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Abstract

We consider the (n, p) boundary value problem

yw + XH(t, y) = XK(t, y), n > 2, t e (0, 1),

where X > 0 and 0 < p < n — 1 is fixed. We characterize the values of X such that the
boundary value problem has a positive solution. For the special case X = 1, we also offer
sufficient conditions for the existence of positive solutions of the boundary value problem.

1. Introduction

In this paper we shall consider the nth order differential equation

/"> + XH(t, y) = XK{t, y), t e (0, 1), (1.1)

together with the (n, p) boundary conditions

/'»(0) = 0, 0 < i < n - 2 ,

/ p ) (D = 0, ( }

where n > 2, X > 0 and p is a fixed integer satisfying 0 < p < n — 1. Throughout it is

assumed that there exist continuous functions / : [0, oo) -*• (0, oo) and k,k\,h,h\ :

(0, 1) ->• K such that

(H|) / is nondecreasing;
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(H2) for u G [0, oo),

(H3) h(t) — k\{t) is nonnegative and is not identically zero on any subinterval of
(0, 1);

(H4) /o'(l -? )" -" - ' [MO -*(t)]dt < 00.

We shall characterize the values of A for which the (n, p) boundary value problem
(1.1), (1.2) has a positive solution. By a. positive solution y of (1.1), (1.2), we mean
y e C("'(0, 1) satisfying (1.1) on (0, 1) and fulfilling (1.2), and y is nonnegative and
is not identically zero on [0, 1 ]. If, for a particular A. the boundary value problem (1.1),
(1.2) has a positive solution y, then k is called an eigenvalue and y a corresponding
eigenfunction of (1.1), (1.2). We let

E = {k > 0 I (1.1), (1.2) has a positive solution}

be the set of eigenvalues of the boundary value problem (1.1), (1.2).
Next, for the special case k = 1, we shall give an existence result for positive solu-

tions of the boundary value problem (1.1), (1.2), assuming that / is either superlinear
or sublinear. To be precise, introduce the notation

/o = hm , /oo = hm
0 + U K * O OH->0

The function / is said to be superlinear if /0 = 0, / ^ = 00, and / is sublinear
provided f0 = 00, /oo = 0. The technique used here is a generalization and extension
of that initiated by Fink, Gatica and Hernandez [19] and Erbe and Wang [17] for
second-order boundary value problems.

The motivation for the present work stems from many recent investigations. In
fact, when n = 2 the boundary value problem (1.1), (1.2) describes a vast spectrum of
scientific phenomena such as gas diffusion through porous media, nonlinear diffusion
generated by nonlinear sources, thermal self ignition of a chemically active mixture
of gases in a vessel, catalysis theory, chemically reacting systems, adiabatic tubular
reactor processes, as well as concentration in chemical or biological problems, where
only positive solutions are meaningful, for example, see [5,9,11,12,21,24,29]. Re-
cently, several eigenvalue characterizations for particular cases of (1.1), (1.2) have
been carried out. To cite a few examples, Fink, Gatica and Hernandez [19] have dealt
with the boundary value problem

y" + kq(t)f(y) =0, te (0, 1),

y(0) = y(l) = 0. ( 1 ' }
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Their results are extended in [20] to systems of second-order boundary-value problems.
In [8] and [18], a different boundary value problem is tackled

/ ' + ^ - ^ ' + ^ ( 0 / 0 0 = 0 , f € ( 0 , l ) ,

y(0) = y(l) = 0.

Further, Chyan and Henderson [10] have studied a more general problem than (1.3),
namely,

yM + Xq(t)f(y)=0, t e (0, 1),

/••>(0) = y - 2 ) ( l ) = 0, 0<i<n-2.

Our results not only generalize and extend the known eigenvalue theorems for (1.3)-
(1.5), but also complement the work of Wong and Agarwal [33,34], as well as
including several other known criteria offered in [2].

