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ON BASIC CYCLES OF An9 Bn, Cn AND Dn 

D. J. BRITTEN AND F. W. LEMIRE 

1. Introduction. In this paper, we investigate a conjecture of Dixmier [2] 
on the structure of basic cycles. Our interest in basic cycles arises 
primarily from the fact that the irreducible modules of a simple Lie 
algebra L having a weight space decomposition are completely determined 
by the irreducible modules of the cycle subalgebra of L. The basic cycles 
form a generating set for the cycle subalgebra. 

First some notation: F denotes an algebraically closed field of 
characteristic 0, L a finite dimensional simple Lie algebra of rank n over i7, 
H a fixed Cartan subalgebra, U(L) the universal enveloping algebra of L, 
C(L) the centralizer of H in U(L), 0 the set of nonzero roots in //*, the 
dual space of H, A = {a{, . . . , an) a base of 0, and <I>+ = {/?], . . . , /?w} 
the positive roots corresponding to A. For nonnegative integers ph /z, qh 

the set of monomials 

u(p, 7,<j) = X%m . . . XPlph'^ . . . h'zX% ... Xfm 

in U(L) constitutes a Poincaré-Birkhoff-Witt basis for U(L). 

Definition 1.1. Any monomial u(p, /, q) where 

m 

/ = i 

is called a cycle. It is clear that C(L) can be realized as the linear span of 
all cycles in U(L). 

Definition 1.2. A cycle c = u(p, /, q) with / = 0 is called a basic cycle 
provided the set r(c) of all roots (with multiplicities) appearing as 
subscripts contains no proper subset of roots which sums to zero. The 
cycles h with \i G A are called trivial basic cycles. 

Let c e C(L) be a basic cycle with r(c) = {/xl5 . . . , /x^}, and let 

a(r(c) ) = r(o(c) ) = {a(Ml),. . . , oQik) } for a e W(L), 

the Weyl group of L. For convenience we introduce the following 
notation. 
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BASIC CYCLES 123 

Definition 1.3. For any basic cycle c we denote by neg r(c) the number 
of negative roots in the set r(c). We also set M(c) equal to the minimum 
value of neg r(o(c) ) for all a belonging to the Weyl group W{L) and M(L) 
equal to the maximum value of M(c) for all basic cycles c in C(L). 

Dixmier conjectured that M(L) = 1 for any finite dimensional simple 
Lie algebra L over F. Van den Hombergh [4] proved that this conjecture is 
true for An, B2, B3, D4, Z>5, E6, and G2 and that it is not true for the other 
simple Lie algebras. The validity of this conjecture for An played a central 
role in shortening arguments in our classification of all irreducible 
modules of An having at least one 1-dimensional weight space [1]. It seems 
that a complete determination of irreducible modules of L having a weight 
space decomposition will involve a consideration of basic cycles in one 
form or another. 

This article centers around the concept of a circle representation for a 
basic cycle. Once this term is defined and justified, we prove 

THEOREM, (i) M(An) = 1, 

(ii)M(5„) = [(* + 2)/3], 
( i i i )M(CJ = [ ( / ! + l)/2], and 
(iv) M(Dn) = [n/3l 

Other information about the structure and properties of basic cycles can 
be readily obtained from these circle representations. In particular, the 
fact that C(L) is finitely generated becomes obvious. 

Throughout this paper, {et\i = 1, . . . , n} denotes the standard 
orthonormal the basis of the «-dimensional vector space R", and e_z 

denotes — et. 

2. Basic cycles of An_x. The root system of An_x can be realized in R" 
as 

A base for $ is given by 

A = {€z - c /+1|i = 1 , 2 , . . . , ,2 - 1}. 

The roots r(c) associated with a basic cycle c can be described using the 
ju-notation 

li(ai9 aj) = cfl. ~ ea/ 

This is explained by 

THEOREM 2.1. (i) For each sequence [ax,..., ak] of k = 2 distinct 
elements in {1, . . . , n} the set of roots 

c[al9 ...,ak] = {/<«!, a2\ ii(a2, a3),..., /x(a„, ax) } 
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equals r{c) for some basic cycle c e C(An_]). 
(ii) For a basic cycle c G C(An_ j), there exists a sequence [ax, . . . , ak] of 

k ^ 2 distinct elements in {1, . . . , n} such that r(c) = c[ax, . . . , ak]. 

Proof (i) Let [ax, .. . , ak] be a sequence of two or more distinct 
elements in {1, . . . , n}. Evidently, in order to prove (i) we must prove 

(2.2) ii(ax, a2) + ... + ti<*m-\, am) + ti<*m> a\) = °> a n d 

(2.3) ii(alx, ah + x) + K^y %+\) + • • • + M \ , a/, + i) # ° 

for any nonempty proper subset 

&am-\>am\V(am>a\)Y 

Condition (2.2) follows immediately from the definition of ju(az, a). To 
prove (2.3), let j be the minimal element in S = {at;, . . . , #, } such that 
j 4- 1 read modulo n is not in S. Then the left hand side of (2.3), when 
expanded using the basis {ez|l ^ ẑ S «} , has a —1 appearing as the 
coefficient of e + 1 . Hence, (2.3) is true. 

