EIGENVALUE CHARACTERIZATION FOR (n, p) BOUNDARY-VALUE PROBLEMS

PATRICIA J. Y. WONG ${ }^{1}$ and RAVI P. AGARWAL ${ }^{2}$

(Received 24 January 1996, revised 10 May 1996)

Abstract

We consider the (n, p) boundary value problem $$
\begin{gathered} y^{(n)}+\lambda H(t, y)=\lambda K(t, y), \quad n \geq 2, t \in(0,1), \\ y^{(p)}(1)=y^{(i)}(0)=0, \quad 0 \leq i \leq n-2, \end{gathered}
$$ where $\lambda>0$ and $0 \leq p \leq n-1$ is fixed. We characterize the values of λ such that the boundary value problem has a positive solution. For the special case $\lambda=1$, we also offer sufficient conditions for the existence of positive solutions of the boundary value problem.

1. Introduction

In this paper we shall consider the nth order differential equation

$$
\begin{equation*}
y^{(n)}+\lambda H(t, y)=\lambda K(t, y), t \in(0,1) \tag{1.1}
\end{equation*}
$$

together with the (n, p) boundary conditions

$$
\begin{align*}
y^{(i)}(0) & =0, \quad 0 \leq i \leq n-2 \\
y^{(p)}(1) & =0 \tag{1.2}
\end{align*}
$$

where $n \geq 2, \lambda>0$ and p is a fixed integer satisfying $0 \leq p \leq n-1$. Throughout it is assumed that there exist continuous functions $f:[0, \infty) \rightarrow(0, \infty)$ and k, k_{1}, h, h_{1} : $(0,1) \rightarrow \mathbb{R}$ such that
$\left(\mathrm{H}_{1}\right) \quad f$ is nondecreasing;

[^0]$\left(H_{2}\right)$ for $u \in[0, \infty)$,
$$
h(t) \leq \frac{H(t, u)}{f(u)} \leq h_{1}(t), k(t) \leq \frac{K(t, u)}{f(u)} \leq k_{1}(t) ;
$$
$\left(\mathrm{H}_{3}\right) h(t)-k_{1}(t)$ is nonnegative and is not identically zero on any subinterval of $(0,1)$;
($\left.\mathrm{H}_{4}\right) \int_{0}^{1}(1-t)^{n-p-1}\left[h_{1}(t)-k(t)\right] d t<\infty$.
We shall characterize the values of λ for which the (n, p) boundary value problem (1.1), (1.2) has a positive solution. By a positive solution y of (1.1), (1.2), we mean $y \in C^{(n)}(0,1)$ satisfying (1.1) on $(0,1)$ and fulfilling (1.2), and y is nonnegative and is not identically zero on $[0,1]$. If, for a particular λ the boundary value problem (1.1), (1.2) has a positive solution y, then λ is called an eigenvalue and y a corresponding eigenfunction of (1.1), (1.2). We let
$$
E=\{\lambda>0 \mid \text { (1.1), (1.2) has a positive solution }\}
$$
be the set of eigenvalues of the boundary value problem (1.1), (1.2).
Next, for the special case $\lambda=1$, we shall give an existence result for positive solutions of the boundary value problem (1.1), (1.2), assuming that f is either superlinear or sublinear. To be precise, introduce the notation
$$
f_{0}=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}, \quad f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u} .
$$

The function f is said to be superlinear if $f_{0}=0, f_{\infty}=\infty$, and f is sublinear provided $f_{0}=\infty, f_{\infty}=0$. The technique used here is a generalization and extension of that initiated by Fink, Gatica and Hernandez [19] and Erbe and Wang [17] for second-order boundary value problems.

The motivation for the present work stems from many recent investigations. In fact, when $n=2$ the boundary value problem (1.1), (1.2) describes a vast spectrum of scientific phenomena such as gas diffusion through porous media, nonlinear diffusion generated by nonlinear sources, thermal self ignition of a chemically active mixture of gases in a vessel, catalysis theory, chemically reacting systems, adiabatic tubular reactor processes, as well as concentration in chemical or biological problems, where only positive solutions are meaningful, for example, see [$5,9,11,12,21,24,29]$. Recently, several eigenvalue characterizations for particular cases of (1.1), (1.2) have been carried out. To cite a few examples, Fink, Gatica and Hernandez [19] have dealt with the boundary value problem

$$
\begin{gather*}
y^{\prime \prime}+\lambda q(t) f(y)=0, \quad t \in(0,1) \\
y(0)=y(1)=0 \tag{1.3}
\end{gather*}
$$

Their results are extended in [20] to systems of second-order boundary-value problems. In [8] and [18], a different boundary value problem is tackled

$$
\begin{gather*}
y^{\prime \prime}+\frac{N-1}{t} y^{\prime}+\lambda q(t) f(y)=0, \quad t \in(0,1) \tag{1.4}\\
y(0)=y(1)=0
\end{gather*}
$$

Further, Chyan and Henderson [10] have studied a more general problem than (1.3), namely,

$$
\begin{gather*}
y^{(n)}+\lambda q(t) f(y)=0, \quad t \in(0,1) \\
y^{(i)}(0)=y^{(n-2)}(1)=0, \quad 0 \leq i \leq n-2 \tag{1.5}
\end{gather*}
$$

Our results not only generalize and extend the known eigenvalue theorems for (1.3)(1.5), but also complement the work of Wong and Agarwal [33,34], as well as including several other known criteria offered in [2].

For the special case $\lambda=1$, particular and related cases of (1.1), (1.2) have been the subject matter of many recent publications on singular boundary value problems, for example, see the monograph of O'Regen [28] and also [3, 4, 13, 23, 25, 26, 31]. Further, for the case of second-order boundary value problems, (1.1), (1.2) arise in applications involving nonlinear elliptic problems in annular regions. For this we refer to $[6,7,22,30]$. In all these applications, it is frequent that only solutions that are positive are useful. Recently, Eloe and Henderson [14, 15] have considered the n th-order differential equation

$$
y^{(n)}+q(t) f(y)=0, \quad t \in(0,1)
$$

subject to the boundary conditions

$$
\begin{aligned}
& y^{(i)}(0)=y^{(n-2)}(1)=0, \quad 0 \leq i \leq n-2 \\
& y^{(i)}(0)=y(1)=0, \quad 0 \leq i \leq n-2
\end{aligned}
$$

Our result not only generalizes and extends their work, but also complements other related investigations in $[16,17,32,34]$.

The plan of this paper is as follows. In Section 2 we shall state a fixed-point theorem due to Krasnosel'skii [27], and present some properties of a certain Green's function which are needed later. In Section 3, by defining an appropriate Banach space and cone, we characterize the set E. Finally, the special case $\lambda=1$ is treated in Section 4 and a fixed-point theorem from [27] is used to give an existence result for positive solutions of (1.1), (1.2).