For the special case A. = 1, particular and related cases of (1.1), (1.2) have been
the subject matter of many recent publications on singular boundary value problems,
for example, see the monograph of O'Regen [28] and also [3,4,13,23,25,26,31].
Further, for the case of second-order boundary value problems, (1.1), (1.2) arise in
applications involving nonlinear elliptic problems in annular regions. For this we
refer to [6,7,22,30]. In all these applications, it is frequent that only solutions that
are positive are useful. Recently, Eloe and Henderson [14,15] have considered the
nth-order differential equation

0, r e (0,1),

subject to the boundary conditions

/>(0) = / " - 2 ) 0 ) = 0, 0 < i < « - 2 ,

y>(0) = y(\) = 0, 0 < i < n - 2.

Our result not only generalizes and extends their work, but also complements other
related investigations in [16,17,32,34].

The plan of this paper is as follows. In Section 2 we shall state a fixed-point
theorem due to Krasnosel'skii [27], and present some properties of a certain Green's
function which are needed later. In Section 3, by defining an appropriate Banach
space and cone, we characterize the set E. Finally, the special case A. = 1 is treated in
Section 4 and a fixed-point theorem from [27] is used to give an existence result for
positive solutions of (1.1), (1.2).
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2. Preliminaries

THEOREM 2.1 ([27]). Let B be a Banach space, and let C(C B) be a cone. Assume
£l\, Q2 are open subsets of B with 0 6 Sl\, fi| C &2, ond let

S:cn(n2\n,) -»• c

be a completely continuous operator such that, either

(a) \\Sy\\ < \\y\\, y e C H d Q h a n d \\Sy\\ > \\y\\, y e C H d Q 2 , o r
( b ) \\Sy\\ > \\y\\, y e C H 3 Q , , a n d \\Sy\\ < \\y\\, y e C H 9 Q 2 .

T h e n , S h a s a fixed p o i n t i n C D

To obtain a solution for (1.1), (1.2), we require a mapping whose kernel G(t, s) is
the Green's function of the boundary-value problem

- / " > = 0,

/ " ( I ) = /> (0 ) = 0, 0 < i < « - 2 ,

where 0 < p < n — 1 but fixed. From [1] we have

_[__ lt"~\l - sy-e-1 - (t - s)"-\ 0<s<t<l
{'S) ( n - 1 ) ! j r ' - ' d - j ) - " - 1 , 0 < ? < 5 < l

and

^-jG(t,s)>0, 0<i<p, (t,s) € [0, 1] x [0, I].

LEMMA 2.1. For (t, s) e [0, 1] x [0, 1], we have

) 5 (^hjT( 1~s )""'~1' (2-2)

PROOF. This is immediate from (2.1).

LEMMA 2.2. For (t, s) e [\, | ] x [0, 1], we have

"l'(n-hy.(l-sr~P~><t>(s)' (2-3)

where 0 < 0(5) < 1 is given by

\\-(l-s)p, s<t
, ~ (2.4)
1, t < s.
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PROOF. For 0 < s < t, from (2.1) we find

(n - l)\G(t, s) > tn~\\ - s)n-"~] - (t - ts)"-1

= tn~\\ - ^ " " ' - ' [ l - ( 1 -s)p]

(i)
For t < s < 1, the inequality (2.3) is obvious.

We shall need the following notation later. Let

v(t) = hi(t)-k(t) and u(t) = h(t)-ki(t). (2.5)

For a nonnegative y on [0, 1], we denote

a = \ f (1 - sy-"-lv{s)f(y(s)) ds (2.6)

and

1 /"'
P = 7 777 / (1 -sy-»-'<p{s)u{s)f{y{s))ds. (2.7)

(n — 1)! Jo

In view of (H2) and (H3), it is clear that a > fi > 0. Further, we define the constant

and note that 0 < y < 1.

3. Eigenvalue characterization

Let the Banach space
B = {y | y e C[0, 1]}

be equipped with norm \\y\\ = sup,6|0 ,, |.y(0|, and let

C={yeB y(t) is nonnegative on [0, 1]; min y(t) > y\\y\\

We note that C is a cone in B. Further, let

CM = {yeC\\\y\\<M}.
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We define the operator S : C -»• B by

Sy{t) -i:G{t, s) [H(s, y) - K{s, y)] ds, t e [0, 1].

391

(3-D

To obtain a positive solution of (1.1), (1.2), we shall seek a fixed point of the operator
kS in the cone C.