(ii) For nx = ea - tq9 /z2 = cfl, - c^ G $ with ^ + /x2 - cfli - cfl2 G $ 
then either a = q' or q = a!\ and in either case there is some 1 ^ a3 ^ n 
such that 

(2.4) {/xl9 fx2} = {/x(fll9 A3), /x(a3, a2) }. 

Now let c be a basic cycle in C{An_x) with k = number of elements in 
r(c). We proceed by induction on k ^ 2 implementing the previous 
remark. 

In the case of k = 2, we have r(c) = {/x, —/x} with /x = ea — e so we 
take [ab ak\ to be [a, q]. Assume now that the result is true up to but not 
including the case of k = K. Let c be a basic cycle with 

r(c) = {/*!,..., lik). 

Since two of the /i/s add to a root, we may assume \ix + /x2 G O and hence 
there is a basic cycle c' e C(^4A7_1) of degree K — 1 such that 

rW) = {Mi + M2, /x3, . . . , / ^ } . 

The induction hypothesis implies 

(2.5) {/x, + /x2, /i3, . . . , nk] = c[ah . . . , ak_x] 

with the tf/s distinct in {1, . . . , n). If /Zj + jti2 = fi(at, ai+x) then by (2.4), 
there is some 1 ^ a = n such that 

{î b M2} = CK> a> fl/+i] a n d hence 

(2.6) {nl9 LI2, . . . , iik) = C[Û!, . . . , flf-, Û, fl/+1, . . . , % - J . 
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If a = a. for any 1 ^ j: ta k — 1, then c is not basic. Hence, (ii) is 
proved. 

Since 

c[al9 . . . , ak] = {/X(Û!, a2l [i(a2, Û3), . . . , /x(^, ^ } 

it is instructive to think of the a?s as being placed on a circle and ordered 
from ax to ak in a counterclockwise manner so that ak and ^ are adjacent. 
Hence, we call [ax, . . . , ak] & circle representation for the cycle c such that 
r(c) = c[ah . . . , ak] and write 

CR(c) = [al9...,ak]. 

THEOREM 2.7. [4] M(An_x) = 1. 

Proof. As noted by [3, page 64], the Weyl group W(v4w_j) is the 
symmetric group of all permutations on {ez|l ^ i ^ n). Hence, there is a 
a G W{An_x) such that 

(2.8) a(r(c) ) = { a ^ ) , . . . , a(/x,) } = c[l, . . . , k\. 

The right hand side of (2.8) has ek — ex as its only negative root. 

3. Basic cycles of Cn. The root system of Cn can be realized in R" as 

$ = {±(el ± €j) | 1 ^ i <j^ n) U {±2€z|l ^ / ^ n] 

with base 

A = {€1 ~ €2> *2 ~ €3> • • • » e«-l - ^ 2^}« 

The terminology and notation used in this section has analogous, but not 
identical, meaning to the same terms in Section 2. We again have a notion 
of a circle representation of a basic cycle. 

Definition 3.1. A sequence [ax, . . . , ak] of k ^ 2 values in {zbl, . . . , 
±n) has Property C provided (i) at ^ cij for / ¥= j and (ii) there do not 
exist indices 1 ^ ix < i2 < i3 < i4 = k with 

ci: = —a: and a, = —a, . 
l\ l3 l2 l4 

Such a sequence [al5 . . . , ^ ] is called a drc/e representation of a basic 
cycle in C(C„). This terminology is justified by Lemma 3.6. 

LEMMA 3.2. Let /xl5 /x2, jUj + ju2
 e 3>. If \x{ax, a2) = nx + ji2 then there is 

some a e { ± 1 , . . . , zb«} swc/z //ÎÛ/ 

(3.3) {/x^!, a), ii(a, a2) } = {/x1? ji2}. 

Proof. Assume r, s, t,u e { ± 1 , . . . , ztn} are such that JÛ  = /x(r, s) and 
ju2 = JU(/, u). Since 

/*(r, s) + /x(f, w) = /x(fli, fl2)
 G $> 
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we must have one of the following r = — t, r = u, s = t or s = —u. Since 
[x(q, p) = /x(— p, —q), there is no loss of generality in assuming s = t. 
Now, we have 

(3.4) /x(r, s) + /A(S, U) = /x(r, w) = /z(<zl5 a2)-

This implies either r = ax and w = a2 or r = — a2 and M = — ax. In the 
first case we have what we want. In the second, we write 

(3.5) n(r, s) + ix(s, u) = ^( — u, —s) + jw( —s, ~r) 

= ii(ax, -s) + ii(-s, a2) = ii{ax, a2) 

with /x( —w, — s) = /xl5 and fx( — s, —r) = /x2 as required. 

LEMMA 3.6. (i) For each sequence [ax, . . . , ak] having Property C, the set 
of roots 

c[ah ...,ak] = {/i(flb a2\ \i{a2, a3), . . . , \i(ah ax) } 

equals r(c) for some basic cycle c e C(Cn). 
(ii) For a basic cycle c e C{Cn), there is a sequence [ax, . . . , ak] having 

Property C such that 

r(c) = c[ax, ..., ak\ 

Proof, (i) It is obvious that for any sequence [ax, . . . , ak] having 
Property C, we have 

K*i, ai) + K<*2> 03) + • • • + K%> «I ) = 0. 