2. Preliminaries

Theorem 2.1 ([27]). Let B be a Banach space, and let $C(\subset B)$ be a cone. Assume Ω_{1}, Ω_{2} are open subsets of B with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
S: C \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow C
$$

be a completely continuous operator such that, either
(a) $\|S y\| \leq\|y\|, y \in C \cap \partial \Omega_{1}$, and $\|S y\| \geq\|y\|, y \in C \cap \partial \Omega_{2}$, or
(b) $\|S y\| \geq\|y\|, y \in C \cap \partial \Omega_{1}$, and $\|S y\| \leq\|y\|, y \in C \cap \partial \Omega_{2}$.

Then, S has a fixed point in $C \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
To obtain a solution for (1.1), (1.2), we require a mapping whose kernel $G(t, s)$ is the Green's function of the boundary-value problem

$$
\begin{gathered}
-y^{(n)}=0 \\
y^{(p)}(1)=y^{(i)}(0)=0, \quad 0 \leq i \leq n-2
\end{gathered}
$$

where $0 \leq p \leq n-1$ but fixed. From [1] we have

$$
G(t, s)=\frac{1}{(n-1)!} \begin{cases}t^{n-1}(1-s)^{n-p-1}-(t-s)^{n-1}, & 0 \leq s \leq t \leq 1 \tag{2.1}\\ t^{n-1}(1-s)^{n-p-1}, & 0 \leq t \leq s \leq 1\end{cases}
$$

and

$$
\frac{\partial^{i}}{\partial t^{i}} G(t, s) \geq 0, \quad 0 \leq i \leq p, \quad(t, s) \in[0,1] \times[0,1]
$$

Lemma 2.1. For $(t, s) \in[0,1] \times[0,1]$, we have

$$
\begin{equation*}
G(t, s) \leq \frac{1}{(n-1)!}(1-s)^{n-p-1} \tag{2.2}
\end{equation*}
$$

Proof. This is immediate from (2.1).

Lemma 2.2. For $(t, s) \in\left[\frac{1}{4}, \frac{3}{4}\right] \times[0,1]$, we have

$$
\begin{equation*}
G(t, s) \geq\left(\frac{1}{4}\right)^{n-1} \frac{1}{(n-1)!}(1-s)^{n-p-1} \phi(s) \tag{2.3}
\end{equation*}
$$

where $0 \leq \phi(s) \leq 1$ is given by

$$
\phi(s)= \begin{cases}1-(1-s)^{p}, & s \leq t \tag{2.4}\\ 1, & t \leq s\end{cases}
$$

Proof. For $0 \leq s \leq t$, from (2.1) we find

$$
\begin{aligned}
(n-1)!G(t, s) & \geq t^{n-1}(1-s)^{n-p-1}-(t-t s)^{n-1} \\
& =t^{n-1}(1-s)^{n-p-1}\left[1-(1-s)^{p}\right] \\
& \geq\left(\frac{1}{4}\right)^{n-1}(1-s)^{n-p-1} \phi(s)
\end{aligned}
$$

For $t \leq s \leq 1$, the inequality (2.3) is obvious.
We shall need the following notation later. Let

$$
\begin{equation*}
v(t)=h_{1}(t)-k(t) \quad \text { and } \quad u(t)=h(t)-k_{1}(t) \tag{2.5}
\end{equation*}
$$

For a nonnegative y on $[0,1]$, we denote

$$
\begin{equation*}
\alpha=\frac{1}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s) f(y(s)) d s \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\frac{1}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} \phi(s) u(s) f(y(s)) d s \tag{2.7}
\end{equation*}
$$

In view of $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$, it is clear that $\alpha \geq \beta>0$. Further, we define the constant

$$
\begin{equation*}
\gamma=\left(\frac{1}{4}\right)^{n-1} \frac{\beta}{\alpha} \tag{2.8}
\end{equation*}
$$

and note that $0<\gamma<1$.

3. Eigenvalue characterization

Let the Banach space

$$
B=\{y \mid y \in C[0,1]\}
$$

be equipped with norm $\|y\|=\sup _{t \in[0,1]}|y(t)|$, and let

$$
C=\left\{y \in B \mid y(t) \text { is nonnegative on }[0,1] ; \min _{t \in\left[\frac{1}{4} \cdot \frac{3}{4}\right]} y(t) \geq \gamma\|y\|\right\}
$$

We note that C is a cone in B. Further, let

$$
C_{M}=\{y \in C \mid\|y\| \leq M\}
$$

We define the operator $S: C \rightarrow B$ by

$$
\begin{equation*}
S y(t)=\int_{0}^{1} G(t, s)[H(s, y)-K(s, y)] d s, t \in[0,1] \tag{3.1}
\end{equation*}
$$

To obtain a positive solution of (1.1), (1.2), we shall seek a fixed point of the operator λS in the cone C.

It is clear from $\left(\mathrm{H}_{2}\right)$ that

$$
\begin{equation*}
U y(t) \leq S y(t) \leq V y(t), \quad t \in[0,1] \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
U y(t)=\int_{0}^{1} G(t, s) u(s) f(y(s)) d s \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
V y(t)=\int_{0}^{1} G(t, s) v(s) f(y(s)) d s \tag{3.4}
\end{equation*}
$$

We shall now show that the operator S is compact on the cone C. Let us consider the case when $u(t)$ is unbounded in a deleted right neighborhood of 0 and also in a deleted left neighborhood of 1 . Clearly, $v(t)$ is also unbounded near 0 and 1. For $m \in\{1,2,3, \ldots\}$, define $u_{m}, v_{m}:[0,1] \rightarrow \mathbb{R}$ by

$$
\begin{gather*}
u_{m}(t)= \begin{cases}u\left(\frac{1}{m+1}\right), & 0 \leq t \leq \frac{1}{m+1} \\
u(t), & \frac{1}{m+1} \leq t \leq \frac{m}{m+1} \\
u\left(\frac{m}{m+1}\right), & \frac{m}{m+1} \leq t \leq 1\end{cases} \tag{3.5}\\
v_{m}(t)= \begin{cases}v\left(\frac{1}{m+1}\right), & 0 \leq t \leq \frac{1}{m+1} \\
v(t), & \frac{1}{m+1} \leq t \leq \frac{m}{m+1} \\
v\left(\frac{m}{m+1}\right), & \frac{m}{m+1} \leq t \leq 1\end{cases} \tag{3.6}
\end{gather*}
$$

and the operators $U_{m}, V_{m}: C \rightarrow B$ by

$$
\begin{align*}
& U_{m} y(t)=\int_{0}^{1} G(t, s) u_{m}(s) f(y(s)) d s \tag{3.7}\\
& V_{m} y(t)=\int_{0}^{1} G(t, s) v_{m}(s) f(y(s)) d s \tag{3.8}
\end{align*}
$$