It is clear from (H2) that

Uy(t) < Sy(t) < Vy(t), t e [0, 1],

where

Uy(t) = I G(t,s)u
Jo

(s)f(y(s))ds

and

Vy(t)= / G(t,s)v(s)f(y(s))ds.
Jo

(3.2)

(3.3)

(3.4)

We shall now show that the operator 5 is compact on the cone C. Let us consider
the case when u(t) is unbounded in a deleted right neighborhood of 0 and also in a
deleted left neighborhood of 1. Clearly, v(t) is also unbounded near 0 and 1. For
m e {1, 2, 3 , . . . } , define um, vm : [0, 1] ->• K by

/ 1 \ 1

MO =

vm(t) -

and the operators Um,Vm : C

u,n

v.yi

\m+\)
u(t),

U\m+A
v(t),

V \m + l)

' - » • Bby

0=/'G(-,
Jo

')= f G(t
Jo

1

m + l '
m

m + 1

1

m + 1
m

' m + 1

m + 1
m

*- * <~" ~ m + l

1

m + 1

~ ~ m + l

— — '

y(s))ds,

s)vm(s)f(y(s))ds.

(3.5)

(3.6)

(3.7)

(3.8)

https://doi.org/10.1017/S0334270000009462 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009462


392 Patricia J. Y. Wong and Ravi P. Agarwal [7]

It is standard that for each m, both Um and Vm are compact operators on C. Let M > 0
and y € CM. Then, in view of Lemma 2.1, we find

\Vmy(t) - Vy(t)\

= I G(t,s)\vm(s)-v(s)\f(y(s))ds
Jo

= / m+G(t,s)\vm(s) - v(s)\f(y(s))ds+ G(t,s)\vm(s) - v(s)\f(y(s))ds

f (1 -
m+

ds

The integrability of (1 — t)"~p~]v(t) (condition (H,)) implies that Vm converges
uniformly to V on CM. Hence, V is compact on C. Similarly, we can verify that Um

converges uniformly to U on CM and therefore U is compact on C. It follows from
(3.2) that the operator 5 is compact on C.

THEOREM 3.1. There exists a c > 0 such that the interval (0, c] C E.

PROOF. Let M > 0 be given. Define

(3.9)

Let X € (0, c]. We shall prove that (XS)(CM) c CM. For this, let y & CM and we
shall first show that XSy € C. Clearly, from (3.2) and (H3), we find

&Sy)(t) > X I G(t,s)u(s)f(y(s))ds > 0, te [0, 1]. (3.10)
Jo

Further, it follows from (3.2) and Lemma 2.1 that

Sy(t)< f G(t,s)v(s)f(y(s))ds
Jo

< . * , / (1 -sr-"-lv(s)f(y(s))ds = a, t e [0, 1].
(n- 1)! Jo

Thus

\\Sy\\<a. (3.11)
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Now, on using (3.2), Lemma 2.2 and (3.11), we find for t e [\, | ] that

(kSy)(t) >k f G(t,s)u(s)f(y(s))ds
Jo

I ' ) ) d sIin - 1)!
n - l

a

Therefore

= ky\\Sy\\ = y\\kSy\\.

min (kSyKt)>Y\\kSy\\ (3.12)

and (3.10) and (3.12) lead to kSy e C.
Next, we shall show that ||A.S.y|| < M. For this, on using (3.2), Lemma 2.1 and

(3.9) successively, we get

(kSy)(t) <k f G(t,sMs)f(y(s))ds
Jo

k f1

< T 7TT / (l-s)"-p-lv(s)f(M)ds <M, t€ [0, 1].
(n - 1)! Jo

Consequently,
\\kSy\\ < M.

Hence (kS)(CM) c CM. Also, standard arguments yield that kS is completely
continuous. By the Schauder fixed point theorem, kS has a fixed point in CM. Clearly
this fixed point is a positive solution of (1.1), (1.2) and therefore k is an eigenvalue
of (1.1), (1.2). Since k e (0, c] is arbitrary, it follows immediately that the interval
(0, c] c E.

The next theorem makes use of the monotonicity and compactness of the operator
5 on the cone C. We refer to [19, Theorem 3.2] for its proof.

THEOREM 3.2 ([19]). Suppose that kQ e E. Then, for each 0 < k < k0, k € E.

The following corollary is immediate from Theorem 3.2.

