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Summary

Mutation-selection balance in a multi-locus system is investigated theoretically, using a
modification of Bulmer’s infinitesimal model of selection on a normally-distributed quantitative
character, taking the number of mutations per individual (n) to represent the character value. The
logarithm of the fitness of an individual with » mutations is assumed to be a quadratic, decreasing
function of n. The equilibrium properties of infinitely large asexual populations, random-mating
populations lacking genetic recombination, and random-mating populations with arbitrary
recombination frequencies are investigated. With ‘synergistic’ epistasis on the scale of log fitness,
such that log fitness declines more steeply as n increases, it is shown that equilibrium mean fitness
is least for asexual populations. In sexual populations, mean fitness increases with the number of
chromosomes and with the map length per chromosome. With ‘diminishing returns’ epistasis, such
that log fitness declines less steeply as # increases, mean fitness behaves in the opposite way.
Selection on asexual variants and genes affecting the rate of genetic recombination in random-
mating populations was also studied. With synergistic epistasis, zero recombination always appears
to be disfavoured, but free recombination is disfavoured when the mutation rate per genome is
sufficiently small, leading to evolutionary stability of maps of intermediate length. With synergistic
epistasis, an asexual mutant is unlikely to invade a sexual population if the mutation rate per
diploid genome greatly exceeds unity. Recombination is selectively disadvantageous when there is
diminishing returns epistasis. These results are compared with the results of previous theoretical

studies of this problem, and with experimental data.

1. Introduction

The problem of the evolutionary significance of sexual
reproduction and genetic recombination has recently
attracted a great deal of attention. Under many
biological circumstances, an asexual lineage is
expected to have a reproductive advantage over an
asexual random-mating, ancestral population, due to
the “cost of sex’ (Lloyd, 1980; Maynard Smith, 1978).
Many theories of possible countervailing advantages
of sex have been devised, and tests attempted using
both experimental and comparative methods
(Charlesworth, 1989; Michod & Levin, 1988 ; Stearns,
1987). One of the most attractive theories depends on
the generation of genetic variation by mutation to
deleterious alleles at a large number of loci scattered
throughout the genome (Kondrashov, 1988). If each
locus affects fitness independently of the others (i.e.
fitnesses are multiplicative across loci), then the mean
fitness of an infinite population at equilibrium between
selection and mutation is known to be independent of
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the presence or absence of sexual reproduction, being
equal to exp— U, where U is the per genome rate of
mutation to deleterious mutations (Crow, 1970;
Kimura & Maruyama, 1966). It appears likely, but
has never been formally proved except in the case of
two loci (Feldman er al. 1980), that under this mode
of selection a modifier of the rate of genetic re-
combination in a sexual species will be neutral.

If, however, fitness effects deviate from multipli-
cativity, then equilibrium mean fitness depends on the
mode of reproduction. From the study of special
cases, it seems that ‘synergistic’ epistasis, such that
log fitness falls off faster than linearly with the number
of deleterious alleles carried by an individual, leads to
the mean fitness of a sexual population exceeding
exp— U, whereas the mean fitness of an asexual
population remains the same (Crow, 1970; Kimura &
Maruyama, 1966; Kondrashov, 1982). Truncation
selection is a special form of this type of selection, and
has been much studied in this context (Crow &
Kimura, 1979 ; Kondrashov, 1982, 1984, 1985, 1988).
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The converse appears to be true when log fitness falls
off more slowly than linearly with the number of
deleterious alleles carried by an individual
(‘diminishing returns’ epistasis). From numerical
studies, it seems that a genetic modifier increasing the
rate of recombination will often be favoured in a
random-mating population under the synergistic
model (Kondrashov, 1984). Analytic results on this
have only been obtained for the case of a pair of loci
(Feldman ez a/l. 1980). The consequences of mutation-
selection balance with synergistic epistasis have also
been explored in relation to the evolution of trans-
formation in bacteria (Redfield, 1988) and divided
genomes in RNA viruses (Chao, 1988; Nee, 1989 ; Nee
& Maynard Smith, 1990).

Since mutation to deleterious alleles is a universal
phenomenon, and the net rates per genome of such
mutations are known to be substantial in higher
organisms (Simmons & Crow, 1977), it is important to
have a clear understanding of the consequences of this
process for the evolution of breeding systems
(Kondrashov, 1988). In addition, evidence for the
existence of synergistic effects of mutant genes on
fitness components (Crow, 1970; Simmons & Crow,
1977) provides grounds for believing that an advantage
to sexual reproduction and genetic recombination
arises from the maintenance of deleterious alleles by
mutation.

The purpose of the present paper is to study both
population mean fitness, and selection on modifiers of
the rate of recombination, under mutation-selection
balance in a multi-locus system. Quantitative genetic
theory for an infinite number of loci (Bulmer, 1980) is
used, treating the number of deleterious mutations
carried by individuals as a normally distributed,
metrical trait- In order to preserve normality of the
distribution after selection, the special case when log
fitness is a quadratic function of the number of
mutations is studied. The adequacy of the normal
approximation is tested by comparing population
properties calculated by the approximate method with
those obtained for some limiting cases by exact
recursion relations.
selection can indeed confer a large advantage of
sexual versus asexual reproduction at the level of
population mean fitness, if the per genome mutation
rate is sufficiently large. However, a large component
of this arises from the effects of segregation, not
recombination. Accordingly, selection on modifiers of
recombination is generally weak, especially when
there are several chromosomes per genome, although
selection always favours non-zero rates of recom-
bination under biologically reasonable conditions.

2. Properties of equilibrium populations under
mutation-selection balance
(i) Assumptions of the model

An infinitely large population of diploid individuals is
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assumed. The cases of strictly asexual reproduction,
and of random mating sexual diploid individuals, are
considered. Recurrent mutation to deleterious muta-
tions at a large number of loci is assumed to occur at
a rate U per diploid genome per generation (U =
2 mu, where m is the total number of mutable loci and
4 is the mutation rate per locus from wild-type to
mutant allele). Mutations are assumed to be partially
dominant and present at low frequency in the
population, so that their elimination exclusively
involves heterozygotes. It is assumed that the number
of new mutant genes present in a new diploid
individual follows a Poisson distribution with
mean U.

The fitness of an individual carrying n heterozygous
mutations is assumed to be given by the function

w(n) = exp— (an+ 3pn?). e))

This is related to the quadratic fitness function studied
by Kimura & Maruyama (1966) and Crow (1970), but '
has the advantage that normal distribution theory can
be used in the development of the model (see below).
Since the case of deleterious mutations is being
considered, « is assumed to be positive. Positive f
corresponds to synergistic interactions between
mutations at different loci on the scale of log fitness;
B =0 corresponds to the case of multiplicative
fitnesses; negative B corresponds to ‘diminishing
returns’ epistasis (cf. Kimura & Maruyama, 1966).
This fitness expression is, however, only realistic for
negative # values when n < —a/f, since fitness starts
to increase with n above this threshold. All numerical
of studies of diminishing returns epistasis were
conducted with parameter values such that nearly all
individuals in the population fell below the threshold.
The exact numerical results reported below (Tables
1-3) were little affected by replacing eqn (1) with a
function in which fitness is independent of » for
n>-—a/p.

These selection parameters can be related as follows
to empirical estimates obtained by Crow (1970) from
data of Mukai (1969) on the decline in viability of
homozygous second chromosomes of Drosophila
melanogaster, due to the accumulation of deleterious
mutations. Crow fitted a quadratic model relating
egg-to-adult viability to the number of homozygous
mutations, such that a and b are the linear and
quadratic coefficients respectively. Both coefficients
were found to be close to 0-01, for the detrimental
mutations of minor effect constituting the bulk of
newly arising mutational variation. With such weak
effects, the logarithm of fitness behaves similarly to
fitness, unless the number of mutations is high. If the
coefficient of dominance is h, on the assumption that
heterozygous effects on fitness follow the same curve
as homozygous ones, we can thus write « = ha and
£ = 2h*b (Crow, 1970). Since there is strong evidence
that most detrimental mutations are partially rather
than completely recessive (Simmons & Crow, 1977), h
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‘can reasonably be assumed to be substantially greater

than zero. Many of the numerical studies described
below assume # = 0-2. With a = b = 0-01, this yields
values of a and 8 of 2 x 1072 and 8 x 107 respectively.
These will be referred to as the standard values of the
selection parameters in what follows. :

The approximate analytic treatment of both the
asexual and sexual cases assumes that the total number
of mutations per individual at the start of a generation
follows a normal distribution ¢(n), with mean 7 and
variance V. As a result of selection according to eqn
(1), the distribution within this generation after
selection is again normal, with mean 7* and variance
V*. Expressions for the changes in mean and variance
are given in the Appendix, as is the mean fitness of the
population, w. The effect of mutation is to change the
mean and variance by U.

The variance of n at the start of a generation can be
partitioned into the genic (additive) variance V,,
which is the sum of the variances contributed by each
locus, and a residual term. In a random-mating
population, the residual term C, = V-V, is attribu-
table to linkage disequilibrium (Bulmer, 1980, p. 158).
Given the assumption of low frequencies of mutant
- alleles at each locus, copy number would obey a
Poisson distribution in the absence of linkage dis-
equilibrium, and so V, in a given generation is equal
to the mean copy number #. The effects of selection
and reproduction on the transition between gener-
ations depends on the mode of reproduction, and so
the cases of sexual and asexual reproduction must be
considered separately.

(ii)) Asexual populations

Asexual reproduction is assumed here to mean that
offspring genotypes are identical to those of their

Table 1. Equilibrium properties of asexual populations
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parents. The exact recurrence relations for this case
for a general fitness function are given by Kimura &
Maruyama [1966, eqn (3.1)]. They are intractable as
far as the equilibrium solution for the distribution of
the numbers of mutations is concerned, except when
fitnesses are multiplicative. In this case, a Poisson
distribution of number of mutations per individual
with mean and variance U/a is maintained at
equilibrium (Haigh, 1978). It is also known that the
mean fitness of an equilibrium population is exp— U,
regardless of the form of the fitness function (Kimura
& Maruyama, 1966).

