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N-MANIFOLDS CARRYING BOUNDED BUT NO DIRICHLET

FINITE HARMONIC FUNCTIONS

DENNIS HADA, LEO SARIO, AND CECILIA WANG

Among the most remarkable results in the theory of harmonic func-
tions on Riemann surfaces is the strictness of the inclusion relations
OG<OHB<OHD9 established by Ahlfors [1,2], Royden [2,4], and Tδki
[8] two decades ago. Subsequently the strictness of the relations OG <
OHP < OHB was shown and a somewhat simpler proof of OHB < OHD given
by Sario [5] and Tδki [9]. Here OG is the class of parabolic surfaces,
and OHP9OHBiOHD stand for the classes of surfaces which do not carry
nonconstant harmonic functions which are positive, bounded, or Dirichlet
finite, respectively. The corresponding nonstrict inclusion relations extend
readily to Riemannian manifolds of any dimension, and so does the strict-
ness of OG < OHP < OJIB (see e.g. Sario-Schiίfer-Glasner [7] and Sario-
Nakai [6]). In contrast, the strictness of OHB < OHD has remained an
open problem. The purpose of the present paper is to submit an ex-
ample which solves the problem in the affirmative for an arbitrary dimen-
sion N. In the process we also obtain complete characterizations of the
Poincare Λf-ball in OHB and OHD. This manifold plays an important
role in the harmonic and biharmonic classification theory.

1. For iV > 3, consider the iV-ball Bξ = {\x\ < 1, x = (χ\ ., xN), ds}
with the Poincare-type metric ds — (1 — |x|2)α|cte|, a constant.

THEOREM 1. BN

a & OHB &a< 1/(N - 2), N > 3.

Proof. For the necessity, observe that a radial function h(r), r =
\x\, is harmonic if and only if
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that is,
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Δh(χ) = -(1 - r2)-^-*—[(1 - W-Vrx-Wir)] = 0 ,
dr

h(r) = const Γ (1 - r

2)-{N'2)arι-Ndr .
J a

Since BζeOG if and only if \h(r)\—> oo as r - > l , the parabolicity is

characterized by a > 1/(N — 2). In view of OG c O M , we have the

necessity. To prove the sufficiency, let {Snm\ be the spherical harmonics.

First we find an fn(r) such that fnSnm is harmonic on Bξ. The equation

Δ(fnSnJ - 0 gives

(1 _ r

2)r2/w"(r) + {N - 1 - [(N - 1) + 2(N - 2)a]τ2}r fn{r)

N _ 2)(1 - r2)/w(r) - 0 .

The origin is a regular singular point, and there exists a solution of

the form fn(r) = ΣΓ=ocw,irW+i with cΛ>0 — 1. A recursion formula for the

coefficients is obtained in the usual manner and yields (cf. [3])

= Λ (n + 2; - 2)[n + 2; + N - 4 + 2(N - 2)«] - n(n, + N - 2)
Cw'2' M (n + 2j)(n + 2j + N -2) -n(n + N -2)

i = 0 for i > 0. We shall show that fnSnm e HB(BN

a) if α < 1/(N - 2).

There exists an i0 = io(N,a) such that for j > i0 and a < 1/(N — 2),

/cn,2j-2 is positive and dominated by

( n + 2j - 2)[n + 2j + N - 4

(w + 2j)(w + 2/ + iV - 2)

For i > %y

\n I <r r π ^ + 2/ - 2 * w + 2/ + N - 4 + 2(iV - 2)a
\Cn,2i\ ^ C 11 — ^ .11J=I n + 2j Mo n + 2j + N - 2

- 2(iV~ 2)α

n + 2% Aio \ n + 2j + N
2)« \
-2/ '

Here and later, c is a positive constant, not always the same. We now

impose on % the additional condition that for j > i0

Then

Q< 2

n + 2j + N -2
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log (l - 2 - 9

2 ( N - 2 M < -2[1 - (N - 2)α]\ n + 2] + N - 2 /
i I

X 2 < - [ 1 - (JV - 2)α]
=U + 2j + N 2

< [1 (JV 2)α]
n + 2j + N - 2 Ίio n + x + N -2

= loir
^

Therefore

Π /Ί - 2~2(iV-2k \ < (n

and

We conclude that
\2-(JV-2)oo oo / -I \

<=o i=i0 \ ^ /

This is finite for α < 1/(N — 2), and the proof Theorem 1 is complete.