COROLLARY 3.1. E is an interval.

https://doi.org/10.1017/S0334270000009462 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009462


394 Patricia J. Y. Wong and Ravi P. Agarwal [9]

We shall establish conditions under which E is a bounded or unbounded interval.
For this, we need the following results.

THEOREM 3.3. Let X. be an eigenvalue o/( l . l ) , (1.2) and y e C be a corresponding
eigenfunction. Ifyin~l^(0) = q for some q > 0, then X satisfies

[f il^iy
8(v)q[ i ^ ) ]

where

g(z) = \ I (l-s)n-p-'z(s)ds\ . (3.14)= \f (1 -
PROOF. For m e {1, 2, 3, . . . } , we define /m = / * i/rm, where \jrm is a standard
mollifier [10,19] such that fm is Lipschitz and converges uniformly to / .

For a fi xed m, let Xm be an eigenvalue and ym, with ŷ " ~"'' (0) = q, be a corresponding
eigenfunction of the boundary-value problem

y™ + KHm{.t, ym) = XmKm(t, ym), t e [0, 1], (3.15)

v<;>(0) = 0, 0 < i <n-2,
, , " ~ (3.16)

where //m and Km converge uniformly to H and K respectively, and

Hm(t,z)- Km{t,z)
Um{t) < —— < Um(0 (3.17)

/m(z)

(see (3.5) and (3.6) for the definitions of um(t) and vm(t)).
Clearly, ym is the unique solution of the initial value problem (3.15),

y«»(0) = 0, 0 < i < n - 2 ,
, „ ~ ~ (3-18)

y,?-|>(i) = «.

Since

^ n ) ( 0 = Xm[Km(t, ym) - Hm(t, ym)] < -kmum(t)fm(ym{t)) < 0,

we have y%~l) is nonincreasing and hence

^ " - " ( 0 < ̂ " " ( O ) = q, te [0,1]. (3.19)
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Noting that

yl\t) = [' y«+l)(s)ds, 0 < i < n - 2, t e [0, 1], (3.20)
Jo

we obtain, on using (3.19),

3#~2)(O = [ yZ^Ws < I qds=qt, te [0, 1].
Jo Jo

Applying the above inequality and continuing integrating, we find

*Ws'orn)?£orrT5r- ' ^ ' ) - »«)
Now, from (3.15), (3.17) and (3.21) we get for t e [0, 1],

Kum{t)fm{0) < -/*«) < Xmvm(t)fm (j^Jy) • ( 3 ' 2 2 )

An integration of (3.22) from 0 to t provides

0,(0 < y r ° ( 0 < 02(O, r e [0,1], (3.23)

where

el(t)=q-kmfm( q ) f vm(s)ds
\(n — I)I} Jo

and

e2(t)=q-Xmfm(0) [ um(s)ds.
Jo

Continuing the integration process, we get for 0 < p < n — 1,

03(O < yl
m

p\t) < 9,(t), r e [0,1], (3.24)

where

{n-p-l)\ J \(n-iyjjo (n-p-iy

and

7 ^(n - p- 1)!
f (t -s)"-1"1

/ 7 —7r:u
Jo <Ji- p- 1)!
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In order to have y(
m

p)(\) = 0 (see (3.16)), from (3.24) it is necessary that 03(1) < 0
and 04(1) > 0, or equivalently,

km > g{vm)q \/m ( ^ - f r y y ) I (3-25)

and

^<S(« , )? [ / . (O) r ' . (3.26)

Coupling (3.25) and (3.26), we get

g(vm)q \fm ( _ J < km < g(um)q[fm(0)]-1. (3.27)

It follows from (3.23) that {y^~l)}^=i is a uniformly bounded sequence on [0, 1].
Using the initial conditions (3.18) and repeated integrations, we find that {y^'l^Lp
0 < i < n — 1 is a uniformly bounded sequence. Thus there exists a subsequence,
which can be relabelled as {ym}™=], that converges uniformly (in fact, in C("~l)-norm)
to some y on [0, 1]. We note that each ym(t) can be expressed as

ym{t) = km I G{t,s)[Hm(s,ym)-Km{s,ym)]ds, t e [0, 1]. (3.28)
Jo

Since {km}^=l is a bounded sequence (from (3.27)), there is a subsequence, which can
be relabelled as {A.m}~=|) that converges to some k. Letting m —> oo in (3.28) yields

y(t) = k [ G(t, s)[H(s, y) - K(s, y)] ds, t 6 [0, 1].
Jo

This means that y is an eigenfunction of (1.1), (1.2) corresponding to the eigenvalue
k. Further, y(n-1}(0) = q, and (3.13) follows from (3.27) immediately.