Using the normal approximation, an equilibrium
solution under the fitness function of eqn (1) can be
derived as follows. The change in mean copy number
per generation is

V(ee + )

e 17

+U. 2)
Equating this to zero, we obtain the equilibrium
relation

U—WV(a—pU)

Hn= T—. ) (3)
Using equation.(A 2) of the Appendix, and the fact
that Inw = — U, we also have

=In(l +ﬁV)— {a V—2an— gn?}. (4)

/)’V

These equations allow the equilibrium values of the
mean and variance in number of mutations per
individual to be calculated, substituting the expression
for the mean from eqn (3) into eqn (4), and solving the
resulting equation by Newton—-Raphson iteration.
The accuracy of the normal approximation can be
checked by comparing the results of these calculations

Exact results

Approximate results

(a) Effect of mutation rate [a = 0-01, b = 001, h = 0-2 (a = 0-002, g = 0-0008)]

U w T, V Skewness Kurtosis w i V
50 0-007 111 56-0 0-046 2:992 0-007 112 573
2:0 0136 69-0 364 0-058 3-007 0135 69-0 360
1-5 0224 59-3 314 0-091 3-009 0223 593 311
1-0 0-369 47-8 255 0-101 3-010 0-368 47-8 253
05 0-608 329 17-9 0-120 3-015 0-607 329 17-9
01 0-906 132 7-88 0-184 3-032 0-905 133 796

(b) Effect of deviations from multiplicativity [U = 1-0, @ = 0-1 (a = 0-02)]

b w 7] Vv Skewness Kurtosis w n vV

—000125 0368 593 71-7 0178 3-046 0-368 593 70-6

—0-001 0-368 570 653 0-165 3-037 0-368 570 64-4

—0-0005 0-368 534 565 0-150 3025 0-368 533 558
0 0-368 50-5 50-5 0-141 3-020 0-368 50-0 50-0
0-01 0-368 31-2 22-8 0-122 2:994 0-368 312 226
0-05 0-368 182 11-4 0-162 3027 0-368 182 11-3
01 0-368 13-8 832 0-190 3-036 0-368 13-8 819
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with the exact equilibrium solutions obtained by
iteration of eqn (3.1) of Kimura & Maruyama (1966).
Some examples are shown in Table 1, where the
skewness and kurtosis of the distributions for the
exact solution are also shown, as a check on the
validity of the normal approximation. Only a narrow
range of negative b values is shown, as no equilibrium
exists when b < 0 [see section 2(iv) below]. It will be
seen that, providing selection is fairly weak, there is
remarkably good agreement between the exact and
approximate solutions even when the mutation rate is
so small that there is an appreciable departure from
normality for the distribution of numbers of new
mutations. The mean fitness of the population depends
only on the mutation rate, as expected, despite the fact
that the equilibrium means and variances of the
number of mutations per individual are strongly
affected by the selection parameters.

(i) Sexual populations with no recombination

In this situation, the haploid genome is composed of
a single chromosome with no recombination. Seg-
regation takes place in diploid individuals, in the
absence of any recombination. New diploid indivi-
duals are formed by random union of gametes, such
that the frequency of individuals carrying i mutations
from one parent and j from the other is x, x;, where x,
represents the frequencies of gametes carrying i
mutations. The exact recurrence relations for the
gamete frequencies are as follows (Kimura &
Maruyama, 1966):

m

X;
xF =23 xwy, (5a)
Wimo
LIy %
x = (exp—30) g 8 (5b)

o =Nt
where w,; is the fitness of individuals with i and j
mutations, and x} and x; are the gamete frequencies
following selection and mutation respectively.

A normal approximation to the equilibrium pre-
dicted by these equations can be obtained by using the
recurrence relation from eqn (54) for i = 0 to write

w = (exp—3U) X x,wy,. (6)
j=0

With the fitness model used above, we have w,, =
exp—j(e+14)). Hence, the sum in eqn (6) can be
approximated by the integral of the product of w,,
with the probability density of the normal variate x,
drawn from a distribution with mean 47 and variance
1V, the mean and variance for the gametes. Using eqn
(A 2) for the mean fitness in equation (6), we obtain
the following equation, analogous to eqn (4)

1+ 4V
14+18V

+{o?V — 2afi— ﬂﬁz}{

U=1n

1 1
2+ +ﬁV)}' &
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This can be combined with the expression for 7 given
by eqn (3), and solved numerically.

Some examples are shown under ‘Approximate
results from eqns (6) and (7) in Table 2, together with
the results of the exact equilibrium solutions given by
eqn (5). It will be seen that the normal approximation
is very accurate, when selection is sufficiently weak.
Comparisons with Table 1 indicate that the mean
fitnesses of the equilibrium populations are con-
siderably larger in this case than in the corresponding
asexual cases (see discussion in section 4). In contrast
to the asexual case, the population mean fitness is
affected by the selection parameters as well as the
mutation rate. It can be seen that, for fixed a, mean
fitness increases as b increases. Conversely, mean
fitness seems to decrease with a if & is fixed. A small
positive value of b is sufficient to produce a large
increase in equilibrium mean fitness, provided that the
mutation rate is sufficiently high, e.g. with U=1-5
and a= 001 (« = 0-002) there is a 58 % increase in
mean fitness between b = 0 and b = 0-01 (# = 0-0008).

(iv) Sexual populations with arbitrary recombination
Jfrequencies

In the case of sexual populations, the equilibrium
variance can be found by a meodification of the
approach developed by Bulmer for a quantitative
character controlled by a large number of genes (1980,
pp. 158-159). Following his argument, the covariance
in the number of mutant alleles present at a given pair
of loci i and j among the haploid gametes is written as
C,. This reflects the effect of linkage disequilibrium
between this pair of loci, for which the frequency of
recombination is denoted by r,. Since a diploid
individual is formed by a pair of gametes, the total
variance V at the start of a generation is equal to the
genic variance V,, plus C, = 4Zi<j C,, the total
covariance due to linkage disequilibrium. Within a
generation, selection changes the total variance by an
amount that reflects its action in inducing changes in
genotype frequencies at the individual loci, and in
altering the covariance between pairs of loci, both
within gametes and between loci on opposite gametes
of the same individual. At equilibrium the first term is
equal to — U, since the corresponding increase in
mean and variance due to mutation is U. The normal
approximation to the change in variance due to
selection refers only to the between-loci component
(Bulmer, 1980, p. 150).

The equilibrium composition of the population can
be calculated as follows. Let the variance at the start
of a generation be V. Using normal theory, selection
changes this variance by an amount A =—pgV?*/
(14 AV). A corresponding equation can be written for
the change in mean due to selection and mutation,
and is identical to eqn (2). According to the argument
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of Bulmer (1980, p. 159), the value of C, after
selection is given by
A

CE :(l_r”)cij-i-z_m(m—l)' 8
Equating the new and old values of 'the C,, and
summing over all locus pairs, the equilibrium value of
C, at the start of a generation can readily be calculated
(Bulmer, 1980, p. 159). This is equal to the difference
between V and V, = i. Hence,

V_i=C, ©)

where the equilibrium value of 7 is given by eqn (3).
In the present case, where low recombination rates
are of interest, Bulmer’s equilibrium expression for C,
- is clearly not adequate, as it predicts an infinite value
when the frequency of recombination tends to zero for
all pairs of loci. The discrepancy arises from the fact
that changes in allele frequencies induce changes in
linkage disequilibria among the loci concerned
(Thomson, 1977). Using her results, it is easy to see
that the coefficient of linkage disequilibrium D
between a neutral locus and a linked locus with a rare
allele subject to a selection coefficient ks against the
heterozygote is reduced by AsD each generation, due
to the change in allele frequency at the selected locus.
Hence, a pair of linked loci both segregating for rare
deleterious alleles will experience a reduction of
approximately 2hsD, due to changes in allele fre-
quencies at each locus. In the present case, 4s can be
estimated as the ratio of the reduction due to selec-
tion in the mean number of mutations per individual
(—A,7n) to the mean number 7; if the population
is at equilibrium, we thus have As = U/fi. C,, is thus
reduced by the additional term 2AsC,,. The equilibrium
value of C, is given by

A

= ) 10
Co = Zmm—1) (r,+ 2hs) (10a)
We thus obtain the equilibrium value of C, as
c.-%. (105)

where E is the expectation over all pairs of loci of
1/(ry;+2hs). It follows from this result and eqn (9)
that the equilibrium total variance V is less than the
genic variance (7) when £>0. If #<0, a non-
negative variance after selection requires —gV < 1.
Under this condition, it is obvious that ¥ > 7 at
equilibrium when £ < 0. As would be expected, when
£ =0 we have V =n.

Given knowledge of the distribution of recom-
bination values for all pairs of loci in the genome, eqns
(3), (9) and (10) can be combined to yield the
following equation:

V) = V3ﬁ‘2(1+—12§)

+ V21 +a—pU)—VQAU—a)—U=0. (11)
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The equilibrium mean copy number can be obtained
by substituting the solution of this equation into eqn
3). .

In general, numerical analysis is needed to obtain
information concerning the properties of the equilibria
from these results. However, some useful insights into
the dependence of the equilibrium composition .of the
population on the frequency of recombination can be:
obtained as follows, from the properties of the
derivatives of 77, ¥ and w with respect to a measure of
the frequency of recombination. If the r,, are increasing
functions of a parameter r that measures the total
frequency of recombination in the genome (so that
Or,/0r = 0), E in equation (10) is a decreasing function
of r. Provided that dr,,/dr > 0 for at least some pairs
of loci, 6E/dr < 0. The derivatives of the population
parameters with respect to E can thus be used to
assess the nature of their dependence on r.

Using implicit differentiation of equation (11), we
obtain

v _ gy

" dE  2z(V)’ (12)
where
g(V)=3V2,6’2(1+§)+2V/)’(1+a—/>’U)
V382 0E
—QpU-2)+——=.

When £ >0, the minimum value of 6E/OV is
attained when r, =0 for all loci, and is equal to
—1/2pV*. We thus have

Ve(V)> fV)+ V(1 +a—pU)

+U~ V:ﬁ = V3G+a—pU)+U.

Therefore, the conditions 2+a—pAU >0 or
(BV)* < 1 are sufficient for dV/dr > 0. Since

onjoV = —U/BV*: <0,

it follows that dii/dr <0 under these conditions.
Hence, the mean number of mutations decreases with
an increase in the recombination frequency, and the
variance increases.

This suggests that, at least when g is sufficiently
small, the equilibrium mean fitness increases in
response to an increase in recombination if g > 0.
This can be examined as follows. Using equation
(A 2), we obtain

dlnw_dlnwa_V_é_V 1
dr AV or  or1+pV,

8 B( an +ﬂ]_ ' at
AV EY AN 2R Y17 )

(a+pA)U
Earust)
BV:

(13)
With g>0,7> V. Hence, when a <1, as can
reasonably be assumed, we have Ac > V. The only
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negative contribution to the term in braces therefore
arises from —}p. It is obvious that U > 1 is sufficient
for this term to be overcome by the positive term
pralU/2V. A less stringent condition, likely to be valid
for U< 1 under most circumstances of biological
interest, is provided by noting that eqn (3) implies that
U= pgVa+V(e—pBU) > BVn, provided that U < a.
Hence, under this condition Uga/#V? > B, and so
the term in braces is positive if 77 > 3. We can therefore
conclude that the population mean fitness increases
with recombination frequency when £ > 0, under the
stated, rather light, conditions.
A similar argument can be used to show that V" and
7 are increasing functions of recombination frequency
when g < 0, whereas mean fitness is a decreasing
function, under light conditions. Provided that
— BV < 1, (which is required for a non-negative vari-
ance, from the equation for AV), eqn (2) implies that
a+ pgi = 0, so that — 8 < o/7. This condition is also
necessary for fitness to be a decreasing function of
near the equilibrium [see section 2(i) above]. In
addition, 7 > U/a (the solution for # = 0),and V' > 7.
Hence, the magnitude of # that is compatible with
the existence of an equilibrium and with a meaningful
fitness function is severely constrained by the relation
—pB < a?/U. Therefore, unless the mutation rate is
very small, —f must be much smaller than «, and
the equilibrium solution is usually close to that for
a=20.
Equations (11) and (12) yield the result

Va%j; > VA1 +a—pgU)+ U.