2. To discuss the existence of HD-ΐunctions, we first prove:

LEMMA. For a < 0, f( is bounded; for a > 0, //(r) < const
(1 _,*).-wr-i).;

Proof. If α < 0, it is immediate from the estimates in the proof of
Theorem 1 that// is bounded. If a = 0, ds = |dx| (the Euclidean metric),
and fl — 1 < oo. If α > 0, c1 2 i > 0 for all i, and

A
=1>2t

πM

- 2)« + AT - 3 + 2fl - (AT - 1)
(2/ + l)(2j + Λ7 - 1) - (Λ7 - 1)

2 k + N ~ 3 + 2 ; ]

(2; + A02;

For N even,

Λ ^ π 2; A / 2j - 1 2(N - 2)α + AT - 2 + 2; - 1

2j 2j
-4-- N

(2ί + 2)(2i + 4) (2< + AT)

A / 2; - 1 2(N - 2)α + AT - 2 + 2; - 2 \

Λ V~2? 2f=~l )
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2 4 A T * (N
(2t + 2)(2< + 4) (2i + ΛO M

Hence

//(r) = 1 + Σ (2i + l)c l i 2 ir
2 ί < iV + Σ (2t + N)c1>2ir

2ί

fri V (2ϊ + 2)(2i + 4) . (2< + iV - 2)

-2)a + m - 2 ) + j - l \ 2 Λ #

y / J
On the other hand,

X π

- 2) y - l \ 2< ̂
/

Repeating J(N" — 2) times the process of first multiplying through by r

and then integrating, we obtain

const (1 — τ2)~(N~2U + polynomial

X
oo /

ί=i \ (2i + 2)(2ΐ + 4) (2t + ΛΓ - 2)

X Π (AT - 2)« + KN - 2) + j - 1

which entails f{(r) < const (1 - r2)-(ΛΓ-2)"

For N odd, the proof is the same except that now

< l 3 iV « (N - 2)α + i(N

1>2i (2i + l)(2i + 3) (2t + ΛO M j

THEOREM 2. β^ € OHD & \a\ < 1/(N - 2), N > 3.

Proof. We have

= Γ (cJ!(rf
JO

+

where cx and c2 are positive constants. Since fx and // are bounded for

a<0,

iJ < c Γ (1 - r2yN~2)arN-3dr <
Jo
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for -1/(N - 2) < a ^ 0. By the lemma,

- r2Y2{N-2)a + d2r-2](l -Γ
Jo

for 0 <- a < I/CM - 2). Hence, BN

a g OHD if \a\ < 1/(N - 2). In view of
BN

ae0G<Z. 0HD for a>l/(N - 2), it remains to consider a< -1/(N - 2).
Let H e a nonconstant harmonic function. By means of the eigenfunction
expansion of the restriction of h to \x\ = r < 1, we obtain

oo mn

on all of B* with absolute and uniform convergence on compact subsets
and with anm Φ 0 for some (n, m), n > 0. By the Dirichlet orthogonality
of spherical harmonics,

D(h) > almD(fnSnJ > a\m \ (1 -
dr

Here f'n(r) converges as r->l , since the cnM are of constant sign for
sufficiently large i. By virtue of fnSnm Φ const, we have fn{r) Φ 0 for
r > 0, and l im^ fn{r) φ 0. Consequently

D(h) > c Γ (1 - r

2)(iV-2)αdr ,

which implies β^ e OHD for a < -1/(N - 2).

3. Let OffB, OHD be the classes of Riemannian iV-manifolds in OHB,
OHD, respectively.

T H E O R E M 3. O%B < O%D for every N.

Proof. The strict inclusion O2

HB < O2

HD for Riemannian 2-manifolds
is a trivial consequence of that for Riemann surfaces. In fact, endow-
ing* a Riemann surface by a conformal metric turns it into a Riemannian
2-manifold without affecting the harmonicity or the Dirichlet integral
of a function on it.

For N > 3, the theorem follows from Theorems 1 and 2.
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