THEOREM 3.4. Let k be an eigenvalue o/(l.l), (1.2) and y e C be a corresponding
eigenfunction. Further, let rj = ||_y|| and p = max,£(0,i] |y

(n~2)(0l- Then

-\)\\ [ (l-s)"-p->v(s)ds\ (3.29)
" fin)

and

-i-i

(3.30)
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Also, there exists a c > 0 such that

< p l
(^,s\u(s)ds\ . (3.31)

/ ( c p ) ( n - 2 ) !

PROOF. First we shall prove (3.29). For this, let t0 e [0, 1] be such that

V = \\y\\ = y(t0).

Then, applying (3.2) and Lemma 2.1 we find

I

G(to,sMs)f(y(s))ds
o
k

(n-l)\ Jo

from which (3.29) is immediate.
Next, using (3.2) and the fact that min,en JJ y(t) > yr), we get

-,s)v(s)f(y(s))ds

-,s)v(s)f(y(s))ds

which gives (3.30).
Finally, to prove (3.31 ) we note from the relation

«\t) = I yii+l)

Jo
(s) ds, 0 < i < n - 3, t e [0, 1] (3.32)

and the nonnegativity of y that y("~2) is nonnegative on [0, 1]. It is also observed
that yw is nonpositive and hence y(n~2) is concave on [0, 1]. Thus, there exists a
unique t e [0, 1] such that p - max,e(0,i] j

(""2)(0 = /n~2)('i)- We shall consider
two cases.
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Here, y("-2)(0) = yin-2)(l) = 0. Thus, it follows from the concavity of y(n~2) that

r e [0, /,]

1 - 0 , f € [ r , , l ]
1 - i .

> p r ( l - r ) , r e [0,1].

Using (3.32) and (3.33), we get

/

' f (t2 r3

y(n~2\s) ds > ps(l-s)ds = p[- - —
Jo \ 2 3

Continuing the integration process, we obtain

y(t)>pnO. te[0,1],

(3.33)

re [0, 1].

(3.34)

where

t"'
-21-.

(n -1 ) ! n\

We note that

(n-2)\ n-\

is nonnegative for t e / = [0, ^ J . Hence in particular \lr(t) is nondecreasing for
t e [ i , {] c / . It follows from (3.34) that

y{t) > c p , r e - , - , (3.35)

where

(3.36)

Now, relation (3.32) provides

/"-^(r ) = f y("-2)(s)ds < [ pds = pt, r e [0, 1].
Jo Jo

https://doi.org/10.1017/S0334270000009462 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009462


[14] Eigenvalue characterization for (n, p) boundary-value problems 399

Using the above inequality and (3.32) again leads to

O^-l^VV ' S [ ( U 1 - <337)

In view of (3.37), (3.2) and (3.35), we find

from which (3.31) follows immediately.

Case 2 /"-2)(1) > 0
In this case, y("-2)(0) = 0, y("-2)(l) ^ 0. Hence, by the concavity of y("-2), we

have

yin~2\t) > y - 2 ) ( l ) r > y- 2 ) ( l ) f (1 -t), t e [0, 1]. (3.38)

Using a similar technique to that of Case 1, it follows from (3.38) and successive
integrations that

y(t) > yin-2)(l)f(t), t € [0, 1]. (3.39)

This leads to (3.35), where

c = y-^—^- I " . * „ . - ^ 1 > 0 . ( 3 . 4 0 )

The rest of the proof is similar to that of Case 1.
This completes the proof of the theorem.

THEOREM 3.5. Let

u
is bounded for u e [0, oo) \ ,

Fo=\f uH m - — = 0 , Foo={f
»-oo f(U)

lim = oo \ .
>^<x> f(U)
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(a) / / / € FB, then E = (0, c) or (0, c]for some c G (0, oo).
(b) / / / G Fo, then E = (0, c]for some c G (0, oo).
(c) / / / G Foo, then E = (0, oo).