Using the inequalities on g derived above, it follows
that a sufficient condition for positivity of df/éV is
— < U/(VH{l+a—pBU)) <a®*/U, which is needed
for the equilibrium to exist. Hence, V is an increasing
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function of the frequency of recombination. Since
on/dV > 0, the same is true for A#. The behaviour of
mean fitness can be evaluated using eqn (13). For
small B, the condition for the term in braces in this
equation to be negative is found, after some re-
arrangement, to be close to

2773 2772
NN

a 2a a a
If —pU/a < 1 (for which a < 1 is sufficient), the right-
hand side of this is dominated by the term —AU?%/a
and the left-hand side by aU, and so the condition
reduces approximately to a* > — U, which is necess-
ary for the existence of an equilibrium.

The adequacy of the normal approximation used to
obtain these results was tested for the cases of r,; = 0
for all loci (no recombination) and r, = 0-5 (free
recombination among all loci). Exact results for the
first case can be obtained as described above; exact
results for the second case by numerical iteration of
the recurrence relations derived by Kondrashov
(1984). The approximate results for zero recom-
bination derived by this approach are given in Table
2 under ‘Approximate results from eqns (10) and
(11)’. Tt is evident that they are less accurate than
those derived in section 2 (iii) above, although the fit is
still quite good. The exact and approximate values of
the equilibrium mean variance, skewness and kurtosis
of the copy number distributions for the case of free
recombination are displayed in Table 3. It will be seen
from Table 3 that the best fit to the exact results for
free recombination is obtained when selection is
relatively weak, and the mutation rate is higher than
0-1. When there is synergistic gene action, the mean
fitness of the population with free recombination is
greater than with no recombination, although the
effect is not as large as the difference between sexual

Table 3. Equilibrium properties of sexual populations with free recombination

Exact results

Approximate results

(a) Effect of mutation rate [a = 0-01, b = 001, # = 02 (a = 0-002, B = 0-0008)]

U W n V Skewness Kurtosis w n V
20 0-329 50-8 492 0-134 3014 0-333 50-6 49-0
1-5 0434 436 424 0-145 3-018 0-436 43-4 422
1-0 0-571 350 342 0163 3-026 0-571 350 342
05 0-752 24-1 237 0198 3038 0-750 242 23-8
0-1 0940 9-84 9-77 0-315 3-098 0938 101 10-0
(b) Effect of deviations from multiplicativity [U = 1:0, ¢ = (-1 (& = 0-02)]
b w n V Skewness Kurtosis w 1 4
—0-00125 0-248 90-7 91-6 0-107 2987 0259 869 876
—0-001 0-308 68-9 69-3 0-121 3-022 0312 67-9 68-3
—0-0005 0-347 567 568 0-133 3-019 0-350 561 562
0 0-368 50-5 50-5 0-141 3019 0-368 50-0 50-0
001 0-462 258 254 0-192 3-035 0-465 256 252
005 0-504 14-3 13-8 0-249 3-057 0-507 14-3 137
01 0512 10-8 10-3 0-281 3071 0-515 10-8 102

15 GRH 55
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10 a =001 b =001 h=902 Using Haldane’s (1919) formula for the frequency of
recombination between loci in the absence of in-
08 - terference, when there is a single chromosome of
] length / in the genome we obtain the following

g 0.6 : expression for E,
t—;" - _——dz. 14b

o 0.4

20 ' E=t) e (146)
024 ' If there are j chromosomes of equal length /, we obtain

0 . . . T . T r - 1\ E,
0 05 10 15 20 E~2(1_])+‘j" (15

Mutation rate

Fig. 1. Population mean fitness as a function of mutation This formula can be used to obtain numerical
rate, for asexual populations ([3), sexual populations solutions to the equilibria, employing numerical
without recombination (), and sexual populations with integration to evaluate E. This enables studies to be
free recombination (B). Standard values of the selection made of the dependence of population mean fitness on

ters are assumed.
paramme the number of chromosomes, map length, and the

selection and mutation parameters. Fig. 2 illustrates
reproduction with no recombination and asexual  this dependence. Mean fitness is strongly affected by
reproduction (Fig. 1). chromosome number, but is only strongly affected by
More generally, the value of E can be determined ~ map length when either j or /is small.
by using the result of Morton (1955) that the
probability of a map distance z between two loci

sampled at random from a uniform distribution along 3. Spread of a modifier of recombination

a chromosome of total map length /is (i) General considerations
2(/-2) 14 The question of the direction and intensity of selection
P(2) = - (14a) . e
P on a modifier of the frequency of recombination
0-44
0-42 -
0-40
0-38
0-36 T T T
0 1 2 3 4
U=1 U=05
0-58 0-76
;?:Qﬁ‘ o ]
0-56 4 : ' 0-75 '?:::‘— p o
] 0-74 - 2
0-54 1 J
‘ 0-73 -
.52 1
05 0-72 4
0-50 . —— — 0-71 —— ————r
0 1 2 3 4 0 1 2 3 4
Map length

Fig. 2. Population mean fitness of sexual populations as a selection parameters are assumed. [, 1 chromosome;
function of map length and number of chromosomes, for @, 5 chromosomes; B, 20 chromosomes.
several different mutation rates. Standard values of the
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among the selected loci in a sexual population will be
considered in this section. The initial population is
assumed to be fixed for allele M, at the modifier locus;
the new allele M, is assumed to be so rare that
homozygotes can be ignored. The asymptotic values
of the mean and variance in copy number for M,/M,
individuals will be calculated (denoted by 7, and V,
respectively); this enables the asymptotic mean fitness
of M,/M, individuals (w,) to be calculated using
eqn (A 2). The corresponding quantities for the
initial M,/M, population can be calculated by the
methods described above, and will be designated by
subscript 1.

There are two possibilities for the ordering of M
and a pair of selected loci, i and j: (a) M is located
outside i and j (with i being arbitrarily taken to be
closer to M than j) (b) M is located between i and j. In
case (a), let the frequency of recombination between
M and i be p, in M, /M, individuals. The frequency of
recombination between i and j is ry in M,/M,
individuals, and r,, in M,/M,. The frequency of
recombination between M and jin M, /M, individuals
is p; = p;+ry,—2p, 1y, assuming no interference. In
case (b), r;,p; and p; retain their meaning, but the
frequency of recombination between i and jin M,/M,
individuals is now r,, = p,+p;~2p, p;. If the loci are
on a different chromosome from M, then p, = p, = 1.

Equations are derived in the Appendix that de-
termine é7 and 8V, the asymptotic values of the
deviations of 7, and ¥V, from the equilibrium values for
the initial M,/M, population. These equations make
use of the assumption that the modifier has a small
effect on the frequency of recombination. They can be
used to determine the difference in mean fitness
between M,/M, and M,/M, individuals, and hence
the direction and strength of selection on recom-
bination. Unfortunately, in general these equations
depend in a complex way on the distribution of
frequencies of recombination between the pairs of
selected loci and between the selected loci and the
recombination modifier, so that it is not easy to obtain
insight into the dynamics of the modifier other than
by numerical solutions. Two limiting cases can be
treated relatively easily, and these will be considered
before discussion of the more general case.

(i1) The low recombination limit

The case when the frequency of recombination
between all pairs of loci is close to zero for the initial
M,/M, population will be analysed first. This corre-
sponds to an organism with a single chromosome
with a short map, and is an appropriate framework
for considering the initial evolution of recombination
or the evolutionary stability of non-zero rates of
recombination. A low frequency of recombination
and a small effect of the modifier implies that the
harmonic mean of the p, that appears in eqn (A 12)
will also be small. Hence, eqn (A 12) simplifies to
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Usv

g (16)

on~
[This is identical to the expression for 7 given by eqn
(3)]

The recombination terms in the denominators of
eqns (A 6) and (A 8) can similarly be neglected in this
case, leading to the following expression for §V when
substituted into eqn (A 9):

(67 + 28hs) Al}

6A —
_ { 2hs,
SV—dn= 8hs, ,

where A is the difference in A between M,/M, and
M, /M, individuals, 87 is the corresponding difference
in the mean recombination frequency between all
pairs of loci, and d4s is the difference in the selection
coefficient against heterozygous mutant alleles at each
locus. We have

_BVi@2+pn)ev

amn

oA ~ s 18
(EYIAG (184)
and
saf AV, U Usv
ohs ~ — LS O T A 1856
) m{1+ﬂn ﬁj+ﬁaﬁﬂ+ﬂK) (185)

Combining these three equations, we obtain the
following expression :

v _
ﬁr\é
gvinm
, 7 1 AR
16U (1+/>’V1){1+/;Vg‘8(1+ﬂV1) 8U(+ 4N’ }
(19)

A measure of the strength of selection on the rate of
recombination can be obtained by using eqn (19) to
calculate the partial derivative of In W with respect to
F, multiplying the expression for dlnw/dV from eqn
(13) by 0V/oF. We have:

dinw\ [0
1), (). 0

This derivative is the selection gradient on mean
recombination frequency at the low recombination
limit. If recombination frequencies are controlled
polygenically (with low frequency modifier alleles at
each locus), the rate of change of the population mean
of 7 is equal to the product of d and the additive
genetic variance of 7 (cf. Lande, 1976). Combining
eqns (19) and (16), we see that, when £ > 0, modifiers
which increase the frequency of recombination from a
near-zero value will be associated with an increased
variance in the number of mutant genes, and a
reduced mean. The analysis of equation (13) indicates
that in this case 4 is positive under biologically
plausible conditions, and so selection will favour an

15-2
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increase in the frequency of recombination away from
zero. When 8 < 0, it is obvious from eqn (19), and the
condition —f < «*/U dcrived earlier, that éV/6F > 0
when g is sufficiently small for ¥ to be approximated

by U/a. Hence, under this condition an increase in 7

1s again associated with an increase in variance, but
eqn (16) implies an increase in mean as well. As shown
above, under these conditions, there is a reduction in
mean fitness with an increase in 7, so that selection
favours modifiers that reduce recombmatlon.