It is standard that for each m, both U_{m} and V_{m} are compact operators on C. Let $M>0$ and $y \in C_{M}$. Then, in view of Lemma 2.1, we find

$$
\begin{aligned}
& \left|V_{m} y(t)-V y(t)\right| \\
& \quad=\int_{0}^{1} G(t, s)\left|v_{m}(s)-v(s)\right| f(y(s)) d s \\
& =\int_{0}^{\frac{1}{m+1}} G(t, s)\left|v_{m}(s)-v(s)\right| f(y(s)) d s+\int_{\frac{m}{m+1}}^{1} G(t, s)\left|v_{m}(s)-v(s)\right| f(y(s)) d s \\
& \leq \frac{f(M)}{(n-1)!}\left[\int_{0}^{\frac{1}{m+1}}(1-s)^{n-p-1}\left|v\left(\frac{1}{m+1}\right)-v(s)\right| d s\right. \\
& \left.\quad \quad+\int_{\frac{m}{m+1}}^{1}(1-s)^{n-p-1}\left|v\left(\frac{m}{m+1}\right)-v(s)\right| d s\right]
\end{aligned}
$$

The integrability of $(1-t)^{n-p-1} v(t)$ (condition $\left(\mathrm{H}_{4}\right)$) implies that V_{m} converges uniformly to V on C_{M}. Hence, V is compact on C. Similarly, we can verify that U_{m} converges uniformly to U on C_{M} and therefore U is compact on C. It follows from (3.2) that the operator S is compact on C.

THEOREM 3.1. There exists a $c>0$ such that the interval $(0, c] \subseteq E$.
Proof. Let $M>0$ be given. Define

$$
\begin{equation*}
c=M\left[\frac{f(M)}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s) d s\right]^{-1} \tag{3.9}
\end{equation*}
$$

Let $\lambda \in(0, c]$. We shall prove that $(\lambda S)\left(C_{M}\right) \subseteq C_{M}$. For this, let $y \in C_{M}$ and we shall first show that $\lambda S y \in C$. Clearly, from (3.2) and $\left(\mathrm{H}_{3}\right)$, we find

$$
\begin{equation*}
(\lambda S y)(t) \geq \lambda \int_{0}^{1} G(t, s) u(s) f(y(s)) d s \geq 0, \quad t \in[0,1] \tag{3.10}
\end{equation*}
$$

Further, it follows from (3.2) and Lemma 2.1 that

$$
\begin{aligned}
S y(t) & \leq \int_{0}^{1} G(t, s) v(s) f(y(s)) d s \\
& \leq \frac{1}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s) f(y(s)) d s=\alpha, \quad t \in[0,1]
\end{aligned}
$$

Thus

$$
\begin{equation*}
\|S y\| \leq \alpha \tag{3.11}
\end{equation*}
$$

Now, on using (3.2), Lemma 2.2 and (3.11), we find for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$ that

$$
\begin{aligned}
(\lambda S y)(t) & \geq \lambda \int_{0}^{1} G(t, s) u(s) f(y(s)) d s \\
& \geq \lambda\left(\frac{1}{4}\right)^{n-1} \frac{1}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} \phi(s) u(s) f(y(s)) d s \\
& =\lambda\left(\frac{1}{4}\right)^{n-1} \beta \\
& \geq \lambda\left(\frac{1}{4}\right)^{n-1} \beta \cdot \frac{\|S y\|}{\alpha}=\lambda \gamma\|S y\|=\gamma\|\lambda S y\| .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\min _{t \in\left[\frac{1}{4} \cdot \frac{3}{4}\right]}(\lambda S y)(t) \geq \gamma\|\lambda S y\| \tag{3.12}
\end{equation*}
$$

and (3.10) and (3.12) lead to $\lambda S y \in C$.
Next, we shall show that $\|\lambda S y\| \leq M$. For this, on using (3.2), Lemma 2.1 and (3.9) successively, we get

$$
\begin{aligned}
(\lambda S y)(t) & \leq \lambda \int_{0}^{1} G(t, s) v(s) f(y(s)) d s \\
& \leq \frac{\lambda}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s) f(M) d s \leq M, \quad t \in[0,1]
\end{aligned}
$$

Consequently,

$$
\|\lambda S y\| \leq M
$$

Hence $(\lambda S)\left(C_{M}\right) \subseteq C_{M}$. Also, standard arguments yield that λS is completely continuous. By the Schauder fixed point theorem, λS has a fixed point in C_{M}. Clearly this fixed point is a positive solution of (1.1), (1.2) and therefore λ is an eigenvalue of (1.1), (1.2). Since $\lambda \in(0, c]$ is arbitrary, it follows immediately that the interval $(0, c] \subseteq E$.

The next theorem makes use of the monotonicity and compactness of the operator S on the cone C. We refer to [19, Theorem 3.2] for its proof.

THEOREM 3.2 ([19]). Suppose that $\lambda_{0} \in E$. Then, for each $0<\lambda<\lambda_{0}, \lambda \in E$.
The following corollary is immediate from Theorem 3.2.
COROLLARY 3.1. E is an interval.

We shall establish conditions under which E is a bounded or unbounded interval. For this, we need the following results.

THEOREM 3.3. Let λ be an eigenvalue of (1.1), (1.2) and $y \in C$ be a corresponding eigenfunction. If $y^{(n-1)}(0)=q$ for some $q>0$, then λ satisfies

$$
\begin{equation*}
g(v) q\left[f\left(\frac{q}{(n-1)!}\right)\right]^{-1} \leq \lambda \leq g(u) q[f(0)]^{-1} \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
g(z)=\left[\int_{0}^{1}(1-s)^{n-p-1} z(s) d s\right]^{-1} \tag{3.14}
\end{equation*}
$$

Proof. For $m \in\{1,2,3, \ldots\}$, we define $f_{m}=f * \psi_{m}$, where ψ_{m} is a standard mollifier $[10,19]$ such that f_{m} is Lipschitz and converges uniformly to f.