Hence, we need only show that no proper subset of roots in c[ax, . . . , ak] 
sum to 0. 

Let 1 = ix < i2 < . . . < i,• = k be such that {[i(ai, az- + 1 ) , . . . , ii(ar, 
û/.-f i) } is a proper subset of c[ax, . . . , % ] . We are making free use of the 
convention ak+x = ax. Suppose 

(3.7) ix(ah, ah + x) + . . . + /x(^., atj+x) = 0 

or in other words 

(3-8) (c - £ ) + . . . + (c - e ) = 0. 
' l ' l ^ i | / y 

Since (3.7) does not involve all roots of c[ax, . . . , ak], there is some 1 ^ p 
^ j such that i + \ ¥* *» + i- We must have + ea appearing in (3.8). 
Since the terms in [ax, . . . , ak] are distinct, +ea ^must appear as 

ip+\ 

— c_„ = — c„ for some q. 
aip+\ aiq+\ ^ 

However, the number of summands of (3.8) appearing between — ea 

and — ea is odd. Therefore for some value a of the given sequence 
its paired value — a = ak must be separated by the pair at + 1 and 
tf,- +1 = — at + ! contrary to Property C. 
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(ii) We induct on k equal the degree of c. If k = 2 the proof is the same 
as in the case of L = An_ v Let fcè3 and let c be a basic cycle in C{Cn) of 
degree k. Let r(c) = {\ix,. . . , \ik} be ordered so that \ix + LI2 e $. 

By the induction hypothesis, there is a sequence [ax, . . . , ^ _ j ] with 
Property C such that 

c[ax, . . . , ^ _ J = {nx + /x2, /z3, . . . , /A*} 

and we may assume 

Mi + H = K*i, «2)-

By Lemma 3.2, there is some a e { ± 1 , . . . , ± « } such that a i^ ax or #2 

with 

It suffices to show that the sequence [ax, a, a2, . . . , ^ - 1 ] has Property 
C. 

If a = az for 3 ^i / ^ A, then the sum of the roots in 

{/x(tf, A2), /x(fl2, a3\ . . . , K« z -b A/) } c r{c) 

is zero, contrary to c being basic. 
Relabel the sequence [ax, a, a2,. . . , ^ - 1 ] as [al5 a2, . . . , 6^]. Using this 

notation, we find that i f l ^ r < s < t < u ^ k with ar = — ar and 
tf5 = — au then 

0 = /i(ar, ar+x) + . . . + M<X-i> «5) + K ^ P a,+ i) + . . . 

4- /x(aM_b au) 

contrary to c being basic. Thus [ax, a, a2, . . . , fl^-J is a circle 
representation of c as required. 

As in Section 2, if c is a basic cycle in C(Cn) such that 

r(c) = c[al9 . . . , % ] , 

we denote the sequence [ax, . . . , ak] by CR(c). We refer to ai as 
being paired in CR(c) provided both at and — at appear in the sequence 
[a{9 . . . , ak]. Otherwise, we say that at is singular in CR(c). In determining 
M(c) for c e C(Cn), we find that we can ignore the singular values of 
CR(c). The proof of this requires some knowledge about the action of the 
Weyl group. 

The Weyl group, W(Cn), of Cn consist of all one to one maps 

< J : { ± 1 , . . . , ztn} -> { ± 1 , . . . , ±n} 

such that o( — i) = — o(i). The action of a G W(Cn) is given by 

°(ti*J)) = o(et - c.) = cff(/) - ea(/) = /x(a(ï), aO) ) . 
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Clearly, the set of all basic cycles is invariant under the action of IV(Cn). 
Moreover, the action of a G W(Cn) on a circle representation CR{c) = 
[au . . . , ak] is 

a(CR(c) ) = o[ah . . . , ak] = [o(ax\ . . . , o(ak) ] = CR(a(c) ). 

Remark 3.9. The root [i(ax, a2) is positive if and only if one of the 
following conditions is true; (i) 0 < ax < a2, (ii) 0 > a2 > ax, or (iii) ax > 
0 > a2. 

It follows then that if o G W(Cn) such that axo(ax), a2o(a2) > 0 and o 
preserves the order of the absolute values \ax\ and \a2\, then /x(#j, a2) is 
positive if and only if /x(a(a1), o(a2) ) is positive. 

LEMMA 3.10. Let c be a basic cycle in C(Cn) with CR(c) = [ax, . . . , ak] 
having at least one paired value and having a • as a singular value. Then there 
is some a G W(Cn) with 

neg[fll9 . . . ,û y-_ 1 , aJ + x,...,ak] 

= neg [a(fl,), . . . , o(ak) ] = neg CK(a(c) ). 

