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Abstract

Let G be a compact abelian group with dual G and let K be a Banach L,(G)-module. We introduce the
notion of character convolution transformation of K which reduces to ordinary Fourier or Fourier-
Stieltjes transformation when K is one of the spaces L,(G), M(G). We show that the question of what

maps G — K extend to multipliers of K is a question of asking for descriptions of the character
convolution transforms. In this setting some results of Helson-Edward and Schoenberg-Eberlein find
generalizations, as do some classical results, including the inversion formula and the Parseval
relation. We then apply these results to transformation groups, obtaining a variant of a theorem of
Bochner and an extension of a theorem of Ryan.

1980 Mathematics subject classification (Amer. Math. Soc.): 42 A 20, 43 A 25.

Introduction

Let G be a compact abelian group.

As is well-known, L,(G) is a commutative Banach algebra under convolution.
A Banach L,(G)-module K (see [4;32.14]) is a Banach space K that is also a
module over the ring L,(G), such that (if = denotes the module multiplication)

frax=afsx=a(f*xx) (a€C;fEL(G);xEK)
and
If=xli<ifiixii (€ L(G); x € K).

Under convolution, L,(G) (1 < p < o), C(G) and M(G) are Banach L (G)-mod-
ules. More examples are given in [4; Section 32], [1; Section 4] and in Section 3 of
this paper.

© 1984 Australian Mathematical Society 0263-6115 /84 $A2.00 + 0.00
365

https://doi.org/10.1017/51446788700025428 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025428

366 Teng-sun Liu, Arnoud C. M. van Rooij and Ju-kwei Wang (21

We are going to occupy ourselves with the following two problems, that turn
out to be closely related. Let K be a Banach module over L ,(G).

(@) Introduce an analog of the Fourier-Stieltjes transformation that reduces to
the ordinary Fourier or Fourier-Stieltjes transformation if K is one of the spaces
L(G), M(G).

(B) A multiplier of K is a continuous module homomorphism L,(G) - K. (See
[5].) Consider the dual group G of G as a subset of L,(G). As G spans a dense
linear subspace of L,(G), a map G - K has at most one continuous linear
extension L,(G) — K. What maps G — K extend to multipliers of K ?

For K = L,(G) the relation between (a) and (B8) is easy to describe: by
Wendel’s characterization of the multipliers of L,(G) [4; 35.5] one sees that a map
¢: G - L (G) extends to a multiplier if and only if there exists a p € M(G) such
that ¢(y) = fi(y)y for all y € G.

Our notations are mostly those used by E. Hewitt and K. A. Ross in [4].

Throughout the paper, G is a compact abelian group whose dual group is
denoted G, and K is a Banach L,(G)-module. Both convolution L,(G) X L(G)
— L ,(G) and module multiplication L,(G) X K - K are indicated by +. The
Haar integral of f € L ,(G) are written [f(s) ds.

K is called order-free if for every x € K, x + 0 there exists an f € L,(G),
f*x#0. The trigonometric polynomials (that is, the linear combinations of
characters) form a dense linear subspace of L,(G). It follows that K is order-free
if and only if for every x € K, x # 0 there exists a y € G such that y * x # 0.

By [4;32.22] the products f+x (f&€ L(G); x € K) form a closed linear
subspace K, of K. This K, is a Banach L,(G)-submodule of K. As L,(G) has
an approximate identity K,  is order-free. In particular, if x, y € K, and if
y*x=v=xyforally € é,thenx=y.

K is said to be absolutely continuous if K = K .. Examples: L,(G) (1 <p < )
and C(G) are absolutely continuous [4; 32.20 and 32.31}; L_(G) is not [4; 20.16];
neither is M(G) [4; 19.18].

For f € L,(G) define f* € L(G) by f*(s) = f(s7") (s € G). We make the
conjugate space K* of K into a Banach L,(G)-module by defining

(x, f=h)=(f**x,h) (f€L|(G);x EK;h€EK*).

(We might just as well have taken f = x instead of f* + x. However, f* * x is more
appropriate in the more general situation where one does not confine ones
attention to compact abelian group G.)
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If by a similar formula one puts a module structure on K**, the natural map
K - K** is a module homomorphism.