Some numerical examples confirming these conc-
lusions are shown in Fig. 3. The value of Ein eqns (12)
and (13) was calculated using the approximation E ~
15(1 — Ls7), which is valid for small 7. The gradients are
calculated with respect to map length /, rather than F,
as / is a more fundamental variable. For a single
chromosome with a low frequency of recombination,
it follows from eqn (14) that / ~ 37. The gradients with
respect to F are thus about 3 times the values shown in
Fig. 3. It can be seen that a modifier with a small effect
in increasing recombination away from zero appears
always to have a selective advantage when g > 0; the
reverse is true for g < 0.

10 (a)

0-8 +
0-6 -

0-4

0-2 4

. S ——
o 1 2 3 4 5

Mutation rate

Selection gradient

—0-64

~1-0

~1-4 S —
002 0 002 004 006 008 010

b
Fig. 3. Selection gradients on map length (/) for a
modifier increasing map length away from zero, in an
organism with a single chromosome. (a) Shows the
dependence of the selection gradient on mutation rate for
the standard values of the selection parameters. (b) shows
the dependence of the selection gradient on the coefficient
(b) of the quadratic term relating log fitness to number of
homozygous mutations, when the linear coefficient (a) is
0-1 and the mutation rate (U) is 1.
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(i) The high recombination limit

The case of a modifier reducing recombination from
the maximum value of one-half for all loci can also be
studied analytically. Assuming that the modifier is
unlinked to all the selected loci, equation (A 12) yields
the following result

_ - UV

Equations (10) and (A 6) give

4 oA
0C, ~ =
Cy 3 {4m(m -1

_(Ory;+20hs) A} )

2m(m—1)

Summing over all pairs of loci, using eqn (21) to
calculate 8hs, and noting that eqn (10) in this case
implies that V,(1+28V,) = #,(1 + 8V,), we obtain

v 23V

4 3(1+/>’V){ 1+1[),V(h +ﬂ;’)

__ABs(I1+hsp VW
3+ +2ﬂVl)}

When 0 < 8 < 1, the negative component of the term
in braces is smaller in magnitude than the positive
term, and so 8V'/0F > 0, whereas equation (21) implies
orn/0F < 0. When g < 0, the term in braces is positive
when — g < 1, and so dV/dF < 0 and om/oF > 0.

The selection gradient with respect to # can be
calculated by the same approach as before, and we
obtain

(23)

o1 p{ an, mU .
d~1+ﬂV1{2(+ﬂV v, “*"‘Vll)

a? (a+pa)U

3 (1+2ﬂVI)VI}‘ @9

The conditions for the term in braces to be positive
when # > 0 are somewhat more stringent than the
corresponding condition on eqn (13), since the right-
hand term is considerably smaller than the corre-
sponding term in eqn (13). When the mutation rate
is sufficiently small, the quantity in braces can be
negative even when £ > 0, indicating that selection
does not always push the frequency of recombination
to its maximum (see section 4).

The stability of the state of free recombination to
invasion by a modifier allele that completely sup-
presses recombination, and which is itself completely
linked to the selected loci, can be studied similarly.
This corresponds to the case of a chromosome
rearrangement such as an inversion, in a species with
a single chromosome with a very high rate of
recombination. As before, second-order terms in 71
will be ignored; this is justified by the fact that 7
usually turns out to be small relative to the initial
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value, even in this extreme case. Using the same
approach as before, we obtain

oV =

S

i)
T U By 1\
(1+47%) {”ﬂV%*shsl(HﬂVoz 8(1+/>’V1)}
25)

The selection coefficient for the suppressor, ¢, can be
determined by using the derivative of log mean fitness
given by equation (13) together with equation (25) to
calculate dlnw. With 8> 0, it is easily seen by the
same type of argument as used previously that t <0
under light conditions, implying that recombination
suppression is disfavoured regardless of the mutation
rate. The reverse is true if f < 0. From standard
theory, the frequency of the suppressor changes from
x to x(w,/w,) each generation, and so 1 & w,/w, 1
provides an adequate measure of the strength of

209

will be considered here, using an approach similar to
that used to obtain eqn (15). Provided that the initial
map length is non-zero, it is reasonable to assume that
the modifier allele M, changes the map length of each
chromosome by an amount 8/ = ¢/, and that this
increase is spread uniformly across the chromosome,
so that the frequency of recombination r(z) between
two loci initially separated by map distance z is
changed by 0r(z) = ezexp — 2z, assuming the Haldane
mapping function. Equations (A 6), (A 8) and (A 12)
can then be used as follows to obtain é# and oV.

A fraction (1—1/j) of the total of m(m—1) loci
pairs involve loci on different chromosomes, so that
the modifier has no effect on them, and they contribute
nothing to 67 and 8¥ in eqn (A 9). Of the remaining
im(m—1)/j loci pairs, a fraction (1 —1//) are unlinked
to the modifier locus, and so we can apply equation
(A 6) with p, = 1. Neglecting second-order terms, and
using eqn (15), this gives the following contribution to
6V —énin eqn (A 9)

selection in this case. ! [6r(z) + 26hs,] A,
Table 4 gives some numerical examples of the : N1 - [r(z) + 2hs,] (I—2d (264)
strength of selection on both modifiers of small effect ( _j)}ﬁ . 1+ r(2) + 2hs, zjaz a

and on recombination suppressors, in initial popu-
lations with free recombination. In this case the
selection gradient is expressed with respect to the
mean frequency of recombination, 7, not map length,
as the number of chromosomes and their map lengths
are not specified in this case. The values of 87 and 6V
for the case of modifier of small effect are calculated
assuming a 67 of 0-01.

(iv) The general case

The case of an organism with j chromosomes of equal
length / (where / is the value for the initial population)

ohs in this equation can be evaluated by the methods
used in section 3(iii) above.

A fraction 1//2 of loci pairs are located on the same
chromosome as the modifier. The nature of the
contributions from this case to 8V — 67 depend on the
location of the modifier. Assume that a fraction p of
loci are located to the left of the modifier, and a
fraction ¢ = 1 —pto theright. In a proportion (1 —2pg)
of cases, the modifier will be located outside a
randomly chosen pair of loci, and in a proportion 2pg
of cases it will be between the loci. When the modifier
is to the right of the selected loci (frequency p*), we

Table 4. Selection on recombination at the high recombination limit

Modifier of small effect

Suppressor of recombination

(a) Effect of mutation rate [a = 0-01, b = 0:01, A = 0-2 (a = 0:002, 8 = 0-0008)]

U d(x107%) on(x 1074 V(% 107%) t on vV
50 1-52 163 —2:88 —0222 340 —333
20 0234 4-43 -117 —0-099 2-41 —-231
15 0-126 2:93 —0-881 —0-076 213 —202
1-0 0-050 1-63 —0-589 —0-052 1-78 —1-67
05 0-007 0-585 —0-289 —0-027 128 —1-12
01 —0-001 0-051 —0052 —0-005 0-538  —0429
0-05 —0-0008 0-018 -0003 —0-002 0349  —-0255
001 —0-0001 0-005 —0-002 —0-0004 0104  —0-052
b (b) Effect of deviations from multiplicativity [U = 1-0, @ = 0-1 (a = 0-02)]
-000125 —0013 —0-595 0-512 0-228 —202 —155
—000100 —0010 —0-365 0247 0-064 —436 —1-63
—000050  —0-004 ~0-148 0-083 0-016 —-0926 —0117
0 0 0 0 0 0 0
0-01 0-061 1-22 0-318 —0-356 0-892  —0456
0-05 0-245 2-89 0439 —0-037 0498  —0037
0-10 0-436 392 0-465 —0033 0329  —0033
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can apply eqn (A 6). The probability density that the 1 (1 1) 2 fﬂ dz 2 (¢ g

closest ofth.e.pair is map distance z from Mis 1/lp and ;): =2 i +p7'l , T—e? EI L 1—e®
the probability density that the second is located a M M @7
distance y from the first is 1/Ipz. The net contribution 1, ((1—e ) (1 —e2)
from this case is thus ~ 2+ﬁln{ (1= e T2 },
N {8A—M} where z,, is the distance between the closest selected
p r(y)+2hs, locus and the modifier. On the assumption of even
dydz.

4?_1 o Jo (I—2){r@+[1—=rDllr(y)+2hs,]} spacing between loci, we have z,, = [j/(m—)).
(26b) These relations provide closed expressions in 677 and
8V that can be used to obtain solutions by Newton—
Raphson iteration and numerical integration. A copy
of the MacrFORTRAN program for performing these
calculations will be provided on request, if a 3-5” disc
is supplied. The value of ¢, the selection coefficient on
a modifier of specified effect, can be obtained from the
corresponding value of §lnw. The selection gradient
r(z,y) = Hz)+r(y) —2r(2)r(y), on the proportion by which the map length of each
chromosome is increased by the modifier is approxi-

A similar contribution accrues from the case when the
modifier is to the left of the selected loci, except that
q replaces p.

Using eqn (A 8), we obtain the following con-
tribution from the case when the modifier is located
between the selected loci. Here, we write

and ) .
mated by d = t/e, provided that ¢ is small. Table 5
3r(z,y) = ez{l —2r(y)} (exp—22) shows thz resulté of some calculations of this selection
+ey[1 —2r(2)] (exp—2y) gradient for the standard selection parameter values
in the case of a modifier with ¢ = 0-001, located in the
1 (7 (2 middle of a chromosome (p = 0-5). The rows of the
?ﬁ fo fo table correspond to different initial map lengths (/)

and the columns to different chromosome numbers
{ SA— [8r(z, y)+ 26hs,] Al} (J)- The selection gradient on map length itself is d/1,

r(z, y)+2hs, which is much larger than the gradient for ¢ when /is

x 25,01 —rL — (D] dydz. small. It will be seen that for the lowest mutation rate
{r (2, ) +r(2) r(y)+— 1=z, )] } shown (U =0-1), there can actually be selection

’ (26¢) against increased recombination if / and j are

sufficiently large, indicating the existence of an

The sum of these four contributions yields the value  evolutionarily stable (ESS) map length that is charac-
of 8V—énm. As before, eqn (A 12) provides an teristic of a given number of chromosomes [cf. section
independent equation for 7. The harmonic mean of  3(iii)]. For higher mutation rates, there is always
the p, in eqn (A 12) is given by the expression selection for increased recombination, although the

Table 5. General model of selection on recombination modifiers: effect of mutation rate on strength of selection

a =001, b =001, A =02 (z = 0002, # = 0:0008)