For a fixed m, let λ_{m} be an eigenvalue and y_{m}, with $y_{m}^{(n-1)}(0)=q$, be a corresponding eigenfunction of the boundary-value problem

$$
\begin{gather*}
y_{m}^{(n)}+\lambda_{m} H_{m}\left(t, y_{m}\right)=\lambda_{m} K_{m}\left(t, y_{m}\right), t \in[0,1] \tag{3.15}\\
y_{m}^{(i)}(0)=0, \quad 0 \leq i \leq n-2 \\
y_{m}^{(p)}(1)=0 \tag{3.16}
\end{gather*}
$$

where H_{m} and K_{m} converge uniformly to H and K respectively, and

$$
\begin{equation*}
u_{m}(t) \leq \frac{H_{m}(t, z)-K_{m}(t, z)}{f_{m}(z)} \leq v_{m}(t) \tag{3.17}
\end{equation*}
$$

(see (3.5) and (3.6) for the definitions of $u_{m}(t)$ and $v_{m}(t)$).
Clearly, y_{m} is the unique solution of the initial value problem (3.15),

$$
\begin{gather*}
y_{m}^{(i)}(0)=0, \quad 0 \leq i \leq n-2, \tag{3.18}\\
y_{m}^{(n-1)}(1)=q .
\end{gather*}
$$

Since

$$
y_{m}^{(n)}(t)=\lambda_{m}\left[K_{m}\left(t, y_{m}\right)-H_{m}\left(t, y_{m}\right)\right] \leq-\lambda_{m} u_{m}(t) f_{m}\left(y_{m}(t)\right) \leq 0,
$$

we have $y_{m}^{(n-1)}$ is nonincreasing and hence

$$
\begin{equation*}
y_{m}^{(n-1)}(t) \leq y_{m}^{(n-1)}(0)=q, \quad t \in[0,1] . \tag{3.19}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
y_{m}^{(i)}(t)=\int_{0}^{t} y_{m}^{(i+1)}(s) d s, \quad 0 \leq i \leq n-2, t \in[0,1], \tag{3.20}
\end{equation*}
$$

we obtain, on using (3.19),

$$
y_{m}^{(n-2)}(t)=\int_{0}^{t} y_{m}^{(n-1)}(s) d s \leq \int_{0}^{t} q d s=q t, \quad t \in[0,1] .
$$

Applying the above inequality and continuing integrating, we find

$$
\begin{equation*}
y_{m}(t) \leq q \frac{t^{n-1}}{(n-1)!} \leq \frac{q}{(n-1)!}, \quad t \in[0,1] \tag{3.21}
\end{equation*}
$$

Now, from (3.15), (3.17) and (3.21) we get for $t \in[0,1]$,

$$
\begin{equation*}
\lambda_{m} u_{m}(t) f_{m}(0) \leq-y_{m}^{(n)}(t) \leq \lambda_{m} v_{m}(t) f_{m}\left(\frac{q}{(n-1)!}\right) \tag{3.22}
\end{equation*}
$$

An integration of (3.22) from 0 to t provides

$$
\begin{equation*}
\theta_{1}(t) \leq y_{m}^{(n-1)}(t) \leq \theta_{2}(t), \quad t \in[0,1], \tag{3.23}
\end{equation*}
$$

where

$$
\theta_{1}(t)=q-\lambda_{m} f_{m}\left(\frac{q}{(n-1)!}\right) \int_{0}^{t} v_{m}(s) d s
$$

and

$$
\theta_{2}(t)=q-\lambda_{m} f_{m}(0) \int_{0}^{t} u_{m}(s) d s
$$

Continuing the integration process, we get for $0 \leq p \leq n-1$,

$$
\begin{equation*}
\theta_{3}(t) \leq y_{m}^{(p)}(t) \leq \theta_{4}(t), \quad t \in[0,1] \tag{3.24}
\end{equation*}
$$

where

$$
\theta_{3}(t)=\frac{q}{(n-p-1)!} t^{n-p-1}-\lambda_{m} f_{m}\left(\frac{q}{(n-1)!}\right) \int_{0}^{t} \frac{(t-s)^{n-p-1}}{(n-p-1)!} v_{m}(s) d s
$$

and

$$
\theta_{4}(t)=\frac{q}{(n-p-1)!} t^{n-p-1}-\lambda_{m} f_{m}(0) \int_{0}^{t} \frac{(t-s)^{n-p-1}}{(n-p-1)!} u_{m}(s) d s
$$

In order to have $y_{m}^{(p)}(1)=0$ (see (3.16)), from (3.24) it is necessary that $\theta_{3}(1) \leq 0$ and $\theta_{4}(1) \geq 0$, or equivalently,

$$
\begin{equation*}
\lambda_{m} \geq g\left(v_{m}\right) q\left[f_{m}\left(\frac{q}{(n-1)!}\right)\right]^{-1} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{m} \leq g\left(u_{m}\right) q\left[f_{m}(0)\right]^{-1} . \tag{3.26}
\end{equation*}
$$

Coupling (3.25) and (3.26), we get

$$
\begin{equation*}
g\left(v_{m}\right) q\left[f_{m}\left(\frac{q}{(n-1)!}\right)\right]^{-1} \leq \lambda_{m} \leq g\left(u_{m}\right) q\left[f_{m}(0)\right]^{-1} \tag{3.27}
\end{equation*}
$$

It follows from (3.23) that $\left\{y_{m}^{(n-1)}\right\}_{m=1}^{\infty}$ is a uniformly bounded sequence on $[0,1]$. Using the initial conditions (3.18) and repeated integrations, we find that $\left\{y_{m}^{(i)}\right\}_{m=1}^{\infty}$, $0 \leq i \leq n-1$ is a uniformly bounded sequence. Thus there exists a subsequence, which can be relabelled as $\left\{y_{m}\right\}_{m=1}^{\infty}$, that converges uniformly (in fact, in $C^{(n-1)}$-norm) to some y on $[0,1]$. We note that each $y_{m}(t)$ can be expressed as

$$
\begin{equation*}
y_{m}(t)=\lambda_{m} \int_{0}^{1} G(t, s)\left[H_{m}\left(s, y_{m}\right)-K_{m}\left(s, y_{m}\right)\right] d s, \quad t \in[0,1] \tag{3.28}
\end{equation*}
$$

Since $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ is a bounded sequence (from (3.27)), there is a subsequence, which can be relabelled as $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$, that converges to some λ. Letting $m \rightarrow \infty$ in (3.28) yields

$$
y(t)=\lambda \int_{0}^{1} G(t, s)[H(s, y)-K(s, y)] d s, t \in[0,1]
$$

This means that y is an eigenfunction of (1.1), (1.2) corresponding to the eigenvalue λ. Further, $y^{(n-1)}(0)=q$, and (3.13) follows from (3.27) immediately.