For h € K* we have L(G) * h = {0} if and only if & vanishes on K
K* is order-free if and only if K is absolutely continuous.

The continuous linear module homomorphisms L,(G) —» K are called the
multipliers of K; they form a Banach space Mult K. Every x € K induces a
T, € Mult Kby

abs- Hence,

T.f=f*x (f€L\(G)).
This T: K — Multi K is injective if and only if K is order-free. In particular, the
restriction of T to K, is injective (it is also an isometry; see [3; 5.1(iv)]).

1.1 LeMMaA. For y € G, define K, = vy * K (= (v * x| x € K}). Then
K,={x EK|y*x=x}

= {x EK|f*x = f(y)x for every f € L\(G)}.
K, is closed linear subspace of K. The map x v y * x is a continuous idempotent
map of K onto K . IfB e G, B F# v, then B * K, = {0}. Further,
Kps=clo X K.
yEG

PrOOF. We only prove the last sentence; the proof of the rest is simple.
Obviously y + K C K forally € G, so K, D clo 2{K,ly € G}. Conversely,AG
spans a dense linear subspace of L (G); hence if x € K, then {y * x|y € G}
spans a dense linear subspace of L,(G) * x. It follows that cloZ, K. D K.

For Hilbert spaces we have a more detailed knowledge:

1.2 THEOREM. Let K be a Hilbert space; let { , ) be its inner product. Then

(frx,p)=(x.f*+y) (xy€EK;fEL(G)).
If B, y are distinct, then Kg L K_. For each vy, the map x v y * x is the orthogonal
projection of K onto K. For every x € K the sum 2.2y * x converges in the sense
of the norm. The map x v 2y * x is the orthogonal projection of K onto K . Its

kernel is
{x € K|L\(G) *x = {0}}.

PROOF. Take y € G, put Px = x — y * x for x € K. Then P = P2 and ||I — P||

< 1.Let P(K)*= {x|x L P(K)).If x € P(K)*, then x 1 Px, so
Xl + [|1Px)|? = llx — Px||> < ||x||*.
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Hence, P(K )* C P~'(0). Conversely, every x € P~'(0) can be writtenas x = y + z
wherey € P(K), z € P(K)* . (Notice that P(K) = (I — P)7'(0) is closed.) Then
z€ P0), soy=x—2z€ P'(0). But y € P(K) and P = P?: it follows that
y =0 and x =z € P(K)*. Therefore, P(K)* = P~'(0). Consequently, P is an
orthogonal projection. Then so is the map x > y * x. We see that

(f*x,y>:<x,f**y> (x, y €EK)
if f€ G. The same formula holds, by linearity, for all trigonometric functions f,
and, by continuity, for all f € L (G). The rest is easy.

Note. The formula
Tx=f+x (f€L(G);x€EK)

yields a correspondence between the module structures * on K and the represen-
tations T of L\(G) in K for which ||T;|| <|i f|| (f € L,(G)). By the above theorem,
every such representation is a * -representation.

1.3 LEMMA. Let K be a Banach L (G)-module. For a map T: L (G) — K the
following conditions are equivalent.

(i) T € Mult X.

(i1) T is linear and continuous; Ty € K, for every y € G.

(i) T(f*g)=f*Tg for all f, g € L\(G).

PROOF. (i) = (iii) is obvious.

(ii) = (i). Fory € Gwe have y * Ty = Ty = T(y * v). If B8, y € G are distinct,
then B+ Ty =0=T(B*v). Hence, f+ Tg = T(f* g) if f, g € L,(G) are trigo-
nometric polynomials. These forming a dense subspace of L,(G) we find f » Tg =
T(f+g)forallf, g € L(G).