PROOF, (a) This is immediate from (3.30) as well as from (3.31).
(b) Since Fo c FB, it follows from case (a) that E = (0, c) or (0, c] for some

c e (0, oo). In particular,

c = sup£. (3.41)

Let {km}™=l be a monotonically increasing sequence in E which converges to c,
and let {jm}~=1 in C be a corresponding sequence of eigenfunctions. Further, let
Tim = ll̂ mll- Then, (3.30) implies that no subsequence of {r)m}™=x can diverge to
infinity. Thus, there exists M > 0 such that rjm < M for all m. So ym is uniformly
bounded. Hence, there is a subsequence of {ym }~=1, relabelled as the original sequence,
which converges uniformly to some y € C. Noting that X.mSym = vm, we have

cSym = ^-ym. (3.42)
*-m

Since {cS_ym}^=l is relatively compact, ym converges to y and km converges to c,
letting m —> oo in (3.42) gives cSy = y, that is, c G E. This completes the proof for
Case (b).

(c) This follows from Corollary 3.1 and (3.29).

EXAMPLE 3.1. Consider the boundary-value problem

where 0 < p < 3 but fixed, A > 0 and r > 0.
Taking f{y) = (\2y + 5)r, we find

H(t,y) 1 , AT(f,y)
and = 0.

/ ( )
and

f{y) (5+2t*-t4y /(y)

Hence, we may take

, h(t)=
" ' - ' (5 + 2t'-t*y' v y 2(5 + 2r3- ,4 ) r

and k(t) = ki(t) = 0. All the hypotheses (HiMHO are satisfied.
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Case 1 0 < r < 1
Since / € F^, by Theorem 3.5(c) the set E = (0, oo). For example when p = k —

2, the boundary-value problem has a positive solution given by y(t) = t3(2 — 0/12.

Case 2 r = 1
Since / e FB, by Theorem 3.5(a) the set E is an open or a half-closed interval.

Further, we note from Case 1 and Theorem 3.2 that when p = 2, E contains the
interval (0, 2].

Case 3 r > 1
Since / e Fo, by Theorem 3.5(b) the set £ is a half-closed interval. Again, it is

noted that when p = 2,(0,2] c. E.

EXAMPLE 3.2. Consider the boundary-value problem

8)r = O, / 6(0,1),
(8 + 5sinjz7)

y(0) = y(p)(l) = 0,

where p = 0 or 1 (but fixed), A. > 0 and r > 0.
Choosing f(y) = (5v + 8)r, we may take

4(8+ 5sin7rOr>

and /:(?) = iti(f) = 0. All the hypotheses (Hi MHO are satisfied and we note that
when p = 0 and k = n2, the boundary-value problem has a positive solution given
by y(t) = sin7rf. With obvious modification, the three cases considered in Example
3.1 also apply here.

4. Special case: A = 1

THEOREM 4.1. Suppose that f is either superlinear or sublinear. Then the boundary-
value problem (1.1), (1.2) has a positive solution.

PROOF. TO obtain a positive solution of (1.1) (1.2), we shall seek a fixed point of the
operator S (defined in (3.1)) in the cone C. We have seen that 5 is compact on the
cone C. Further, we observe from the proof of Theorem 3.1 that 5 maps C into itself.
Also, the standard arguments yield that S is completely continuous.
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Case 1 Suppose that / is superlinear. Since f0 = 0, we may choose e, 8 > 0
such that

f(u)<eu, 0<u<8 (4.1)

and

, * , [ (l-sy-»-lv(s)ds<l.
(n - 1)! Jon - 1 ) ! Jo

Let y e C be such that ||;y|| = 8. Then, applying (3.2), (4.1), Lemma 2.1 and (4.2)
successively, we find for t e [0, 1],

Sy(t)< [ G(t,s)v(s)f(y(s))ds
Jo

<€ G(t,s)v(s)y(s)ds
Jo

< —'-rr: f (1 - s)"-'-1 v(S)y(s)ds
(n - 1)! Jo

< ^ - ^ T T / (l-sy-"-lv(s)\\y\\ds < \\y\\.
(n - 1)! Jo

Hence

(4.3)