Proof. Assume first that fi(aj_x, 0,-+i) is a negative root. Let \a\ = ra. 
Define a G W(Cn) such that a maps {/'|1 ta i ta n, i ¥= m) onto {/'|2 ^ / ^ 
n} preserving order and o(a ) = 1. By remark 3.9 for /' ¥= j or j — 1 the 
root /A(0/9 A / + 1 ) is negative if and only if ju(a(az), o(ai^]) ) is negative. Also 
li(o(a-_x), o(aj) ) is negative and /x(a(a-), a(tf-+1) ) is positive. Thus 

neg c[ûl5 . . . , aj_l9 aJ + x, . . . , ak] = neg c[o(ax), . . . , a ( ^ ) ] 

as required. 
Assume now that jii(<2 _ l 5 tf/ + 1) is a positive root. Let \a\ = m. Define 

a G W(Cn) on {/|1 ^ /: ^ «, i: ¥= m} as the composite of the map ox which 
sends {/|1 ^ / ^ n, i ¥= m} onto {1, . . . , n — 1} preserving order and the 
map o2 which sends {1, . . . , n — 1) onto {/|1 ^ i ^ n, i =£\a_x + 1| } 
preserving order. Also set 

a(aj) = 0\{aj-x) + 1. 

Again by remark 3.9 for i ¥= j or j — 1 the root /z(*zz-, ai+x) is negative if 
and only if /Z(<J(Û;-), a(tf /+1)) is negative and both ii(o(a:X), o(a.) ) and 
ju(a(« ), a(a + 1 ) ) are positive roots. Therefore 

neg c[al9 . . . , ^ - . j , aj+u . . . , ak] = neg c[a(a,), . . . , o(ak) ] 

as required. 

LEMMA 3.11. Let c be a basic cycle in C(Cn) with CR(c) = [ax, . . . > ak] 
having a as a singular value. Then ifcf G C(Cn) with 

CR(c') = [ax, . . . , aj_l9 aj+x, . . . , ak] 

then M(c) = M(c'). 
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Proof. Let a' e W(Çn) such that 

neg [o\ax\ . . . , a ' ^ - i ) , a'(fl/+i)> . . . , o\ak) ] = M{cr). 

Then by Lemma 3.10, there is a a G W(Cn) such that 

neg [o'{ax\ . . . , a 'O^ , ) , a ' ^ + i ) , . . . , a'(%) ] 

= neg [aa'(ûi), . . . , oa\ak)\. 

Hence Af(c') ^ M(c). 
Now let a G W(Cn) be such that 

M(c) = negKûO, . . . , o(ak)]. 

Then since M(c') i? M(c), we know 

(3.12) neg [a(a})9 . . . , a ^ . j ) , a (^ + 1 ) , . . . , a(aA.) ] 

= neg Ha\l • • • > ^K) ]• 
Either equality holds in (3.12) and we are done or ju(a(« _j), o(aJ+l) ) is 
negative while both iu(a(^/__1), o(a) ) and jn(a(a-), a(ûf-+1) ) are positive but 
this is impossible since 

LEMMA 3.13. 7 / ^ denotes a basic cycle of Cn with 

CR{ck) = [fll5 - a l 5 . . . , ah ~ak] 

then M(ck) = | (k + l)/2], w/zere [ ] denotes the greatest integer 
function. 

Proof For A: = 1 the result is obvious. Assume now that k ^ 2. Observe 
that regardless of the values of ai9 ai+] the three roots n(ah —at), ju,( — az, 
^/+i) and /x(a/ + 1, — a / + 1) must contain at least one negative root. Thus 

M(ck) § = [ ( * + 1)/2J. 

Now take a G W(Cn) where 

/ x fk - (i - l)/2 for/ odd 
1 I —//2 lor / even. 

By counting, we find that 

ntgCR(a(ck)) = [ (k + l)/2] 

and hence M(c^) = [ (A: + l)/2]. 

Remark. 3.14. Let CR(c) = [ax, . . . , % ] . In view of Remark 3.9, we see 
that 

neg r(c) = neg r(a(c) ) 
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provided apia^ > 0 and o preserves relative size of the absolute values of 
the tf/s. 

Definition 3.15. Let [au . . . , ak] = CR(c) and associate k equally 
spaced points on the circumference of a circle labelled respectively by 
ax, . . . , ak as one moves in a counter-clockwise direction around the circle. 
Join all paired labels by a line segment so that the i{ and / points are 
connected provided at = —a-. Our definition of CR(c) excludes the 
possibility that two of these line segments intersect. The components of 
CR(c) are the pieces obtained when we cut our circle along each of these 
line segments. We define a component to be trivial provided its boundary 
contains exactly two values, namely the two paired values we cut along. 