(iti) = (ii). (See [9].) Clearly T maps L (G),, into K, .. But L (G),, = L(G)
[4; 32.30], so the range of T'liesin K, .. Forallf, g € L(G),f*Tg=T(f*g) =
I(g+f)=g=*+Tf 1fg,,8, € L(G)and ¢}, c, € C, then for all f € L (G)

frleTg +c,Tg, | =, f+Tg, + ¢, f+Tg,
=g *Tf+ 8, Tf = (c,8 +¢,8) * Tf
=f*T(c,8 + ¢28,)-
As ¢\Tgy + ¢,Tg, — T(c,8, + ¢, 8,) € K, and K, is order-free, it follows that
c,Tg, + ¢, Tg, = T(c,8, + ¢, &) Thus, T is linear. The continuity of T is proved
with the aid of the Closed Graph Theorem. Let f|, f;,... be a sequence in L(G)
such that lim f, = 0 while lim T}, exists in K. Then lim Tf, € K, and for all
gEL(G), g*»limTf, =limg»*»Tf, =limf «Tg=0. Hence, im7f, = O and T
is continuous. Finally, for y € G one has Ty=T(y*y)=y=*Ty €K,.
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The implication (ii) = (i) gives the situation a new perspective. Apparently, a
map ¢: G — K extends to a multiplier if and only if ¢ € II,K, and ¢ admits a
continuous linear extension L,(G) —» K. The question remains: what ¢ € [[ K,
do admit such an extension?

2

For T € Mult K we denote by T the restriction of T to G. T is determined by
T, since the characters of G span a dense linear subspace of L(G).
Every x € K determines a multiplier T,: f+> f * x. Instead of T, we write %;
thus,
X, =%(y)=v*x (yEG, xEK).

If K= L(G), then %, = (7)Y, so X actually is the Fourier “series” of x. For
arbitrary modules K we call £ the character convolution transform of x.

We know by Wendel’s theorem [4; 35.5] that Mult L (G) may be identified
with M(G). If T € Mult L (G) corresponds to u € M(G), then T(v) = j(y)y-
Thus, the map T+ T can be viewed as a generalization of the Fourier-Stieltjes
transformation.

We see now how our problems («) and ( 8) converge: the character convolution
transformation is an answer to (a), and (f8) asks for descriptions of character
convolution transforms.

A few simple observations:

2.1 LEMMA. For x € K,
X=0ifandonly if L,(G) * x = {0}.
In particular, if x, y € K, and X = J, then x = y.

2.2 LeMMA. We have the relations
(/) =fT (f€L(G);TEMultK)
and
(f+*x)'=fx (f€L(G);x€EK).

The following extension of the Helson-Edwards Theorem [7; 3.8.1] holds.

2.3 TueoReM. ¢ € I K can be extended to a multiplier of K if and only if
fé € K for every f € L(G). (We put K = {%|x € K}.)
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PROOF. If T € Mult K and ¢ = T, then for every f € L (G) we have f¢ =f'f
= (Tf) € K. Conversely, suppose ¢ €[] ,K, and fp € K for all f€ L(G).
Every fe L,(G) can be written as f = fI f, with certain f, f, € L (G); then

fo = f,(f24>) Efl =(f; * K) C (Kabs) By Lemma 2.1, for every f€ L (G)
there is a unique Tf € K, such that f¢ = (Tf) .1f f, g € L(G), then (f * Tg)

=f(Tg) = feo = (f*8) ¢ =(T(f*g)),s0f+Tg=T(f*g). By Lemma 1.3
T is a multiplier of K. Further, (Ty) = ¢ = (9, Y,soTy= ¢, forevery y € G.

Another characterization displays a certain analogy with the Schoenberg-Ebelein
Theorem [4; 33.20], [7; 1.9.1].

2.4 THEOREM. ¢ € [, K, can be extended to a multiplier of K if and only if there
exists a constant c such that

(*)

for every trigonometric polynomial 3c;vy; on G.

n

2 G ¢y,-

i=1

n

2 Y

i=1

<c

1

PrOOF. If T € Mult K and ¢ = T, then for every trigonometric polynomial
Zc¢;v; we have

|Zet| =N Zerml=[T(Zex)] <ITH] Zenl].-

Conversely, if ¢ € [I, K, and if there exists a constant ¢ such that (+) holds for
every trigonometric polynomial, then (as the trigonometric polynomials are dense
in L,(G)) we have a continuous linear T: L,(G) — K such that T(Z¢;v,) = Z¢;9,
for all Zc;y;. In particular, Ty = ¢, fory € G. Then T € Mult K by the 1mphca-
tion (ii) — (i) of Lemma 1.3.

Note. A better analogy with the Schoenberg-Eberlein Theorem would be
obtained if in (+) we could replace the L;-norm by the L_-norm. This change,
however, would make the theorem false, as one sees from the example K = C(G),
¢, =Y.