If we set Qt = {y e B \ \\y\\ < 8], then (4.3) holds foryeCn 3fi,.
Next, since /(» = oo, we may choose M, N > 0 such that

/(«) > MM, U > N (4.4)

and

My f' G(^,s\u(s)ds > 1. (4.5)

Lety e C be such that ||y || = W, = maxJ25, ^ J . Thus for t e [\, | ] ,

>y\\y\\ >y- — = N,
y
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which in view of (4.4) leads to

f(y(t)) > My{t), t e fi , ^1 . (4.6)

Using (3.2), (4.6) and (4.5), we find

> f* G(^,s\u(s)f(y(s))ds

>M

> M [' G (^, s\ u(s)y\\y\\ds >

Therefore

\\Sy\\ > \\y\\. (4.7)

If we set fi2 = {y e B \ \\y\\ < N,}, then (4.7) holds for y e C D dQ2-
In view of (4.3) and (4.7), it follows from Theorem 2.1 that S has a fixed point

y G C n (fi2\^i), such that S < \\y\\ < N,. This y is a positive solution of (1.1),
(1.2).

Case 2 Suppose that / is sublinear. Since f0 = oo, there exist L, £ > 0 such that

f(u) >Lu, 0 < u < £ (4.8)

and

LY I ' G[^,s)u{s)ds > 1. (4.9)./•«(!..).
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Let y e C be such that \\y\\ = £. On using (3.2), (4.8) and (4.9) successively, we get

>LJ G(^,s\u

from which (4.7) follows immediately. If we set ft, = {y e B \ \\y\\ < £}, then (4.7)
holds for); e C n a f i , .

Next, in view of /«, = 0, we may choose / , 6 > 0 such that

f ( u ) < 9 u , u > J (4.10)

and

6 [ (l-sy-"-lv(s)ds<l. (4.11)
(n - 1)! Jo

Let J\ = max{2£, 7}. Since / is nondecreasing, / («) < f(J\) for 0 < u < 7,. In
view of (4.10), this implies that

f(u)<6Ju 0 < w < 7 , . (4.12)

Let y € C be such that ||y|| = 7,. Then it follows from (4.12) that

f(y(t))<eju f e [ 0 , 1]. (4.13)

On using (3.2), (4.13), Lemma 2.1 and (4.11) successively, we get for t e [0, 1] that

Sy(t)< f G(t,s)v(s)f(y(s))ds
Jo

< 07, / G(t,s)v(s)ds
Jo

9 7, ' '
( n - 1)!

< A = \\y\\
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from which (4.3) follows immediately. Ifweset£22 = {y e B | \\y\\ < J\], then (4.3)
holds for y e C n d£22-

Now that we have obtained (4.7) and (4.3), it follows from Theorem 2.1 that S has
a fixed point y e C n (n2\£2i), such that % <\\y\\ < J\. This y is a positive solution
of (1.1), (1.2).

The proof of the theorem is complete.

The following two examples illustrate Theorem 4.1.

EXAMPLE 4.1. Consider the boundary-value problem

yO)+ , " *m7Tt (Ay+ l)r=0, r e (0,1),
(5 — 4cOS7Tf)r

y(0) = /(0) = yp)(0 = 0,

where 0 < p < 2 but fixed and 0 < r < 1.
Taking f(y) = {Ay + l)r (which is sublinear), we find that

H{t,y) 7T3sin7rr K{t,y)
= and = 0.

/(y) (5-4cos7r/)r f(y)
Hence we may choose

h(0 = —
(5-4cos7rf) r '

and k(t) = k\ (/) = 0. All the conditions of Theorem 4.1 are fulfilled and therefore
the boundary-value problem has a positive solution. We note that when p = 1, one
such solution is given by y(t) = 1 — cos7rf.

EXAMPLE 4.2. Consider the boundary-value problem

1

where p = 0 or 1 (but fixed) and 0 < r < 1.
Choosing f(y) = (2y + 3)r (which is sublinear), we may take

* ( ) ^ h()

and k(t) = kt(t) = 0. Again, all the conditions of Theorem 4.1 are satisfied and so
the boundary-value problem has a positive solution. Indeed, when p = 1, one such
solution is given by y(t) = t(2 — t)/2.
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