! 1 2 5 20 1 2 5 20
U=01 U=05
0-05 1-5x 1071 1-4x 107 13x 107 2:2x 1077 62x 1071 98 x 107* 1-5x 10 81x107¢
0-10 61x1073 84 x107° 84x107% —24x10°® 3-6x107! 91x 104 1-3x107¢ 66x107°
0-50 32x1072 85%x10% —11x107 —25%107 44x107® 28x107* 3-8x 1078 2:8x 107
1-0 60x 107 10x10% —64x1077 —23x1077 1-4x10°2 1-'1x107* 1-8 x 107° 1-8 x 1078
20 57x107® —78x1077 —60x107 —1-8x10~7 41x10°° 39x 107 7-8x 1078 1-1x107®
30 —1-5x10° —77x1077 —47x1077 —14x107 2:1x1073 1-8x 107% 45x107¢ 79 %1077
40 —33x10®% —-59x1077 —36x107 —11x107 1-3x1073 9-5x 10°¢ 3-0x10°® 6:0x 1077
50 —39%x107® —44x107 —29x107 —9-8x107® 9-8x 1074 92x 1078 2-1x 107 49 %1077
U=10 U=20
0-05 11 2:0x 1073 35%x 107 2-5%107® 1-7 38x107? 7-5x 1071 69%x107°
0-10 6-:8x 107! 2-1x1073 35%x 10 23x10° 1-2 46x 1073 8:6x107* 72%x107°
0-50 1-2%x 107! 9-1x10* 1-5x 10 1-4x107° 2-8x 107! 27x 1073 50 %107 53x107°
1-0 42x107? 43x10™* 79%x 107% 99 x 1076 1-1x 107! 14 %1073 29x10°* 40x10°°
2:0 1-4 %1072 1-6 x 107 39x 1078 6-5x 1078 43x10°® 6-0x 10 1-5%x 107¢ 227x 107
30 7-7x 1072 81x10° 24x107° 4-8 x 109 2-5%x 1072 30x 10 96 x 107° 2:0x107®
40 52x 1073 44 %107 1-6x 107% 37%x10°¢ 1-8x 1072 17107 67x107 1-6x 1078
50 39x 1072 2:5x107® 12x10°® 3-0x10°¢ 1-4x 1072 9-2x 107° 49x107° 1-3x107°
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Table 6. General model of selection on recombination modifiers: effect of position of modifier on strength of

selection
(@) I=10{a =001, 5 =001, h =02 (« = 0:002, g = 0-0008)]
P 1 2 5 20 1 2 5 20
U=01 U=05
001 48 x 10 6:5x 1077 —-65x1077 —23x1077 9-6x 1073 85x%x107° 1:6x 107° 1-17x10°¢
010 48 x 1071 6-5x 1077 —65x1077 —23x1077 1-22x 102 1-1 x 104 1'7x 1073 1-8 x 10
0-50 60x 10 1-0x10°¢ —64x1077 —23x107 14 x 1072 1-1 x 10~* 1-8x 1078 1-8 x 108
U=10 U=20
001  30x10  37x10° 67x10%  93x10°  86x102  12x10®  26x10%  38x 10
010 3-6x 1072 39x 10 74x%x 107 97 x107° 99 x 102 1:3x 1072 28x107* 39x%x10°°
0-50 42 x 1072 4-3x 10 79x107* 99 x 10°° 1-1x 101 144 x 1073 29x 1074 40 x 1075
b) I =01 [a= 001, b =001, h =02 (« = 0002, g = 0-008)]
U=01 U=05
0-01 40x 1073 49x107° 39x10°¢ —11x1077 27x 107! 6:3x 1077 9-0x 1073 50x10°¢
010 49 %1072 64 x 107 55%x10% —50x10°8 3-1x 101 7-4x 1077 1-11x 104 59 x 10°¢
0-50 6:1x 103 84x10°° 84x10¢ —24x108 3-6x 107! 9-1x 1077 1-3x 104 6:6x 107
U=10 U=20
001  55x107  15x107 26x107  19x10° 10 35x10°  69x10*  61x107°
010 59 %107 1-8x 103 30x 10 2:1x 1078 I-1 39x%x 1073 77x 104 67x10°%
0-50 68 x 10! 2-1x1073 3-5x107* 2:3x 1078 12 4-6x1072 86x 10 72x 107

strength of this falls off rapidly with increasing initial
map length and chromosome number, even with a
mutation rate as high as 2. Table 6 displays the effect
of the chromosomal position of the modifier on the
selection gradient. As might be expected, a modifier
towards the end of the chromosome is selected for
more strongly than one towards the middle, but the

1 Chromosome

1-0
0-8 4
g o
§ 06 4
Iy 4
£ o4
g .
2 02-
0
-2 +——Tr———
-0-02 0 0-02 004 006 008 0-10
5 Chromosomes
0-4
& 03
= |
X
= 024
g
2
<
5o 014
)
2 ]
8 o0
QL
.
-0 +—— T ]
—0-02 0 0-02 004 0-06 008 0-10

b
Fig. 4. Selection gradients on the proportional effect of a
modifier on map length (¢), as a function of the coefficient
(b) of the quadratic term relating lot fitness to number of
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Selection gradient (x 10-4)

effect is usually small. Fig. 4 displays the effect of
varying the quadratic term in the fitness equation.
Negative b values lead, as expected, to selection
against increased map length. When 5> 0, the
strength of selection for increased map length increases
with b but is weak when the number of chromosomes
is large.

2 Chromosomes
0-15

0-10 H

0-05

0-05 — T T
-0-02 0 0-02

L] M T

—
004 006

20 Chromosomes

05
0-4 _
0-37
021

0-1 1

0

-0-1 ——
002 0 0-02

1 v T v T M
004 006

b
homozygous mutations, for different numbers of
chromosomes. An initial map length of 1 and a mutation
rate of 1 are assumed. The linear selection term (a) is 0-1.
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4. Discussion
(i) Population mean fitness with epistasis

The results of this study are in agreement with the
earlier studies of Kimura and Maruyama (1966),
Crow (1970) and Kondrashov (1982, 1984) as far the
behaviour of population mean fitness under multi-
locus mutation-selection balance is concerned. The
method used here has the advantage that equilibrium
solutions to a wide variety of breeding systems can be
obtained straightforwardly, without making too many
specialising assumptions. With asexual reproduction
and a per genome mutation rate of U, the population
mean fitness at equilibrium is exp — U, independent of
the mode of selection. With sexual reproduction and
random mating in the absence of recombination (i.e.
with a single chromosome that does not cross over), in
all cases studied the equilibrium mean fitness is greater
than exp— U with synergistic epistasis, and less with
diminishing returns epistasis (cf. Tables 1 and 2). The
difference can be substantial if the mutation rate is
sufficiently high (Fig. 1). For example, with the
standard values of the selection parameters, the ratio
of the respective mean fitnesses is 1-58 when U = 1-5.

This difference between asexuality and sexuality with

no recombination has previously been noted by
Kimura & Maruyama (1966). It arises from the fact
that selection within a generation induces covariances
between loci within the same gamete (C,) and
covariances between loci carried on the maternal and
paternal gametes of the same individual (C,,,). Both
covariances are transmitted intact to the next gen-
eration in the case of asexual reproduction, but the
C,, term is destroyed by random mating in the case
of a sexual population. Hence, there is a larger effect
of covariance terms in the case of asexuality than sex
with no recombination. This can be seen in Tables 1
and 2;e.g. with U = 1-5 and the standard values of the
selection parameters, the ratio of the total variance in
number of mutations to the genic variance is 0-53 for
asexuality and 0-77 with sexuality and no recom-
bination ; the total variance is larger in the latter case.
There is a parallel change in the efficiency of selection,
leading to a lower equilibrium mean number of
mutations with sexuality and no recombination (59-3
vs. 49-0). Although an analytical proof of these results
has not been obtained, all numerical examples that
have been studied agree with these conclusions.

The results on mean fitness imply that, with
synergistic epistasis, there appears to be an advantage
to sexual reproduction over asexual reproduction
arising from segregation as opposed to recombination.
Although the evolutionary advantages of sex and
recombination are often equated, this is an over-
simplification, and several models have been proposed
in which sex is favoured as a result of the consequences
of Mendelian segregation. Lloyd (1980) and Hamilton
(1980) independently suggested that temporal fluc-
tuations in the direction of selection on alleles at a
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single locus, generated by host—parasite interactions,
could provide an advantage to sex. Barton & Post
(1986) showed that sib-competition in a spatially
variable environment could also produce such an
effect. Kirkpatrick & Jenkins (1989) have proposed a
model in which directional selection leads to a
segregational advantage to sex.

There is a further effect on mean fitness in the same
direction in sexual populations with recombination,
since, as discussed by Bulmer (1980, p. 158), re-
combination tends to break down the C, term
(although it also converts some of the C,,,, term into
C,). Comparison of Tables 2 and 3 shows that free
recombination (r = 1 for all loci) is associated with an
increase in the mean fitness of a sexual population
with synergistic epistasis, and a decrease with di-
minishing returns epistasis. The effect is not as large as
the difference between asexuality and sexuality without
recombination (Fig. 1). For example, with the stan-
dard values of the selection parameters and U = 1-5,
the ratio of mean fitnesses for recombination and for
no recombination is 1-23. Numerical studies of the
equilibrium mean fitness of a population as a function
of a number of chromosomes j and the map length of
each chromosome / indicate that the mean fitness is
very sensitive to chromosome number, and much less
sensitive to map length unless the chromosome
number or map length is small (Fig. 2). With 5
chromosomes or more, there is very little effect of map
length unless /< 0-5, and the mean fitness of the
population is close to that for free recombination
whenj > 5 and / > 0-5. Similarly, most of the effect of
chromosome number occurs as j increases from 1 to 5.
Nonetheless, with synergistic epistasis, mean fitness
appears always to increase with j and /, as would be
expected from the fact that increases in both variables
lead to an increased efficiency of recombination in
breaking down C,. Again, a general analytical proof
of these results has not been obtained, although the
argument leading to eqn (13) suggests that they hold
true under biologically reasonable conditions on the
selection parameters « and . With synergism, larger
values of the linear term a seem to lead to lower
equilibrium mean fitnesses, whereas larger values of
the quadratic term b lead to higher mean fitnesses
(Tables 2 and 3). This contrasts with the multiplicative
case, where equilibrium mean fitness is independent of
the selection coefficient (Kimura & Maruyama, 1966;
Crow, 1970).