The following theorem, and also 2.9, are inversion theorems, stating that
certain elements of a module are the sums of their character convolution trans-
forms, as many functions of L,(G) are the sums of their Fourier series. F denotes
the directed set of all finite subsets of G.

2.5 THEOREM. Let ¢ € I, K, be so that the net (2, cpd,)acr is bounded. Then ¢
can be extended to a multiplier T of K. For all f € L (G) we have

Tf= X f*¢,

yeé
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PrOOF. for A € Fput ¢, = 2, c5¢,. Let ¢ = supyeplidpll- If 2¢;y; is a trigono-
metric polynomial, then for A = {v,,...,¥,} we have

[Zet ] =[Ze s tal| < e Zein,

so ¢ is extendable to a multiplier 7. Furthermore, if 2c¢;y, is a trigonometric
polynomial, then for A O {v,,...,v,} we have

T(Z"ﬂi) = 2@% =267 * 6y
If g € L,(G) and € > 0, there is a trigonometric polynomial f € L,(G) such that
lif—gll, <& there is a Ay € F such that Tf = f» ¢A for A D A,. Then, for
A DA,
ITg — g * ull <IT(g — N+ I(f— 8) * duli < e(IT|| + )

Hence, Tg = limycpg * ¢n = limycp2,ca8 * ¢,

The following is another variant of the Schoenberg-Eberlein criterion.

2.6 THEOREM. The following conditions on ¢ € Il (K*), are equivalent:

() ¢ € (K*) .

(i1) ¢ can be extended to a multiplier of K*.

(iii) There exists a constant c¢ such that for every positive integer n and for all
YooY € G‘andx,,...,x,, €K,

n
2 (o)) = | T
2

PROOF. (i) = (ii). f h € K* and ¢ = A, then fr> f* hisa multiplier of K* that
is an extension of ¢.

(i) = (iii). Let ¢ = T, T € Mult K*. We identify L (G)* with L_(G). It is not
difficult to verify that the module operation on L,(G)* corresponds to the module
operation on L_(G). In particular, for f € L(G)and h € L_(G),

(f, 1) = (f* = h)(e),

e denoting the unit element of G. Now 7 induces a continuous linear S:
K - L (G)by

(f’Sx):(x’Tf) (fELl(G)’xEK)
Forf, g€ L,(G)and x € K.
(f,g*Sx)=(g**f,Sx)=(x,T(g*+ [))
= (x, g**Tf) = (g*x,Tf) = (f, S(g * x))
sothatg*Sx:S(g*x).Nowtakey,,...,ynEGandxl,...,x,,EK.
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|2 (xi, )| =| Z (x, TH)| =| 2 (3., Sx,)|
:|2(Yi * Sxi)(e)l S” EY,‘ * Sxi"
:”S(EYi * X,«)“<|IS“ “27.‘ * xi”‘

(iii) = (i). By the Hahn-Banach Theorem there exists an # € K* such that

(EY;' * Xy h) = E(X.-,%,)
for all y; and x,. In particular, for every y € Gand x €K, (x,Yy*h)=(y=*x, h)
= (X, ¢;). Hence y x h = @5 for all v, and h=¢.

2.7 COROLLARY. For every T € Mult K* there exists an h € K* such that
Tf=f+h (f € L(G)).

PROOF. For every T there is an h for which T = h. Then Tf = f * h if f is any
trigonometric polynomial; hence, if f € L (G).

For absolutely continuous X this result was proved in [3; 5.2].
For Hilbert spaces we obtain from 2.7 and 1.2:

2.8 COROLLARY. If K is a Hilbert space, then ¢ € Il K can be extended to a
multiplier of K if and only if 3l|¢,||* < oo.

2.9 THEOREM. Let K be absolutely continuous. Let ¢ € I1 (K*), be so that the net
(Z,ca 9, )acr is bounded. Then this net is w*-convergent. If h is its w*-limit then
¢ = hand

(x,h)= 2 (iy,l;y—) (x €K).

yEG

Note. Apparently, here we have analogs of the inversion formula and the
Parseval relation from the theory of Fourier transformation.