THEOREM 3.16. If[ax, . . . , ak] = CR(c)for some basic cycle c <E C(Cn) 
has N non-trivial components after the singular values are removed and the i{ 

component contains kt paired values then 

N 

M{c) = 2 \{kt + l)/2] - N + 1. 
/ = i 

Proof By Lemma 3.11 we may assume that all values a{ for 1 = /' < K 
are paired. A pair at = —a is said to be interior to [ax, . . . , ak] provided 
i — j ¥^ ± 1 mod K. Since each interior pair partitions the circle into two 
non-trivial parts, [ # ] , . . . , ak] contains exactly N — 1 interior pairs 
accounting for the TV non-trivial components. If we sum over each of the TV 
non-trivial components we obtain a minimum of 

N 

2 I (*,- + l)/2] 
/ • = 1 

negative roots. Each interior pair at = —a- occurs in exactly two 
non-trivial components once as fi(at, a ) and once as fi(a-, at). Thus each 
interior pair contributes one negative root to the above sum which does 
not belong to c. Therefore 

N 

M(c) ^ 2 \(kt + l)/2] - (N - 1). 
/ = i 

To complete the proof we must show that there exists a a G W(Cn) such 
that 

neg a[fl„ . . . , flJ = 2 I (kt + l)/2] - (N - 1). 
i = \ 

For Â  = 1 the result follows from Lemma 3.13. Assume now that 
N ^ 2 and that [a^ . . . , a- = — at] is the vm non-trivial component of 
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[ah . . . , ak]. By induction we may assume that [Û1? . . . , at, ap . . . , ak] 
has been labelled with the values ±{1 ,2 , . . . , / ?} such that 

neg[fl„ . . . , f l / , f l , . . . , f l i k]= 2 [(*,- + l)/2] - (N - 2). 

Assume that at = ±q. By Remark 3.9 if a e W(Cn) such that 

_ f / for 1 ^ / ^ # 
a ( 0 " \i + fc„ - 1 for/ > 4 

then 

neg a[al9 . . . , az, ^ . . . , % ] = neg [ah . . . , az, aj9 . . . , ak] 

Finally using Lemma 3.13 together with Remark 3.14 we use the values 
±{q,. . . , q + kv — 1} to label the component [ai9 . . . , a-] such that it 
contains [ (kv + l)/2] negative roots. Note that in this labelling the value 
of ai may change. However, we can maintain its sign and its relative 
position in [ah . . . , at, a-, . . . , ak]. Assume that a has been redefined (if 
necessary) to accomplish this relabelling. Then 

neg a[a}9 . . . , ak] = neg a[a}9 . . . , ai9 aj9 . . . , ak] 

+ neg [ai9 . . . , a}\ - 1 

N 

= 2 \{Ki + l)/2] - (N - 1). 
/ = i 

From a global point of view we have 

THEOREM 3.17. M(Cn) = [ (w + l)/2]. 

Proof. Since by Lemma 3.13 M(ck) = [(k + l)/2] we have that 

M(C„) i= I 0» + l)/2]-

Now take any cycle c <E C(Cn) and assume that CR(c) = [a]9 . . . , ak] 
decomposes into N components where the z'th component contains Ki pairs 
of labels. Since there are at most n distinct pairs of labels available and 
each interior pair occurs in exactly two components we have that 

N 

2 Kt - (N - 1) ^ n. 

By Theorem 3.16, we have 

N 

M(c) = 2 [(#,- + l)/2] - (TV- 1) 
1 = 1 
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« id, 
- id 

N 

' Kt + N - IN + 2 J/2 
l 

Kt - (N - 1) + 1 1/2 I S \(n + l)/2]. 

Therefore M{Cn) = \(n + l)/2]. 

In the proof of Theorem 3.16, we have outlined an inductive procedure 
which associates with each c G C(Cn) an element o(c) G C ( Q ) with 
M(c) = neg r(a(c) ). Using a modification of this procedure, one can 
describe a unique o(c) with this property. Hence, the problem of 
determining the number of basic cycles in C(Cn) amounts to finding the 
order of the stabilizer of c under the action of W(Cn) and being able to 
determine if two basic cycles are in the same orbit. We have a rather 
lengthy algorithm to do this but we do not present it here. 

4. Basic cycles in Dn. The root system of Dn can be realized in R" as 

* = {±(€j±ek)\\ ^j<k^n}. 

A base for <ï> is given by 

A = {Cl - €2, . . . , €„_! - €„, Cw_! + £„}. 

The Weyl Group of D„, W(Dn), consists of all o G W(Cn) such that 
{o(i) \i = 1, . . . , n) has an even number of negative values. With these 
identifications, the root system of Dn is a subset of the root system of Cn 

and W(Dn) is a proper subgroup of W(Cn). Also, it follows that every 
basic cycle of Dn is a basic cycle of Cn and every basic cycle of Cn not 
containing a long root is a basic cycle of Dn. We define the circle 
representation of a basic cycle in Dn to be the circle representation of the 
corresponding cycle in Cn, and we keep the notation CR(c). A basic cycle 
c e C(Cn) is in C(Dn) exactly when no paired value is next to its negative 
in 

CR(c) = [fl„ . . . , ak\ 

Recall ax is next to ak. Finally, we set 

Mc(c) = min {neg CR(o(c) ) \a G W(Cn) } and 

MD(c) = min {neg CR(o(c) ) \a G W(Dn) }. 

LEMMA 4.1. For each basic cycle c G C(Dn), we have Mc(c) = 
MD(c). 

Proof. Let c be a basic cycle in C(Dn) with CR(c) = [ax, . . . , ak\ If 
CR(c) contains no paired values then there is a a G W(Cn) such that a 
changes an even number of signs and 
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o[au.. . , ak] = [1 , . . . , k], or [ - 1 , 2 , . . . , k]. 