(ii) The maintenance of sexual reproduction

These effects of breeding system on mean fitness when
there is epistasis have important implications for the
evolutionary significance of sexual reproduction
(Crow, 1988; Kondrashov 1982, 1988), and contradict
the conclusion of other authors that there is no effect
of breeding system on mean fitness. This conclusion
was based on the assumption of multiplicative fitnesses
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(Hopf er al. 1987 ; Maynard Smith, 1978). If synergistic
epistasis is widespread, then an asexual population
derived from an ancestral population will equilibrate
at a lower mean fitness than the ancestral population.
The extent of this reduction depends on the degree of
synergism and on the mutation rate per genome. As
noted by Crow (1970), a very modest quadratic term
is sufficient to change the equilibrium mean fitness
drastically. As can be seen in Table 3, even if the
quadratic coefficient b in the fitness expression for
homozygotes is one-tenth of the linear coefficient a,
the genetic load for a freely recombining population
as measured by —inw is approximately U instead of
U (the value for multiplicative fitnesses or asexuality),
and is reduced only slightly as b increases (cf. Crow,
1970; Kimura & Maruyama, 1966). Thus, if U >
21n2 = 14, a mutation-free asexual variant entering
a population with separate sexes will equilibrate at a
fitness level less than one half that of the ancestral
population. Initially, of course, such a variant will
tend to increase in frequency due to the two-fold cost
of sex (Lloyd, 1980; Maynard Smith, 1978). But from
the numerical studies that have been carried out, it
seems that equilibrium is approached from a starting
state of zero mutations over a period of time of the
order of a hundred generations or so, with mutation
rates of this magnitude. Unless the size of the initial
population is very small, the asexual lineage will be
unlikely to have replaced the sexual population by the
time that it has approached equilibrium. It will then
diminish in frequency once its mean fitness has
dropped below one-half that of the sexual population,
and will eventually be eliminated. /

If the initial population were hermaphroditic rather
than dioecious, the cost of sex is only 15 in a random-
mating population (Lloyd, 1980), and so U » 2In1-5
= 0-8 would result in the maintenance of sex. From
Tables 1 and 3, these conditions somewhat over-
estimate the advantage to the sexual population;
critical U values of about 175 and 095 respectively
are indicated with the standard selection parameters.
With larger values of the selection parameters, mean
fitnesses tend to be increased with synergistic selection,
although the effect is not large. Studies of viability
mutations in Drosophila by Mukai and his colleagues
suggest that U is at least 0-8 for this species (Crow &
Simmons, 1977); Kondrashov (1988) has argued that
considerably higher values are plausible, since fitness
components other than egg-to-adult viability are of
great importance.

These conditions for the maintenance of sexuality
are, in fact, conservative, since a new asexual variant
is unlikely to arise in a mutation-free individual. If an
asexual lineage arises in an individual carrying i
mutations, the minimum number of mutations in its
decendants is i/, ignoring back-mutation. Thus, the
initial mean fitness of the asexual lineage is w(i), and
the mean fitness of the asexual population steadily
declines from this value as mutations accumulate.
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Exact calculations of the process of accumulation,
using the equations of Kimura & Maruyama (1966),
indicate that an asexual lineage in which i > 0 reaches
an equilibrium with a mean number of mutations
substantially larger than those displayed in Table 1,
even if i is considerably less than the mean number of
mutations per individual for the ancestral sexual
population. The equilibrium mean fitnesses can be
found as follows, by generalizing the mean fitness
result of Kimura & Maruyama (1966). Their argument
on the equilibrium frequency of the class with the
lowest number of mutations implies that the equili-
brium mean fitness of an asexual population started
with i mutations is

W = exp—{U+ i(a+180)}. (28)

Given that the variance of a freely recombining sexual
population is slightly less than the mean (Table 3), it
is unlikely that i would be much less than 7—2+/7,
where 7 is the equilibrium number of mutations per
individual for the sexual population. Thus, even under
the most favourable circumstances, an initially rare
asexual variant enjoying a two-fold fertility advantage
will ultimately be eliminated from the population if
the mean fitness given by the above expression with
i =ma—2+/# is less than one-half the mean fitness of
the sexual population.

Mean fitnesses obtained in this way are considerably
lower than the Table 1 values. Table 7 gives the ratios
of the maximum values of the equilibrium mean
fitnesses of asexual lineages to the mean fitnesses of
the sexual populations from which they are derived in
this way. It will be seen that U =1 is close to the
threshold value needed to overcome a two-fold fertility
advantage of asexuality. Fig. 5 displays the population
trajectories of asexual variants introduced at low
frequencies into sexual populations with different
mutation rates, confirming that they are indeed
eliminated when the suggested criterion is met. Given
that asexual variants may often suffer often lower
fertilities than their sexual competitors, due to
imperfect functioning of cytological devices for by-
passing meiosis (Lloyd, 1980), it seems that the

Table 7. Equilibrium properties of asexual
populations started with the minimum probable
numbers of mutations per individual (i)

U i w R* n vV

50 64 0-001 0-018 129-5 484
2:0 37 0-073 0-221 79-3 317
1-5 30 0-147 0-338 674 27-8
1-0 23 0-284 0-498 539 227
0-5 14 0-545 0725 366 16-2
01 4 0-892 0949 14-4 73

*R is the ratio of the equilibrium mean fitness for the
asexual population to that for a freely recombining sexual
population with the same parameters.
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process described here could play a major role in
the maintenance of sex in higher organisms. If the
population size is small, however, the initial frequency
of the asexual variant may be sufficiently high that it
spreads to fixation before its mean fitness declines
below the level needed to overcome any fertility
advantage (see Fig. 5). Large populations will thus be
less vulnerable than small ones to invasion by asexual
variants. This may be another reason for the well-
known association of asexuality with sparse popu-
lations (Bell, 1982).

A somewhat different approach to the invasion of a
sexual population by an asexual variant was taken by
Kondrashov (1985), who assumed that asexual indi-
viduals initially had the same distribution of mutations
per individual as the sexual population from which
they were derived. In this case, the initial mean fitness
of the asexual population would be the same as that
for a population with the post-selection distribution
of mutations characteristic of the sexual population
from which it was derived. It would then decline
asymptotically towards exp — U. The initial fitness of
such a population on the present model can readily be
calculated from equation (A 2), using the same mean
number of mutations as for the equilibrium sexual
population and its post-selection variance. With the
standard selection parameters, there is only a very
small reduction in fitness to the asexuals, unless the
mutation rate is implausibly high, in agreement with
Kondrashov’s results for his linear selection model
(Kondrashov, 1985, Fig. 1), which has a comparable
level of epistasis. This suggests that an immediate loss
in fitness to asexual individuals is unlikely to be
detectable by observation. This calculation is relevant

10 .
€ 08
=
é 4
S 06
=]
‘->;- o
S 04 -
g |
i)
02 4
— T T T T S
0 20 40 60 80 100

Gradient
Fig. 5. Progress of an asexual variant introduced into a
freely recombining sexual population with mutation rate
U = 1'5, and the standard selection parameters. Asexual
females have a two-fold fertility advantage. The heavy
line is for an initial frequency of asexual females of 1073,
the dotted line for an initial frequency of 1074, and the
full line for an initial frequency of 107°. The asexual
variant is assumed to occur as a unique variant in a single
female; the number of sexual females in the initial
population is thus the reciprocal of the initial frequency
of asexuals. Fixation of the asexual variant is assumed to
occur if the frequency of sexual females falls below the
initial frequency of asexuals.
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to comparisons of the differences between arrays of
sexual and asexual offspring produced experimentally
in studies such as those of Kelley et al. (1988). They in
fact found an approximately 40 % higher fitness for
sexually produced offspring of Anthoxanthum odoratum
in the field, relative to offspring produced vegetatively.
This result would not be expected on the present
theory, and either reflects the operation of threshold
selection with a high threshold and high mutation rate
(cf. Kondrashov, 1985, Fig. 1), the effects of other
selective forces maintaining sex, or simply the direct
consequences of vegetative versus seed propagation.
On the other hand experiments in Drosophila where
suppression of genetic recombination was found to be
associated with a fitness advantage (Kondrashov,
1988; Maynard Smith, 1978, chap. 5) are consistent
with the present model, if other forces tending to
produce a mutational load are operating in addition
to synergistic selection (Maynard Smith, 1978).

(iii) Evidence on the nature of fitness interactions

A critical question concerns the extent to which
synergistic fitness interactions occur in nature. First, it
is useful to note that diminishing returns epistasis is
compatible with equilibrium under mutation-selection
balance only under a narrow range of parameter
values, even if the modified fitness function with
constant fitness for n > —a /g is used in order to avoid
the artefact of fitnesses that increase with increasing
number of mutations [section 2(i)]. The approximate
threshold is — 8 = «®/U [section 2(iv)]. If — £ exceeds
this value, mutations will progressively accumulate,
and mean fitness will decline indefinitely. Diminishing
returns epistasis is unlikely to be observed among
extant organisms, at least when the genome size is
large. It is useful to note that the above relation
corresponds to the ‘error threshold’ postulated by
Eigen & Schuster (1979), in their hypercycle theory of
the origin of self-replicating systems. Their model
postulates a master genomic sequence of a self-
replicating molecule; all mutational deviants from this,
at any site in the sequence, are effectively assumed to
be equally unfit (Maynard Smith, 1983; Nowak &
Schuster, 1989). This is an extreme form of diminishing
returns epistasis. Since there is no obvious biological
justification for this mode of selection over one in
which fitness is a decreasing function of the number of
sites by which a mutated sequence differs from the
master sequence, the necessity of invoking hypercycles
to explain the evolution of relatively large genomes
(Eigen & Schuster, 1979; Nee & Maynard Smith,
1990) is not apparent.

The tight constraint on diminishing returns epistasis
suggests that multiplicative fitnesses or synergistic
epistasis are likely to prevail. Direct evidence on the
form of the relation between fitness and number of
mutations is hard to obtain. While some authors have
advocated truncation selection as a widespread mode
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of selection that generates synergistic interactions
(Kondrashov, 1988), there are essentially no direct
data supporting its operation in nature. Data on the
effects of minor detrimental mutations on egg-to-
adult viability accumulated on the second chromo-
some of D. melanogaster suggest some weak synergism
of the kind modelled here (Crow, 1970). Experiments
in which the two major autosomes have simul-
taneously been made homozyous for wild-type chro-
mosomes extracted from natural populations generally
indicate weak or no synergistic effects (Clark, 1987;
Crow & Simmons, 1977). Data on viability effects of
the second and third chromosomes reported by Seager
and Ayala (1982) suggest weak and doubtfully
significant diminishing returns epistasis, however.
Viabilities of chromosomal homozygotes relative to
heterozygotes for the balancer chromosomes were
estimated from the frequencies of double balancer,
single balancer and wild-type homozygotes, segregat-
ing in cultures produced by intercrosses between flies
simultaneously heterozygous for second and third
chromosome balancers and wild-type chromosomes.
Controls where the non-balancer individuals produced
were heterozyous rather than homozygous for the
chromosomes in question were also carried out, and
used to calculate the homozygous viabilities relative
to those of chromosomal heterozygotes. If the double
balancer individuals perform disproportionately
poorly in competition with wild-type heterozygotes,
then the cross-product ratio aBCd/AbcD used as an
index of the direction of epistasis between the viability
effects of homozygosity for the two chromosomes will
be biased in the direction of diminishing returns
(lower case letters refer to crosses involving wild-type
heterozygotes for each chromosome; upper case to
crosses involving wild-type homozygotes; a refers to
the frequency of wild-type flies, » and ¢ refer to the
frequency of single balancer genotypes, and d to the
frequency of double-balancer genotypes). It seems
likely that a similar criticism applies to the very large
diminishing returns effect reported by Seager ef al.
(1982) for total fitness (where the effect of making the
second and third chromosomes homozygous sim-
ultaneously was the same as that of making either
homozygous singly). Such an extreme degree of
diminishing returns epistasis is, indeed, theoretically
incompatible with stability under mutation-selection
balance (see above), and so one must infer that these
data either have an artefactual explanation of the kind
suggested, or are inapplicable to the question of
mutation-selection balance. Thus, it would seem that
greater weight should be attached to those Drosophila
experiments which show synergistic effects. More data
are clearly needed to resolve this question.