THEOREM 3.4. Let λ be an eigenvalue of (1.1), (1.2) and $y \in C$ be a corresponding eigenfunction. Further, let $\eta=\|y\|$ and $\rho=\max _{t \in[0,1]}\left|y^{(n-2)}(t)\right|$. Then

$$
\begin{equation*}
\lambda \geq \frac{\eta}{f(\eta)}(n-1)!\left[\int_{0}^{1}(1-s)^{n-p-1} v(s) d s\right]^{-1} \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \leq \frac{\eta}{f(\gamma \eta)}\left[\int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) u(s) d s\right]^{-1} . \tag{3.30}
\end{equation*}
$$

Also, there exists a $c>0$ such that

$$
\begin{equation*}
\lambda \leq \frac{\rho}{f(c \rho)} \frac{1}{(n-2)!}\left[\int_{\frac{1}{4}}^{\frac{1}{2}} G\left(\frac{1}{2}, s\right) u(s) d s\right]^{-1} . \tag{3.31}
\end{equation*}
$$

Proof. First we shall prove (3.29). For this, let $t_{0} \in[0,1]$ be such that

$$
\eta=\|y\|=y\left(t_{0}\right)
$$

Then, applying (3.2) and Lemma 2.1 we find

$$
\begin{aligned}
\eta=y\left(t_{0}\right)=(\lambda S y)\left(t_{0}\right) & \leq \lambda \int_{0}^{1} G\left(t_{0}, s\right) v(s) f(y(s)) d s \\
& \leq \frac{\lambda}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s) f(y(s)) d s \\
& \leq \frac{\lambda}{(n-1)!} f(\eta) \int_{0}^{1}(1-s)^{n-p-1} v(s) d s
\end{aligned}
$$

from which (3.29) is immediate.
Next, using (3.2) and the fact that $\min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} y(t) \geq \gamma \eta$, we get

$$
\begin{aligned}
\eta \geq y\left(\frac{1}{2}\right) & \geq \lambda \int_{0}^{1} G\left(\frac{1}{2}, s\right) v(s) f(y(s)) d s \\
& \geq \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) v(s) f(y(s)) d s \\
& \geq \lambda f(\gamma \eta) \int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) v(s) d s
\end{aligned}
$$

which gives (3.30).
Finally, to prove (3.31) we note from the relation

$$
\begin{equation*}
y^{(i)}(t)=\int_{0}^{t} y^{(i+1)}(s) d s, \quad 0 \leq i \leq n-3, t \in[0,1] \tag{3.32}
\end{equation*}
$$

and the nonnegativity of y that $y^{(n-2)}$ is nonnegative on $[0,1]$. It is also observed that $y^{(n)}$ is nonpositive and hence $y^{(n-2)}$ is concave on $[0,1]$. Thus, there exists a unique $t \in[0,1]$ such that $\rho=\max _{t \in[0,1]} y^{(n-2)}(t)=y^{(n-2)}\left(t_{1}\right)$. We shall consider two cases.

Case $1 \quad y^{(n-2)}(1)=0$
Here, $y^{(n-2)}(0)=y^{(n-2)}(1)=0$. Thus, it follows from the concavity of $y^{(n-2)}$ that

$$
\begin{align*}
y^{(n-2)}(t) & \geq \begin{cases}\frac{\rho}{t_{1}} t, & t \in\left[0, t_{1}\right] \\
\frac{\rho}{1-t_{1}}(1-t), & t \in\left[t_{1}, 1\right]\end{cases} \\
& \geq \rho t(1-t), \quad t \in[0,1] . \tag{3.33}
\end{align*}
$$

Using (3.32) and (3.33), we get

$$
y^{(n-3)}(t)=\int_{0}^{t} y^{(n-2)}(s) d s \geq \int_{0}^{t} \rho s(1-s) d s=\rho\left(\frac{t^{2}}{2}-\frac{t^{3}}{3}\right), \quad t \in[0,1] .
$$

Continuing the integration process, we obtain

$$
\begin{equation*}
y(t) \geq \rho \psi(t), \quad t \in[0,1], \tag{3.34}
\end{equation*}
$$

where

$$
\psi(t)=\frac{t^{n-1}}{(n-1)!}-2 \frac{t^{n}}{n!} .
$$

We note that

$$
\psi^{\prime}(t)=\frac{t^{n-2}}{(n-2)!}\left(1-\frac{2 t}{n-1}\right)
$$

is nonnegative for $t \in I \equiv\left[0, \frac{n-1}{2}\right]$. Hence in particular $\psi(t)$ is nondecreasing for $t \in\left[\frac{1}{4}, \frac{1}{2}\right] \subseteq I$. It follows from (3.34) that

$$
\begin{equation*}
y(t) \geq c \rho, \quad t \in\left[\frac{1}{4}, \frac{1}{2}\right], \tag{3.35}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\psi\left(\frac{1}{4}\right)=\frac{1}{4^{n-1}(n-1)!}-\frac{2}{4^{n} n!}>0 . \tag{3.36}
\end{equation*}
$$

Now, relation (3.32) provides

$$
y^{(n-3)}(t)=\int_{0}^{t} y^{(n-2)}(s) d s \leq \int_{0}^{t} \rho d s=\rho t, \quad t \in[0,1] .
$$

Using the above inequality and (3.32) again leads to

$$
\begin{equation*}
y(t) \leq \rho \frac{t^{n-2}}{(n-2)!} \leq \frac{\rho}{(n-2)!}, \quad t \in[0,1] \tag{3.37}
\end{equation*}
$$

In view of (3.37), (3.2) and (3.35), we find

$$
\begin{aligned}
\frac{\rho}{(n-2)!} \geq y\left(\frac{1}{2}\right) & \geq \lambda \int_{0}^{1} G\left(\frac{1}{2}, s\right) u(s) f(y(s)) d s \\
& \geq \lambda \int_{\frac{1}{4}}^{\frac{1}{2}} G\left(\frac{1}{2}, s\right) u(s) f(y(s)) d s \\
& \geq \lambda f(c \rho) \int_{\frac{1}{4}}^{\frac{1}{2}} G\left(\frac{1}{2}, s\right) u(s) d s
\end{aligned}
$$

from which (3.31) follows immediately.
Case $2 \quad y^{(n-2)}(1)>0$
In this case, $y^{(n-2)}(0)=0, y^{(n-2)}(1) \neq 0$. Hence, by the concavity of $y^{(n-2)}$, we have

$$
\begin{equation*}
y^{(n-2)}(t) \geq y^{(n-2)}(1) t \geq y^{(n-2)}(1) t(1-t), \quad t \in[0,1] . \tag{3.38}
\end{equation*}
$$

Using a similar technique to that of Case 1 , it follows from (3.38) and successive integrations that

$$
\begin{equation*}
y(t) \geq y^{(n-2)}(1) \psi(t), \quad t \in[\cap, 1] . \tag{3.39}
\end{equation*}
$$

This leads to (3.35), where

$$
\begin{equation*}
c=\frac{y^{(n-2)}(1)}{\rho}\left[\frac{1}{4^{n-1}(n-1)!}-\frac{2}{4^{n} n!}\right]>0 \tag{3.40}
\end{equation*}
$$

The rest of the proof is similar to that of Case 1.
This completes the proof of the theorem.