In either case, CR(o(c)) is the circle representation of a cycle having 
exactly one negative root, and the lemma is proved in this case. 

Now let a e W(Cn) be such that 

Mc(c) = neg r(CR(o(c))), 

and 

CR(a(c)) = [au...,ak] 

w i t h <2Z- = —ai + î separated by singular values at+ , \ = p = / — 1. Define 
o' G W(Cn) so that it preserves the signs and relative orders of the 
absolute values of the terms of CR(o(c) ) on the set {ax,. . . , ai9 ai + t, . . . , 
ak}9 and is defined according to one of the following two cases. 

Case I. Assume ai > 0. Let 

\o'(ap)\Œ {1, . . . , n - r + 1} for;? « {/ + 1, . . . , / + t - 1} 

and 

o'(ai+p) = n - t + l + p f o r l ^ p ^ t - l . 

If o'o changes an odd number of signs then change the definition of 
a'(flz- + , _ i ) to -n. 

Case II. Assume at < 0. Let 

\o\ap) | e { / , . . . , «} for/? £ {/ + 1, . . . , / + / - 1} 

and 

a'(a,+/,) = /> for 1 ^ /> s , - 1. 

If a'a changes an odd number of signs then change the definition of 
a'(0/+i) to - 1 . 

In either case, o'o changes an even number signs, i.e., oo' e W(Dn), 
and 

neg ofo(c) = neg o(c). 

THEOREM 4.2. M(Dn) = [n/3]. 

Proof. Let c e C{Dn) be a basic cycle such that CR(c) has [fl/2] positive 
terms which are paired values and each is separated from its negative by 
exactly one singular value when the circle is traversed in the counterclock
wise direction. Apply Theorem 3.16 to find M(c) = [n/3] when 4 ^ n ^ 
8. Hence, M(Dn) ^ [n/3] for these values of n. 

Now let n = 3k + j for k ^ 3 and y = 0, 1 or 2. Let c e C(Dn) be a 
basic cycle whose circle representation can be realized by Figure 4.3 where 
the line segments are joining paired values and the dots indicate singular 
values. M(c) is independent of the values that we assign to the nodes of 
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this diagram and is found to be [n/3] by applying Theorem 3.16. Hence, 

M(Dn) ^ \n/3\ for all n. 

Figure 4.3 

To get the inequality in the reverse direction, we use the notion of an 
interior pair which is a paired value of CR(c) separated from its negative 
on both sides by more than singular values. Let CR(c) have N nontrivial 
components after the singular values have been removed. Since each 
interior pair occurs in exactly two distinct components, there are TV — 1 
interior pairs in CR(c). It follows that there are ( 2 ^ ) — (N — 1) distinct 
pairs where we are summing over the numbers kt of distinct paired values 
in the z'-th component. Evidently, there are (2&z) — 2(Af — 1) non-interior 
paired values in CR(c). Since each non-interior pair must be separated by 
at least one singular value, we have 

(4.3) [ (2*,-) - (N - 1) ] + [ (Ski) - 2(N - 1) ] ^ n, 

or 22fc,- - 3(7V - 1) ^ n 

which implies 

(4.4) -N ^ (l/3)[n - 3 - 2 2 ^ ] . 

Combining Theorem 3.16 with (4.4), we get 

M(c) ^ 2[£z + 1)/2J + (n/3) - (2/3) 2 ^ 

and since (2/3)kt è [ (kt -f l)/2], we have 

M(c) ^ [n/3] 

which completes the proof. 
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5. Basic cycles on Bn. The root system of Bn can be realized in R'7 as 

$ = { ± ( € j ± €7)|1 ^ / <j ^ n) U {±e,|l ^ / ^ «} 

with base 

A = {«1 - *2> €2 - €3, . . . , € „ _ , - €„, £„}. 

LEMMA 5.1. Le/ F denote the set {e^ C] ± eJ2 ^ k = n). Then 
(i) if nh ti2 G F r/ze« jUj + ju2 £ $, 

(ii) ///Xj, /x2 G $ wzï/z Mi + JU2 G 7% f/zert exactly one of ^ or \x2 is 
in F 

(iii) if c is a basic cycle in C(Bn) with 

r(c) = {/xl9. . . , iik} and 

m 

2 ft ^ F for \ ^ m ^ k - \ 
i = \ 

then /JCT G F few/ JUZ € F/<9r 2 ^ i; ^ k - 1. 

Proof (i) If /A1 + /x2 G F then ju, + \x2 = 2ex + . . . £ $. 
(ii) If /Xj + ]U2 G F then /ij + ju2 = Cj + . . . and hence exactly one of 

fi} or /x2 has a nonzero coefficient accompanying q. This root is in F. Part 
(iii) follows from (ii). 