In summary, it is clear from the theoretical results
that extremely small non-linear terms in the relation
between log fitness and number of mutations can have
large effects on equilibrium mean fitnesses. Such terms
would be almost undetectable except in very large
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experiments. In groups other than Drosophila, careful
studies are needed of the relationship between fitness
components and the inbreeding coefficients of in-
dividuals produced in programmes of controlled
inbreeding.

(iv) Selection on recombination with epistasis

The results presented in section [3[(iii) and (iv)] show
that the effect of recombination on mean fitness does
not always predict the direction of selection on a
modifier of the rate of genetic recombination, since
increased recombination can sometimes be selected
against with synergistic epistasis despite the fact that
mean fitness always seems to increase with increased
recombination frequencies. [There are, of course,
other precedents for a failure of mean fitness to
predict the course of evolution of genes that modify
the breeding system (Altenberg & Feldman, 1987;
Karlin & McGregor, 1974).] For example, with the
standard values of the selection parameters, it is
apparent from Fig. 3 that a modifier increasing the
rate of recombination away from zero is favoured
with U = 0-1. Table 4 shows that a modifier reducing
the rate of recombination in a population with free
recombination is favoured when U = (-1, whereas a
gene totally suppressing recombination is eliminated.
This suggests that an intermediate recombination
frequency is evolutionarily stable under these con-
ditions. For U = 0-5, however, it seems that free
recombination is selected for. More extensive calcu-
lations indicate that the critical value of U is
approximately 0-29. The results of Table 5 confirm
these conclusions, and enable the approximate lo-
cation of the ESS map length to be determined as a
function of the number of chromosomes, for modifiers
located in the middle of a chromosome and which
affect the map lengths of all chromosomes in the
genome. For U = 0-1, the ESS map length decreases
with the number of chromosomes, as would be
expected from the fact that the chromosome number
has a large effect on the average frequency of
recombination between pairs of genes. The location of
the modifiers has little effect on the ESS map length
(Table 6).

In his numerical studies of selection on recom-
bination modifiers, Kondrashov (1984) also found
that the direction of selection on recombination
frequency depends on the mutation rate. His in-
terpretation of this finding involves the notion that a
recombination modifier has its primary effect on the
variance of number of mutant genes per genome; this
is borne out in the left-hand section of Table 4, where
it can be seen that the asymptotic value of the change
in mean associated with a change in recombination
frequency caused by a modifier of small effect is much
smaller than the change in variance [cf. eqn (21)]. In
the case of threshold selection, if the mean number of
mutations is above the threshold for truncation, an
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increase in variance will increase the fraction of the
population that fall to the left of the truncation point,
and hence survive. Conversely, if the mean is helow
the threshold, then an increase in the variance will
increase the fraction of the population that fall to the
right of the threshold, and hence are eliminated by
selection (Kondrashov’s fig. 1). A high mutation rate
implies a high mean copy number and thus a higher
chance of being to the right of the truncation point. In
the present case, the curve relating fitness to the
number of mutations » has an inflection point, such
that the absolute value of the slope is an increasing
function of # to the left of the inflection point, and
decreases with » to the right. If the mean is far to the
left of the inflection point, then an increase in the
variance of n results in the production of a higher
frequency of extreme individuals with » values in the
right-hand part of the distribution, where fitness
declines more sharply. These individuals thus have a
disproportionate effect on the mean fitness, compared
with the increase in frequency of extreme individuals
in the left-hand portion of the distribution, where
fitness decreases slowly with copy number. The result
is a net reduction in mean fitness. The converse holds
if the mean is to the right of the inflection point.

More formally, partial differentiation of equation
(A 2) with respect to the variance V yields the follow-
ing approximate expression, valid when fV < 1 and
at < g

= 2

ag;/w ~ g{(Zaﬁ+ﬁﬁ2)— 1}+°‘7

Clearly, if 71 is very small, this expression is dominated
by («?—/£)/2, which is less than zero on the above
assumptions. For sufficiently large values of 7, the
derivative is positive. Thus, an increase in variance
alone can lead to reduction in mean fitness with small
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i1, corresponding to a small mutation rate. This
calculation overestimates the range in which there is
selection against increased recombination, since it
ignores the increase in 7 associated with increased
recombination under synergistic epistasis. For ex-
ample, with the standard selection parameters and the
equilibrium values of 7 for free recombination given in
Table 3, the values of the derivative given by the
above formula for U =01, 0-5and 1 are —3-1 x 1074,
—17x 107%, and 5 x 107° respectively, whereas Table
4 indicates selection in favour of free recombination
with U = 0-5.

Kondrashov’s (1984) numerical results for trunc-
ation selection in a sexual haploid population led him
to suggest that there is selection for free recombination
when the ‘genome degradation rate’ v=U/4/V
exceeds 0-35. With the standard selection parameters
of the present model, the critical U value of -29
corresponds to v = 0-07, a much smaller value than
Kondrashov’s truncation selection value. One possible
explanation of this difference is that selection in a
haploid organism is less favourable for the evolution
of increased recombination than in a diploid. This was
investigated by modifying the model to apply to a
sexual haploid. The results of an investigation of the
equilibrium population mean fitnesses and the ESS
map lengths for different mutation rates for a haploid
are shown in Table 8, for the standard values of the
selection parameters (note that haploidy means that
the dominance coefficient 4 is effectively 1 when
calculating « and 8, and that the U values are one-half
those for the corresponding diploid case). The mean
fitnesses tend to be somewhat higher than those in the
diploid case, due to the stronger selection on mutations
expressed in haploids. The behaviour of the direction
of selection on recombination as a function of map
length, number of chromosomes, and mutation rate

Table 8. Selection on recombination modifiers in a haploid sexual population

a =001, =00l

{ 1 2 5 20 1 2 5 20
U = 005 U=1025
0-01 0949 0952 0954 0955 0-802 0-819 0-829 0-824
46 2:8x 107 48x107° 144 x 10-¢ 12 1-44x 1073 33x10 42x10°®
0-50 0953 0954 0955 0955 0-819 0-827 0-832 0-835
54x 107t 99x107° —~T74%x10% —-73x10°® 37 2:0x 1073 42 %107 38x107°
1-0 0954 0954 0955 0955 0-824 0-830 0-833 0835
1-5x10°t  77x107¢ —20x10° —-75x10°® 19 11220x 103 2:6x 107 2:6x10°®
005 0-656 0-685 0-703 0712 0-443 0484 0-510 0523
19 2:5% 1073 66 x 10°* 10x 107 27 43x 1072 1-13x 1073 23 %104
050 0683 0-699 0-708 0713 0478 0-502 0-517 0-525
70 49 %1073 1:3x 1078 1-7x 1074 12 I-1x10°2 33x107® 52x 104
10 0693 0-704 0711 0714 0-493 0-510 0-520 0-526
40 36x 1073 9-4x 10~ 1-4x 107 7-8 9-1x 1073 2:7%x 1072 48x10?

The upper entries in each row are the equilibrium mean fitnesses; the lower entries are the selection gradients on
recombination for a modifier located in the middle of a chromosome.
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differs little from that with diploidy. The values of the
genome degradation rate are close to those for the
corresponding diploid cases e.g. with haploidy and
U=025, v=014 compared with v =010 for the
diploid case with U = 0-5. It thus does not seem likely
that haploidy is the cause of the discrepancy.

Another possibility is that truncation selection is
less favourable to selection for increased recom-
bination than the less extreme mode of synergistic
selection assumed here. At first sight, this seems
contrary to expectation, based on the fact that more
extreme epistasis seems to select more strongly for
recombination (e.g. Table 4). However, a study of the
relationship between the critical value of U for
selecting for free recombination, and the degree of
synergism as measured by the ratio b/a, indicates that
the critical value of U can decrease with the degree of
synergism. With a = 0-02 and b = 0-001, for example,
U need exceed only 0-2 (v = 0-03) for free recom-
bination to be evolutionarily stable, compared with a
value of 0-29 with = 0-01 (v = 0-07). With a = 0-01
and b = 0-1 on the other hand, the critical value of U
15 0-32 (v = 0-12). This is consistent with Kondrashov’s
finding that, with his ‘intermediate”’ selection model
(in which fitness is a quadratic function of number of
mutations), the critical value of v is approximately 0-1
(Kondrashov, 1984, p. 206). The probable explanation
for this somewhat counterintuitive effect of the level of
synergism on the critical mutation rate is that a larger
quadratic term lowers the equilibrium mean number
of mutations (see Table 3). Hence, the distribution of
the number of mutations is shifted to the left, towards
the region where a reduction in variance lowers mean
fitness. At all events, with the present model selection
for free recombination occurs at much smaller
mutation rates and genome degradation rates than
with truncation selection.

Despite these complications, the analysis of the
conditions for spread of modifiers of recombination at
the low recombination limit [section 3(ii)] indiates
that, with synergistic epistasis, non-zero recombi-
nation rates are favoured whatever the mutation rate,
under biologically reasonable conditions. This is
consistent with the numerical findings presented in
Table 5. Kondrashov (1984) found examples in which
an allele causing zero recombination could approach
fixation. In contrast to the present model (where an
allele associated with near-zero recombination is itself
closely linked to all selected loci), he assumed free
recombination between the modifier locus and all the
selected loci, even when one modifier allele at the
modifier locus caused zero recombination. As pointed
out by Nee (1988) this is somewhat unrealistic, and
tends to underestimate the strength in favour of
increased recombination. As can be seen from Fig. 3
and Table 4, with the present model there is quite
strong selection in favour of modifiers increasing the
recombination rate away from zero, and against
suppressors of recombination in a population with
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free recombination, over a wide range of mutation
rates. The strength of selection increases markedly
with U, as expected. The difference in behaviour from
the case of modifiers of small effect in populations
with a high frequency of recombination arises from
the fact that the changes in mean number of mutations
associated with the invading alleles are much greater
than with freer recombination, and overhelm the
effect of variance on mean fitness {see eqns (16), (21),
and Table 4].