THEOREM 3.5. Let

$$
\begin{gathered}
F_{B}=\left\{f \left\lvert\, \frac{u}{f(u)}\right. \text { is bounded for } u \in[0, \infty)\right\}, \\
F_{0}=\left\{f \left\lvert\, \lim _{u \rightarrow \infty} \frac{u}{f(u)}=0\right.\right\}, \quad F_{\infty}=\left\{f \left\lvert\, \lim _{u \rightarrow \infty} \frac{u}{f(u)}=\infty\right.\right\} .
\end{gathered}
$$

(a) If $f \in F_{B}$, then $E=(0, c)$ or $(0, c]$ for some $c \in(0, \infty)$.
(b) If $f \in F_{0}$, then $E=(0, c]$ for some $c \in(0, \infty)$.
(c) If $f \in F_{\infty}$, then $E=(0, \infty)$.

Proof. (a) This is immediate from (3.30) as well as from (3.31).
(b) Since $F_{0} \subseteq F_{B}$, it follows from case (a) that $E=(0, c)$ or ($0, c$] for some $c \in(0, \infty)$. In particular,

$$
\begin{equation*}
c=\sup E . \tag{3.41}
\end{equation*}
$$

Let $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ be a monotonically increasing sequence in E which converges to c, and let $\left\{y_{m}\right\}_{m=1}^{\infty}$ in C be a corresponding sequence of eigenfunctions. Further, let $\eta_{m}=\left\|y_{m}\right\|$. Then, (3.30) implies that no subsequence of $\left\{\eta_{m}\right\}_{m=1}^{\infty}$ can diverge to infinity. Thus, there exists $M>0$ such that $\eta_{m} \leq M$ for all m. So y_{m} is uniformly bounded. Hence, there is a subsequence of $\left\{y_{m}\right\}_{m=1}^{\infty}$, relabelled as the original sequence, which converges uniformly to some $y \in C$. Noting that $\lambda_{m} S y_{m}=y_{m}$, we have

$$
\begin{equation*}
c S y_{m}=\frac{c}{\lambda_{m}} y_{m} \tag{3.42}
\end{equation*}
$$

Since $\left\{c S y_{m}\right\}_{m=1}^{\infty}$ is relatively compact, y_{m} converges to y and λ_{m} converges to c, letting $m \rightarrow \infty$ in (3.42) gives $c S y=y$, that is, $c \in E$. This completes the proof for Case (b).
(c) This follows from Corollary 3.1 and (3.29).

EXAMPLE 3.1. Consider the boundary-value problem

$$
\begin{gathered}
y^{(4)}+\lambda \frac{1}{\left(5+2 t^{3}-t^{4}\right)^{r}}(12 y+5)^{r}=0, \quad t \in(0,1) \\
y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{(p)}(1)=0
\end{gathered}
$$

where $0 \leq p \leq 3$ but fixed, $\lambda>0$ and $r \geq 0$.
Taking $f(y)=(12 y+5)^{r}$, we find

$$
\frac{H(t, y)}{f(y)}=\frac{1}{\left(5+2 t^{3}-t^{4}\right)^{r}} \quad \text { and } \quad \frac{K(t, y)}{f(y)}=0
$$

Hence, we may take

$$
h_{1}(t)=\frac{2}{\left(5+2 t^{3}-t^{4}\right)^{r}}, \quad h(t)=\frac{1}{2\left(5+2 t^{3}-t^{4}\right)^{r}}
$$

and $k(t)=k_{1}(t)=0$. All the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ are satisfied.

Case $1 \quad 0 \leq r<1$
Since $f \in F_{\infty}$, by Theorem 3.5 (c) the set $E=(0, \infty)$. For example when $p=\lambda=$ 2 , the boundary-value problem has a positive solution given by $y(t)=t^{3}(2-t) / 12$.

Case $2 r=1$
Since $f \in F_{B}$, by Theorem $3.5(\mathrm{a})$ the set E is an open or a half-closed interval. Further, we note from Case 1 and Theorem 3.2 that when $p=2, E$ contains the interval (0,2].

Case $3 \quad r>1$
Since $f \in F_{0}$, by Theorem $3.5(\mathrm{~b})$ the set E is a half-closed interval. Again, it is noted that when $p=2,(0,2] \subseteq E$.

EXAMPLE 3.2. Consider the boundary-value problem

$$
\begin{gathered}
y^{\prime \prime}+\lambda \frac{\sin \pi t}{(8+5 \sin \pi t)^{r}}(5 y+8)^{r}=0, \quad t \in(0,1), \\
y(0)=y^{(p)}(1)=0,
\end{gathered}
$$

where $p=0$ or 1 (but fixed), $\lambda>0$ and $r \geq 0$.
Choosing $f(y)=(5 y+8)^{r}$, we may take

$$
h_{1}(t)=\frac{3 \sin \pi t}{(8+5 \sin \pi t)^{r}}, \quad h(t)=\frac{\sin \pi t}{4(8+5 \sin \pi t)^{r}}
$$

and $k(t)=k_{1}(t)=0$. All the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ are satisfied and we note that when $p=0$ and $\lambda=\pi^{2}$, the boundary-value problem has a positive solution given by $y(t)=\sin \pi t$. With obvious modification, the three cases considered in Example 3.1 also apply here.

4. Special case: $\boldsymbol{\lambda}=1$

THEOREM 4.1. Suppose that f is either superlinear or sublinear. Then the boundaryvalue problem (1.1), (1.2) has a positive solution.

Proof. To obtain a positive solution of (1.1) (1.2), we shall seek a fixed point of the operator S (defined in (3.1)) in the cone C. We have seen that S is compact on the cone C. Further, we observe from the proof of Theorem 3.1 that S maps C into itself. Also, the standard arguments yield that S is completely continuous.

