$. Thus $A=P_{\alpha}^{{ }^{\mu_{\alpha}}} \cap A^{\prime}=P_{\alpha}{ }^{\mu_{\alpha}} \cdot A^{\prime}$. Similarly $B^{\prime} \not \subset P, P_{\alpha}^{\lambda_{\alpha}}+B^{\prime}=R$, and $B=P_{\alpha}^{\lambda_{\alpha}} \cap B^{\prime}$ $=P_{\alpha}^{\lambda_{\alpha}} \cdot B^{\prime}$. One sees that $C^{\prime} \not \subset P_{\alpha}$ since $A^{\prime} \subset C^{\prime}$ and $A^{\prime} \not \subset P_{\alpha}$. Therefore,

$$
P_{\alpha}^{\mu_{\alpha}-\lambda_{\alpha}}+C^{\prime}=R \quad \text { and } \quad C=P_{\alpha}^{\mu_{\alpha}-\lambda_{\alpha}} \cap C^{\prime}=P_{\alpha}^{\mu_{\alpha}-\lambda_{\alpha}} \cdot C^{\prime} .
$$

As a consequence, $B C=P_{\alpha}^{\mu_{\alpha}} \cdot B^{\prime} C^{\prime}$ where $B^{\prime} C^{\prime} \not \subset P_{\alpha}$. Thus $P_{\alpha}{ }^{\mu_{\alpha}}$ is an isolated primary component of $B C$ and $\mu_{\alpha}=\mu_{\alpha}^{\prime}$. We have shown that $\mu_{\alpha}=\mu_{\alpha}{ }^{\prime}$ and $\nu_{\tau}=\nu_{\tau}^{\prime}$ for each α, τ. Thus the kernels of $B C$ and A are equal and hence $B C=\mathrm{A}$. Then I follows from III and the proof of the theorem is complete.

As a corollary to this theorem, a generalization of a theorem due to Asano (1, p. 85) can be given.

Corollary. If R is a ring in which
(1) to every ideal A contained in a prime ideal P there is an ideal C such that $A=P C$, and
(2) $(0)=Q_{1} \cap Q_{2} \ldots \cap Q_{n}$, where Q_{i} is P_{i}-primary for each i, then R is a direct sum of finitely many Dedekind domains and special primary rings. Consequently every ideal is a product of prime ideals (1, p. 83).

Proof. Suppose the representation of the 0-ideal is an irredundant representation and $P_{i} \neq P_{j}$ for $i \neq j$. By the theorem above, R is a multiplication ring,
and from the properties of a multiplication ring, one sees that $Q_{i}+Q_{j}=R$ for $i \neq j$. Therefore, R is a direct sum, $R=R_{1} \oplus R_{2} \ldots \oplus R_{n}$, where R_{i} is isomorphic to R / Q_{i}. If P_{i} is non-maximal, then $Q_{i}=P_{i}$ and R / Q_{i} is a Dedekind domain. If P_{i} is maximal, then Q_{i} is a power of P_{i} and R / Q_{i} is a primary ring in which there are no ideals between the unique maximal ideal and its square. In this case, R / Q_{i} is a special primary ring.

It is well known that a multiplication ring is a subring of a cartesian product of Dedekind domains and special primary rings (3, p. 323). The following example, suggested to the author by Professor L. I. Wade, is an example of a multiplication ring which is not equal to a cartesian product of Dedekind domains and special primary rings.

Let R denote the set of all sequences $a=\left\{a_{i}\right\}$ where the a_{i} are taken from the field of two elements and $a_{n}=a_{n+1}=a_{n+2}=\ldots$ for some n. For $a=\left\{a_{i}\right\}$ and $b=\left\{b_{i}\right\}$, define $a+b=\left\{a_{i}+b_{i}\right\}$ and $a \cdot b=\left\{a_{i} b_{i}\right\}$. Thus R is a ring in which every element is idempotent. Consequently if A is an ideal of R contained in the ideal $B, A=B A$. It is clear that R is a subring of the cartesian product R^{\prime} of countably many copies of the field of integers modulo 2. However, $R \neq R^{\prime}$, since R^{\prime} contains uncountably many elements and R contains only countably many elements.

References

1. Keizo Asano, Über kommutative Ringe, in denen jedes Ideal als Produkt von Primidealen darstellbar ist, J. Math. Soc. Japan, 1 (1951), 82-90.
2. Wolfgang Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingung, Math. Ann., 29 (1928), 729-744.
3. ——— Über allgemeine Multiplikationsringe, Tohoku Math. J., 41 (1936), 320-326.
4. ——Über den Aufbau des Nullideals in ganz abgeschlossenen Ringen mit Teilerkettensatz, Math. Ann., 102 (1926), 363-369.
5. —Über Multiplikationsringe, Sitzber. Heidelberg. Akad. Wiss. Abhandl. 5 (1925), 13-18.
6. Shinziro Mori, Allgemeine Z.P.I. Ringe, J. Sci. Hiroshima Univ., Ser. A, 10 (1940), 117136.
7. - Axiomatische Begründung des Multiplikationsringes, J. Sci. Hiroshima Univ., Ser. A, 3 (1932), 45-59.
8. -_Über allgemeine Multiplikationsringe I, J. Sci. Hiroshima Univ., Ser. A, 4 (1934), 1-26.
9. ——Über allgemeine Multiplikationsringe II, J. Sci. Hiroshima Univ., Ser. A, 4 (1934), 33-109.
10. O. Zariski and P. Samuel, Commutative algebra, vol. I (New York, 1958).

Louisiana State University
Baton Rouge, Louisiana

[^0]: Received March 18, 1963. This paper is based on some of the research done for a doctoral dissertation written under the direction of Professor H .S. Butts and to be submitted to Louisiana State University in May, 1963. The author is indebted to Professor Butts for guidance and encouragement.