LEMMA 5.2. If c is a basic cycle in C{Bn) with r(c) = {/Xj, . . . , ju^}, then 
there is some o G W(Bn) and a permutation IT on {1, . . . , k} such that 

m 

2 o(ji„{i)) G F for m = 1, . . . , k - 1. 
/ = l 

Proof Our proof is by induction on k. For k = 2, we need only map /AJ 
to either €j or €j — e2 depending on its length and we are done. Take 

r(c) = {/xb. . . , / !*} 

with /c ^ 3. We may assume /ij + /x2 G 0 and there is a basic cycle c' 
with 

r(cr) = {Yi = MI + 2̂> Ï2 = M3> • • • > Y*-i = /**}• 

Hence, there is some a' G W(2?W) and a permutation TT' on {1, . . . , A: — 1} 
such that 

m 

/ = 1 

Let 
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p-\ 

p = 7 7 ^ l ( / ) a n d / x = 2 a'(ym) e F. 
i= 1 

Then 

/x + o > i ) + a'Cfe) e F 

and exactly one of ft + a'd^i) or /x + O'(IL2) ^ i7. In the former case let 
7T(p) = 1 and ir(p + 1) = 2 and in the latter 77(77) = 2 and 77(7? + 1) = 1. 
Complete the definition of 77 as follows, 

/* ' ( / ) fo r i ^i<p 
y) \ir\i ~ 1) for/? + 1 < 1 ^ K. 

Now the result follows with o = o\ 

Definition 5.3. A sequence [a]9..., ak] with al E { ± 1 , . . . , ±n} has 
Property 5 provided: (i) a1 i= a- if /' 7̂  7, (ii) ÛZ- ^ — Û / + 1 for 2 â / ^ /: — 
1, and (iii) there do not exist indices 1 < i < u < j < w such that 
0; = —a-, and A.. = -<x ;. 

For any sequence [ab . . . , 0 J satisfying Property 5 we introduce the 
following notation. Let v ^ ) = 0, v( — ax) = ta9 v{at) = c - e for 
ai 7̂  ±a] and define 

y(<*i> aj) = v(aj) ~ v O z ) -

We note that in this section the TJ( . , . ) notation will play the same role as 
the /x( . , . ) notation from the previous sections. In particular we associate 
with the sequence [al9 . . . , ak] the set of roots c[ax, . . . , ak] equal to 

{Tl(au a2) = v(a2) - v(ax), . . . , t\{ak_x,ak) = v{ak) - v(ak_]), 

K](ah ax) = v(ax) - v(ak) }. 

It is clear then that if [ah . . . , ak] is a sequence such that c[ah . . . , ak] is a 
basic cycle of C(Bn) then this sequence satisfies Property B. 

A consequence of Lemma 5.2 and Definition 5.3 is 

THEOREM 5.4. If c is a basic cycle in C(Bn) then there exists a sequence 
[<2j, . . . , ak] having Property B such that r(c) = c[ax, . . . , ak\. 

Proof. Let a and 77 be as in Lemma 5.2. Hence for / = 1, . . . , k — 1 we 
have 

2 a(/y/)) = *i - %+1
 e F. 

7 = 1 

Define 

ûfj = ( j - 1 ^ ) for / = 2, . . . , /c. 
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Using the v-notation introduced above it follows that 

c[ah ...,ak] = {v(a2) - v(ax\.. . , v(ax) - v(ak) } - r(c). 

LEMMA 5.5. If [ah . . . , ak] is a sequence having Property B then 
c[ah . . . , ak] equals r(c)for some basic cycle c e C(Bn). 

Proof Obviously, 

TJ(ÛI, a2) + . . . + i](ah ax) = 0. 

Assume that 1 = ix = i2 = • • •= i, = k is such that 

S = {ï](a1],al] + ]l...,r](a1/alj+])} 

is a proper subset of c[ax,. . . , ak] having property 

(5.6) 7](ah, al] + ]) + . . . + T](at/ aij+x) = 0. 

Since (5.6) does not involve all roots of c[ax, . . . , ak], there is some 

1 ^ p ^ j such that i + 1 =h ip + \. If no #z or #z +1? 1 = / = j \ equals — ax 

then (5.6) is equivalent to 

and the proof continues in exactly the same way as in the case of Cn (see 
(3.8)). 

Now, assume that — ax appears in {a( , ax; + 1 , . . . , tfz, tf/.+ i}. If 

at = — ax = at: + 1 for some 1 ^ / ^ y, 

then the set of roots c[tfj, . . . , ^ ] — S sums to zero and does not involve 
— ax. Hence, we arrive at the same contradiction as above. 

Therefore, we assume —ax = ax; + 1 ^ at , and hence equation (5.6) 
becomes 

(5-7) (£a - € ) + ... + (€ " £ _ ) + <«, 

'/? + 1 '/? + 1 + ' lJ 'j ^ » 

The negative of £̂  must appear in (5.7) in the form of Jre_a = +ca with 
— a: = a, or else a, + i = a, . In the latter case, add —V. to c„ 

lp lt l p - \ + 1 ZP '«-i + 1 '> 

to reduce (5.7) to an equation of the same form. Continue in this manner 
until an equation of the form of (5.7) is arrived at with at ¥= at. 
Remember at each stage at +x = a/ + 1 since we are considering the 
subscripts of / modulo the appropriate j . Finally, we arrive at an equation 
of the form of (5.7) with the negative of ea appearing as +^_ a = +ca . . 
By condition (hi) of Property B, the values at and at cannot split paired 
values. However, between ea and ea there are an odd number of terms in 
the sum 

(% -\+)+ ••• + %• 
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contrary to Property B. 