The analysis of the strength of selection on the
proportional effect of modifiers on map length (¢), as
measured by the selection gradient (Lande, 1976),
indicates that selection to increase the map length of
each chromosome is strongest in a genome with a
single chromosome, and diminishes rapidly as the
number of chromosomes increases (see Tables 5-8,
and Fig. 4), even when the initial map length is as
small as 0-05. As noted earlier, the strength of selection
on map length itself is 1// times the value for ¢, so that
it is substantially higher than that shown when / is
small. Above a map length of 1 or so, the selection
gradient falls off rather slowly with map length (Table
5). These findings are in general agreement with those
of Kondrashov (1984), on a modifier that is unlinked
to the selected loci. Selection is stronger in a haploid
population than in the case of a diploid population
with the same mutation rate per haploid genome,
reflecting the stronger selection against deleterious
alleles with haploidy. This effect may be negated by
the fact that haploid species tend to have smaller
genome sizes than diploids (Cavalier-Smith, 1985),
and so values of the order of 0-05 or less may be more
appropriate for haploids other than RNA viruses,
which appear to have very high mutation rates per
nucleotide (Nee & Maynard Smith, 1990; Pressing
and Reanney, 1984).

With diploidy and U = 1, selection gradients on ¢ of
the order of 107* to —107° are found for a map length
of 1 when the number of chromosomes is greater than
5(Table 5). With haploidy, the corresponding selection
gradients are of the order of 1072 to 107%. The selection
gradients for /> 1 and j =20 are in approximate
agreement with the selection gradients on mean
recombination frequency with free recombination,
given in Table 4, when the appropriate change of
variable is made. These results indicate that the
strength of selection maintaining large map lengths is
weak in genomes with more than one chromosome,
unless the per genome mutation rate is very high, in
agreement with the results of Kondrashov (1984).
This makes it difficult to judge the plausibility of
synergistic selection selection on deleterious mutations
as a mechanism for maintaining the map lengths of
100 centimorgans or more that are characteristic of
higher organisms. Selection gradients of the magnitude
observed are ineffective in populations of less than 10*
or so individuals (Lande, 1976), although this number
refers to the species population size rathe than local
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population size in species which have even a modest
amount of migration between populations (Crow &
Kimura. 1970. chap. 9). Clearly, the selection co-
efficients at individual loci affecting recombination
rates will be very low with these kinds of selection
gradients, so that allele frequencies at modifier loci
will be strongly affected by mutation and drift, and
will often be far from their equilibria under selection.
This may account for the genetic variability often
observed for recombination frequencies (Brooks,
1988).

The present model also enables the strength of
selection on chromosome number to be studied. A
centric fusion between two chromosomes of equal
length behaves formally as a dominant gene that
reduces the frequency of crossing over between pairs
of loci that were formerly located on two different
chromosomes (Charlesworth, 1985). The selection
coefficient on a rare centric fusion provides a measure
of the intensity of selection for maintaining high
chromosome numbers. Calculations for the standard
values of the selection parameters indicate that centric
fusions are weakly selected against with synergistic
selection. For example, with U = 1 and a map length
of 1, the selection coefficients against a centric fusion
are —1':8x10™%, —1:6x107% and —5-5x 1077 with 2,
5 and 20 chromosomes respectively. Thus, although
the number of chromosomes has a major effect on the
equilibrium mean fitness of the population (Fig. 2),
this does not seem to translate into a strong selection
force for maintaining chromosome number. It is thus
not surprising that centric fusions are a major mode of
karyotypic evolution in a variety of groups (White,
1973).

Appendix

(i) Effect of selection on the distribution of a normal
variate within a generation

Assume that the distribution ¢(n) before selection is
normal, with mean # and variance V. The selection
function of equation (1) is assumed to be applied to
this distribution. Transforming to the standardized
normal deviate z=n—n)/+/V, we have w(z)o
exp — (&z + 1fz%), where & = (a + fA)y/ V, and g = gV.
The distribution of z after selection is

#*(2) = 2P W
f w(z) p(z)dz

—o0

. (Al
_ exp—{dz+y(1+p)z%

- fw exp —{az+ (1 +ﬂ~)z2}dz.J

—

Transforming to u = z(1 + £)i +a(1 + £, we obtain a
standardized normal deviate on substitution into this
equation. This implies that z after selection is normally
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distributed with mean —&/(14+/4) and variance
1/(1+ /). Hence,  is changed by Af=—(a+
BV +AV), and V by A=—RV?/(1+ V). The
mean fitness of the population is given by 1/+/2n
times the denominator of equation (A 1), and reduces
to

w=(1+ ﬂV)‘%expz(l—_:m{aZV—Zaﬁ— B, (A2)

(ii) Covariances between loci in gametes carrying
modifier allele M,

Consider first the case where the modifier locus is
outside all of the selected loci. For loci i and j, the state
of an M, /M, individual can be represented as M, X,
X, /M, X, X,, where X, indicates the state of the
allele at locus i contributed by the M, gamete, X,
indicates the state of the allele at locus j contributed
by the M, gamete, etc. (X = 0 for wild type, X = 1 for
mutant). A gamete produced by this individual and
which carries M, can have the following genotypic
states, with probabilities calculated on the basis of no
interference:

Xop Xp(P = [1=pJ[1 —ryD),
X Xy (P =[1—p]ry),

X Xjo(P = py1yyr),

Xy Xy(P = p[1—ry)).

The new mean value of X, for these gametes, ignoring
the effects of selection, is given by

1\7;2=(1_’Pt)fi2+pf/‘7u=Yi+(1_‘Pi)8Yu (A3)

where X, is the deviation of the mean of X, for M,
gametes from the mean for M, gametes. It will be
assumed that the effect of the recombination modifier
is sufficiently small that second-order terms in the 6X,
can be ignored. This means that deviations from
Hardy-Weinberg frequencies in the population of
M, /M, individuals, induced by differences between
the M, and M, gametes can be neglected, enabling the
change in covariance between X, and X in M, gametes
to be calculated on lines similar to those used in the
text for a homogeneous population.

The new value of the covariance between X, and X;
in M, gametes following recombination, but ignoring
selection, is given by

Con=EX; X} — X, X}, = (1—r,,) )
X [(1~p,) E{X 5 X} + py XX X}
+ryel(1—pg) E{X, X1} + py E{XX 1 X0}
~ X X,

=(1-ry) (1 ~p)(Cpo+ X, X,,)
+pCyy + Xy X))+ 15000 = p) (X, X))
45 (Ko Xl — Xy Xy, )

(A4)
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Slibstituting from eqn (A 3) and neglecting terms in
8X,8X,, this reduces after simplification to

C;j2 X (l _rij2) [(1 -Pi) Cij2+pi Cifl]'

In addition to the effect of recombination, the effect
of gene frequency changes on the covariance need to
be included [see section 2 (iv) of the text], together with
the direct effect of selection in changing linkage
disequilibrium. Let hs, be the selection coefficient
against heterozygous mutant alleles in the population
of M,/M, individuals (ks, = — A, A,/n,, where A, 7, is
calculated using 7, and V, in the equation for the
change in mean due to selection). There is a change of
—2hs, C,;, due to change in the disequilibrium among
the M, gametes, and —2hs, C;;; due to change in the
disequilibrium among the M, gametes. These changes
are calculated from the portion of the general
expression for change in linkage disequilibrium in a
two-locus system, considering only gametes that are
non-recombinant with respect to loci i and j. The
contribution from such gametes is weighted by the
reciprocal of their frequency (1 —r,;), so that the net
contribution has a weight of one [cf. Kojima &
Lewontin 1970, eqn (15)]. Hence, M, will be associated
with the indirect change in covariance among M,
gametes with probability 1 —p,, and with the change
among M, gametes with probability p,.

The direct effect of selection on M, /M, individuals
can be calculated in the same way as for eqn (8) of the
text, noting that the relevant change in variance due to
linkage disequilibrium is A, = — 8VZ/(1+ 8V,).

The final expression for the new value of C,, is thus

Choe = (1 =ry)[(1—p) Cpo+p, Cil] —2(1 —p))

_ A
dmim—1)’

(A 5a)

X hsy Cyya—2phs, Cyyy + (As5bh)

This can be further simplified by using the first
terms in the Taylor’s expansion of the quantities in
question, writing 0z for the deviation of a quantity z
in M, gametes or M,/M, individuals from its
corresponding value for the M,/M, population.
Substituting into equation (A 5b), assuming that C,,
is at the equilibrium value given by equation (10), and
neglecting second-order terms, the asymptotic value
of 6C,; is given by

1
0C,; =
Topit(L—p) (ry, +2hs))

SA
Namy O+ 99 Can [ (A9

This approach is easily extended to the case when
the modifier locus is located between a pair of selected
loci, i and j. The frequencies of recombination between
M and the other loci are p, and p,, and the frequency
of recombination between loci i and j is r,, =
p+p;—2p,p;. In this case, the following M, gametes
are produced:
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X Xo(P = [1-p][1-p)]),
X le(P =1 _pi]pj)!

X ij(P =pjl _Pj]),

X X;(P = pip)).
Equation (A 3) gives the mean of X, among M,
gametes following recombination. The analogue of
eqn (A Sa) is:

Cie ® (1=p) (1 —p) Cyjo+ 9,0, Cij2-

The indirect effect on covariance of changes in gene
frequencies can be found as before, noting that the
probability that M, is associated with an X, X,
gamete is (1—p,)(1—p,), and the probability that M,
is associated with an X, X, gamete is p,p,. The net
indirect change in C,j, is thus

—2hs(p, Pj Cijl +[1—p][1 "'P;] Cij2) .
|

A7)

The direct effect of selection on covariance can be
calculated exactly as before.

These considerations yield the analogue of eqn
(A 6) for the asymptotic values of 6C,;:

1
oC,; ~
’ 25,0 —p)(1—p)
A (=

0A
X {m—(aru'f‘zshs) C{jl } (A 8)
Given that M,/M, individuals are formed from the
fusion of M, and M, gametes, we have

SV—a~ 23 8C,. (A9)

i<j

(iil) Mean number of mutations in M, /M, individuals

The asymptotic value of 7 can be found as follows.
Modifying eqn (A 3) to include the effects of selection
and mutation, and assuming that each locus contri-
butes equally to the change in mean due to selection,
we have

X/;z = /‘711+(1 _p{)&?ﬁAg"ﬁ U'

Y. (A 10)

Writing A, 71, = A, i1, + 8(A, i), and assuming that the
M,/M, population is at equilibrium, we obtain the
following expression

A+ U+(AR)
2m

piaA_/i=

s (A 11)

T 2m

Noting that 67 = 28X, and writing p, for the
harmonic mean of the p,, we obtain

o~ —k, 8V, (A 12)
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where
_ (a+pn,) oV
A+ 2041+ BV) + BV
_ UsV
2041+ BV + BV}

Equations (A 6), (A 8), (A 9) and (A 12) completely
determine é7 and &V. In turn, these equations enable
the mean fitness of M,/ M, individuals to be calculated
from eqn (A 2).
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