Case 1 Suppose that f is superlinear. Since $f_{0}=0$, we may choose $\epsilon, \delta>0$ such that

$$
\begin{equation*}
f(u) \leq \epsilon u, \quad 0<u \leq \delta \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\epsilon}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s) d s \leq 1 \tag{4.2}
\end{equation*}
$$

Let $y \in C$ be such that $\|y\|=\delta$. Then, applying (3.2), (4.1), Lemma 2.1 and (4.2) successively, we find for $t \in[0,1]$,

$$
\begin{aligned}
S y(t) & \leq \int_{0}^{1} G(t, s) v(s) f(y(s)) d s \\
& \leq \epsilon \int_{0}^{1} G(t, s) v(s) y(s) d s \\
& \leq \frac{\epsilon}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s) y(s) d s \\
& \leq \frac{\epsilon}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s)\|y\| d s \leq\|y\| .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|S y\| \leq\|y\| . \tag{4.3}
\end{equation*}
$$

If we set $\Omega_{1}=\{y \in B \mid\|y\|<\delta\}$, then (4.3) holds for $y \in C \cap \partial \Omega_{1}$.
Next, since $f_{\infty}=\infty$, we may choose $M, N>0$ such that

$$
\begin{equation*}
f(u) \geq M u, \quad u \geq N \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
M \gamma \int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) u(s) d s \geq 1 \tag{4.5}
\end{equation*}
$$

Let $y \in C$ be such that $\|y\|=N_{1} \equiv \max \left\{2 \delta, \frac{N}{\gamma}\right\}$. Thus for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$,

$$
y(t) \geq \gamma\|y\| \geq \gamma \cdot \frac{N}{\gamma}=N
$$

which in view of (4.4) leads to

$$
\begin{equation*}
f(y(t)) \geq M y(t), \quad t \in\left[\frac{1}{4}, \frac{3}{4}\right] \tag{4.6}
\end{equation*}
$$

Using (3.2), (4.6) and (4.5), we find

$$
\begin{aligned}
S y\left(\frac{1}{2}\right) & \geq \int_{0}^{1} G\left(\frac{1}{2}, s\right) u(s) f(y(s)) d s \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) u(s) f(y(s)) d s \\
& \geq M \int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) u(s) y(s) d s \\
& \geq M \int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) u(s) \gamma\|y\| d s \geq\|y\| .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\|S y\| \geq\|y\| \tag{4.7}
\end{equation*}
$$

If we set $\Omega_{2}=\left\{y \in B \mid\|y\|<N_{1}\right\}$, then (4.7) holds for $y \in C \cap \partial \Omega_{2}$.
In view of (4.3) and (4.7), it follows from Theorem 2.1 that S has a fixed point $y \in C \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, such that $\delta \leq\|y\| \leq N_{1}$. This y is a positive solution of (1.1), (1.2).

Case 2 Suppose that f is sublinear. Since $f_{0}=\infty$, there exist $L, \xi>0$ such that

$$
\begin{equation*}
f(u) \geq L u, \quad 0<u \leq \xi \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
L \gamma \int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) u(s) d s \geq 1 \tag{4.9}
\end{equation*}
$$

Let $y \in C$ be such that $\|y\|=\xi$. On using (3.2), (4.8) and (4.9) successively, we get

$$
\begin{aligned}
S y\left(\frac{1}{2}\right) & \geq \int_{0}^{1} G\left(\frac{1}{2}, s\right) u(s) f(y(s)) d s \\
& \geq L \int_{0}^{1} G\left(\frac{1}{2}, s\right) u(s) y(s) d s \\
& \geq L \int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) u(s) y(s) d s \\
& \geq L \int_{\frac{1}{4}}^{\frac{3}{4}} G\left(\frac{1}{2}, s\right) u(s) \gamma\|y\| d s \geq\|y\|
\end{aligned}
$$

from which (4.7) follows immediately. If we set $\Omega_{1}=\{y \in B \mid\|y\|<\xi\}$, then (4.7) holds for $y \in C \cap \partial \Omega_{1}$.

Next, in view of $f_{\infty}=0$, we may choose $J, \theta>0$ such that

$$
\begin{equation*}
f(u) \leq \theta u, \quad u \geq J \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\theta}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s) d s \leq 1 \tag{4.11}
\end{equation*}
$$

Let $J_{1}=\max \{2 \xi, J\}$. Since f is nondecreasing, $f(u) \leq f\left(J_{1}\right)$ for $0<u \leq J_{1}$. In view of (4.10), this implies that

$$
\begin{equation*}
f(u) \leq \theta J_{1}, \quad 0<u \leq J_{1} \tag{4.12}
\end{equation*}
$$

Let $y \in C$ be such that $\|y\|=J_{1}$. Then it follows from (4.12) that

$$
\begin{equation*}
f(y(t)) \leq \theta J_{1}, \quad t \in[0,1] \tag{4.13}
\end{equation*}
$$

On using (3.2), (4.13), Lemma 2.1 and (4.11) successively, we get for $t \in[0,1]$ that

$$
\begin{aligned}
S y(t) & \leq \int_{0}^{1} G(t, s) v(s) f(y(s)) d s \\
& \leq \theta J_{1} \int_{0}^{1} G(t, s) v(s) d s \\
& \leq \frac{\theta J_{1}}{(n-1)!} \int_{0}^{1}(1-s)^{n-p-1} v(s) d s \\
& \leq J_{1}=\|y\|
\end{aligned}
$$

from which (4.3) follows immediately. If we set $\Omega_{2}=\left\{y \in B \mid\|y\|<J_{1}\right\}$, then (4.3) holds for $y \in C \cap \partial \Omega_{2}$.

Now that we have obtained (4.7) and (4.3), it follows from Theorem 2.1 that S has a fixed point $y \in C \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, such that $\xi \leq\|y\| \leq J_{1}$. This y is a positive solution of (1.1), (1.2).

The proof of the theorem is complete.
The following two examples illustrate Theorem 4.1.
EXAMPLE 4.1. Consider the boundary-value problem

$$
\begin{gathered}
y^{(3)}+\frac{\pi^{3} \sin \pi t}{(5-4 \cos \pi t)^{r}}(4 y+1)^{r}=0, \quad t \in(0,1) \\
y(0)=y^{\prime}(0)=y^{(p)}(1)=0
\end{gathered}
$$

where $0 \leq p \leq 2$ but fixed and $0 \leq r<1$.
Taking $f(y)=(4 y+1)^{r}$ (which is sublinear), we find that

$$
\frac{H(t, y)}{f(y)}=\frac{\pi^{3} \sin \pi t}{(5-4 \cos \pi t)^{r}} \quad \text { and } \quad \frac{K(t, y)}{f(y)}=0 .
$$

Hence we may choose

$$
h_{1}(t)=\frac{\pi^{4} \sin \pi t}{(5-4 \cos \pi t)^{r}}, \quad h(t)=\frac{\pi^{2} \sin \pi t}{(5-4 \cos \pi t)^{r}}
$$

and $k(t)=k_{1}(t)=0$. All the conditions of Theorem 4.1 are fulfilled and therefore the boundary-value problem has a positive solution. We note that when $p=1$, one such solution is given by $y(t)=1-\cos \pi t$.