We denote [ax, . . . , ak] by CR(c) and call it a circle representation of c 
provided Property B is satisfied and c[ax, . . . , ak] = r(c). We now work 
towards determining 

M(c) = min {neg CR(o(c) ) \o e W(Bn) }. 

Let [ah . . . , ak] = CR(c) for a basic cycle c e C(5W) in which — ax 

does not occur. Then c[ax, ..., ak] is also a basic cycle in Cn with the same 
circle representation. Since the Weyl groups W(Cn) and W(BU) are 
isomorphic and act on circle representations in the same way, this case 
reverts to our conclusions in C{Cn). It then remains to consider those 
basic cycles of Bn whose circle representations [ax, . . . , ak] contain — ax. 
Again we need the concept of a component of [ax, . . . , ak\. 

Definition 5.8. Let [ax,..., ak] = CR(c). Then a component of CR(c) 
is defined as in 3.14 except that we do not cut along the line segment 
joining ax to — ax and when counting non trivial components —al 

is not considered as singular value but ax is. Note that if we compute 
v(ar ) — v(al) for two consecutive values in a component, then the 
resultant vector need not be a root of Bn. 

LEMMA 5.9. Let [ax, . . . , ak] = CR(c)for a basic cycle c <= C{Bn) and let 
[ah . . . , a- = — at] be a non-trivial component containing a = —ax and 
having m pairs of values. Then 

M[ai9 ...,aj] = \(m + 2)/2J. 

Proof. Consider CR(c) = [aiy . . . , a ]9 aq+x, . . . , a-]. By the above 
remark and Theorem 3.17, we have 

M(c) = | (m + l)/2]. 

If m is odd then using Lemma 3.13 we may assume that this component 
has been labelled so that 

neg [ai9 . . . , aq_x, aq+x, . . . , af\ = [ (m + l)/2] 

and moreover aq_x > 0, a + x < 0. Since in this case the roots -q(aq_]9 a ) , 
r](aq, aq+x) and r\(aq_x, aq+x) are all positive, it follows that 

neg \av . . . , af\ = [ (m + l)/2] = [ (m + 2)/2]. 

If m is even then again referring to Lemma 3.13 any labelling of ~c = 
[at, . . . , a \, aq_x, . . . , a-\ such that 

neg (c) = [ (m 4- l)/2] 
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must have a x and a +l being of the same sign. In this case, the set 

contains exactly one negative root whereas TJ(Û ], ^ + 1 ) , is positive. 

Therefore, 

neg [az, . . . , dj] = I (m + l)/2] + 1 = I (m + 2)/2]. 

THEOREM 5.10. Ler [a^ . . . , ak] = CR(c) for a basic cycle c e C(Bn) 
and assume that a = — ax for some q. If CR(c) has N non-trivial 
components and the il component contains a minimum of Qt negative roots 
then 

N 

M(c) = 2 Qt- (N - 1). 

Proof It is clear that 

N 

M(C) è 2 a - ( i v - i). 
i=\ 

Thus it suffices to show that there exists o e W(Bn) such that 

N 

neg a(c) = 2 Ql - (N - 1). 
i = \ 

If N = 1 then the result follows from the previous lemma. Assume now 
that N ^ 2 and let [at, . . . , # • = — at] be the vx non-trivial component 
which does not contain — av By induction we may assume that [ax, . . . , ai9 

a-, . . . , ak] has been labelled so that 

neg [al9 . . . , ai9 a-, . . . , ak] = 2 Qt• ~ ( # ~ 2). 

Using the same techniques as in Theorem 3.14 we can label [a]y . . . , ak] 
such that 

N 

neg [al9 . . . , ak] = 2 Qx,- (N - 1). 
/ = i 

THEOREM 5.11. M(Bn) = [ (w + 2)/3]. 

Proof. Clearly the result is true for 2 ^ « ^ 6. To see that 

M(Bn) ^ [(« + 2)/3] for « ^ 7 

construct a circle representation corresponding to the following diagram 
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Figure 5.12 

where the line segments are joining paired values and the dots indicate 
singular values. By Theorem 3.16, the minimum number of roots 
associated with this diagram is exactly the same as the minimum number 
associated with Figure 4.1, [ v + 2)/3]. This means 

M{Bn) ^ [(n + 2)/3]. 

Assume M(Bn) = M > [ (n + 2)/3] and c is a basic cycle in C(Bn) 
with M(c) = M. Then CR(c) must have —ax appearing, otherwise 
c is equivalent to a basic cycle in C{Dn), contrary to Theorem 4.2. Let 
[dp . . . , al = —a ! , . . . , a^] be the component of CR(c) containing 
— ax and suppose it has m paired values. Then this component contributes 
| (m + 2)/2] to the sum equaling M. We now replace this component by a 
new sequence [#-, . . . , at_x, n + 1, n + 2, — (« + 1), tfz + i, . . . , ak\ This 
substitution produces a basic cycle cf in C{DnJr2) such that M(cr) = M, 
contrary to Theorem 4.2. 
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