EXAMPLE 4.2. Consider the boundary-value problem

$$
\begin{gathered}
y^{\prime \prime}+\frac{1}{\left(3+2 t-t^{2}\right)^{r}}(2 y+3)^{r}=0, \quad t \in(0,1), \\
y(0)=y^{(p)}(1)=0
\end{gathered}
$$

where $p=0$ or 1 (but fixed) and $0 \leq r<1$.
Choosing $f(y)=(2 y+3)^{r}$ (which is sublinear), we may take

$$
h_{1}(t)=\frac{5}{\left(3+2 t-t^{2}\right)^{r}}, \quad h_{1}(t)=\frac{1}{3\left(3+2 t-t^{2}\right)^{r}}
$$

and $k(t)=k_{1}(t)=0$. Again, all the conditions of Theorem 4.1 are satisfied and so the boundary-value problem has a positive solution. Indeed, when $p=1$, one such solution is given by $y(t)=t(2-t) / 2$.

Acknowledgements

The authors are grateful to the referees for their comments on the first draft of this paper.

References

[1] R. P. Agarwal, "Some new results on two-point problems for higher order differential equations", Funkcialaj Ekvacioj 29 (1986) 197-212.
[2] R. P. Agarwal, Boundary value problems for higher order differential equations (World Scientific, Singapore, 1986).
[3] R. P. Agarwal and J. Henderson, "Superlinear and sublinear focal boundary value problems", Applicable Analysis, (to appear).
[4] R. P. Agarwal and P. J. Y. Wong, "Existence of solutions for singular boundary value problems for higher order differential equations", Rendiconti del Seminario Matematico e Fisico di Milano 55 (1995) 249-264.
[5] D. Aronson, M. G. Crandall and L. A. Peletier, "Stabilization of solutions of a degenerate nonlinear diffusion problem", Nonlinear Analysis 6 (1982) 1001-1022.
[6] C. Bandle, C. V. Coffman and M. Marcus, "Nonlinear elliptic problems in annular domains", J. Diff. Eqns. 69 (1987) 322-345.
[7] C. Bandle and M. K. Kwong, "Semilinear elliptic problems in annular domains", J. Appl. Math. Phys. 40 (1989) 245-257.
[8] N. P. Cac, A. M. Fink and J. A. Gatica, "Nonnegative solutions of quasilinear elliptic boundary value problems with nonnegative coefficients", preprint.
[9] Y. S. Choi and G. S. Ludford, "An unexpected stability result of the near-extinction diffusion flame for non-unity Lewis numbers", Q. J. Mech. Appl. Math. 42 (1989) 143-158.
[10] C. J. Chyan and J. Henderson, "Positive solutions for singular higher order nonlinear equations", Diff. Eqs. Dyn. Sys. 2 (1994) 153-160.
[11] D. S. Cohen, "Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory", SIAM J. Appl. Math. 20 (1971) 1-13.
[12] E. N. Dancer, "On the structure of solutions of an equation in catalysis theory when a parameter is large", J. Diff. Eqns. 37 (1980) 404-437.
[13] P. W. Eloe and J. Henderson, "Singular nonlinear boundary value problems for higher order ordinary differential equations", Nonlinear Analysis 17 (1991) 1-10.
[14] P. W. Eloe and J. Henderson, "Positive solutions for higher order ordinary differential equations", Electronic J. of Differential Equations 3 (1995) 1-8.
[15] P. W. Eloe and J. Henderson, "Positive solutions for ($n-1,1$) boundary value problems", Nonlinear Analysis, (to appear).
[16] P. W. Eloe, J. Henderson and P. J. Y. Wong, "Positive solutions for two-point boundary value problems", in Dynamic Systems and Applications (eds. G. S. Ladde and M. Sambandham), Volume 2 (1996) 135-144.
[17] L. H. Erbe and H. Wang, "On the existence of positive solutions of ordinary differential equations", Proc. Amer. Math. Soc. 120 (1994) 743-748.
[18] A. M. Fink, The radial Laplacian Gel'fand problem, Delay and Differential Equations, (Ames, IA, 1991), 93-98 (World Scientific, River Edge, NJ, 1992).
[19] A. M. Fink, J. A. Gatica and E. Hernandez, "Eigenvalues of generalized Gel'fand models", Nonlinear Analysis 20 (1993) 1453-1468.
[20] A. M. Fink and J. A. Gatica, "Positive solutions of systems of second order boundary value problems", J. Math. Anal. Appl., (to appear).
[21] H. Fujita, "On the nonlinear equations $\Delta u+e^{u}=0$ and $\frac{\partial v}{\partial t}=\Delta v+e^{u ",}$ Bull. Amer. Math. Soc. 75 (1969) 132-135.
[22] X. Garaizar, "Existence of positive radial solutions for semilinear elliptic problems in the annulus", J. Diff. Eqns. 70 (1987) 69-72.
[23] J. A. Gatica, V. Oliker and P. Waltman, "Singular nonlinear boundary value problems for secondorder ordinary differential equations", J. Diff. Eqns. 79 (1989) 62-78.
[24] I. M. Gel'fand, "Some problems in the theory of quasilinear equations", Uspehi Mat. Nauka 14 (1959) 87-158, English translation, Trans. Amer. Math. Soc. 29 (1963), 295-381.
[25] J. Henderson, "Singular boundary value problems for difference equations", Dynamic Systems and Applications 1 (1992) 271-282.
[26] J. Henderson, "Singular boundary value problems for higher order difference equations", in Proceedings of the First World Congress on Nonlinear Analysis (ed. V. Lakshmikantham), (Walter de Gruyter and Co., 1996).
[27] M. A. Krasnosel'skii, Positive Solutions of Operator Equations (Nordhoff, Groningen, 1964).
[28] D. O'Regan, Theory of Singular Boundary Value Problems (World Scientific, Singapore, 1994).
[29] S. Parter, "Solutions of differential equations arising in chemical reactor processes", SIAM J. Appl. Math. 26 (1974) 687-716.
[30] H. Wang, "On the existence of positive solutions for semilinear elliptic equations in the annulus", J. Diff. Eqns. 109 (1994) 1-7.
[31] P. J. Y. Wong and R. P. Agarwal, "On the existence of solutions of singular boundary value problems for higher order difference equations", Nonlinear Analysis 28 (1997) 277-287.
[32] P. J. Y. Wong and R. P. Agarwal, "On the existence of positive solutions of higher order difference equations", Topological Methods in Nonlinear Analysis , (to appear).
[33] P. J. Y. Wong and R. P. Agarwal, "On the eigenvalues of boundary value problems for higher order difference equations", Rocky Mountain J. Math., (to appear).
[34] P. J. Y. Wong and R. P. Agarwal, "Eigenvalues of boundary value problems for higher order differential equations", Mathematical Problems in Engineering 2 (1996) 401-434.

[^0]: 'Division of Mathematics, Nanyang Technological University, 469 Bokit Timah Road, Singapore 259756
 ${ }^{2}$ Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
 (C) Australian Mathematical Society, 1998, Serial-fee code 0334-2700/98