PROOF. ¢ can be extended to a multiplier T of K*, and Tf = X f » ¢, for all
f € L(G). By 2.7 there is an h € K* such that Tf = f + h for all f. Now every
x € K can be written as f * y for certain f € L|(G) and y € K. Then

(x,h)=(y, f*=h) = (p, Tf*) = (».2f* * ¢,)
= E(y’ f* *¢7) = E(x’¢y)‘

https://doi.org/10.1017/51446788700025428 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025428

(9] A generalized Fourier transformation 373

Hence,

h = w*- lim .
AEF 7§A¢y

ForyEGA,%: Ty = y * h; so ¢ = k. Further, for x € K,
(x, h) =2 (x, 7)) = Z(x, 7 * ¢7)
=3(v*x¢;) = 2(%,, h;).

A linear module homomorphism is simply called a homomorphism.

In this section G is a compact abelian group of homeomorphisms of a locally
compact Hausdorff space X, such that the mapping (s, x) > sx (s € G; x € X)is
jointly continuous. We denote by C(G), Cy( X), Cypo( X) the spaces of all continu-
ous functions on G, all continuous fuctions on X vanishing at infinity, and all
continuous functions on X with compact supports, respectively. The formula

(f* k)(x):/f(s)k(s“x)ds (ke C(X); x € X)

turns Cy( X) into an absolutely continuous Banach L (G)-module. (For details,
see [6).) We identify Cy( X)* with the Banach space M( X) of all bounded Radon
measures on X, writing (k, u) instead of fkdp (k € C(X), p € M(X)). The
induced module composition on M( X) is given by

(f+m)(¥) = [f()u(s'Y) ds

where f € L|(G), p € M(X), Y C X, Y a Borel set.

3.1 THEOREM. Let T: C(G) — M(X) be a homomorphism. Assume that Tf =0
whenever f € C(G) and f = 0. (Such a homomorphism T is called positive.) Then
there exists a p € M( X), p = 0 such that

T=f+u  (f€C(G)).
Thus, T can be extended to an element of Mult M( X).

PrROOF. If » € M(X), v = 0, then
W= v(X) = [»(s7'X) ds = (1+ »)(X) = [I1 + o]l

Thus, if f&€ C(X), f=0, then Tf| =1 = Tf|| = \T(f) = | = || f* Tl <
WA ITY|. For an arbitrary f € C(G) we can write f = f, — f, + if; — if, where
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J; € €(G) and 0 < f, <|f| for each j. It follows that ||Tf|| < 4)| |, |IT1||. Therefore
T has a unique continuous linear extension 7;: L,(G) - M(X). By continuity,
T, € Mult M(X). According to Corollary 2.7 there exists a p € M(X) such that
T,f=f*p(f € L\G)). To prove p = 0 take j € C(X),j = 0 and let {u,} be an
approximate identity of L'(G) such that u, € C(G) and u, = 0 for each ¢. By the
absolute continuity of Cy(X), j can be written as f* j° where f € L,(G), j' €
Co(X). Then (j,p)=(f* ', p) = lim(u,» f* j', p) = kim(f » j', u¥ » p) =
lim(j, T(u})) = 0. Thus p = 0.

For multipliers of M( X) we can extend Bochner’s Theorem [4; 33.3], [7; 1.4.3].
A function ¢: G - M(X) is said to be positive definite if

n
3 aie(vy) =0
ij=1

A

for all positive integers n, all complex numbers c,,...,c, and v,,...,7, € G.

3.2 THEOREM. Let ¢ € [l M(X),. Then ¢ is positive definite if and only if there
exists p € M(X), p = 0 such that ¢ = fi.

PROOF. Let p € M(X), p = 0; cy,...,c, € C; v,,...,Y, € G. Take k € Cy(X),
k = 0. For every x € X,

0</|Ze(s)

= z_cic_j(i‘}'j * k)(x).

2k(s“x) dx = E_C,Ejfmyj(s)k(s"x) ds

Hence

0< e (Fy, «k, 1) = De(k, (Fv,)* * n)
i.j i,j

_ (k, i'ZciEjﬁ (Y"Yf—l))

and 3, ;¢,c;i(v;y") = 0.

Conversely assume ¢ to be positive definite. For every k € Cy(X), k = 0, the
scalar valued function y > (k, $(y*)) is positive definite. By Bochner’s Theorem
[4; 33.3] for such k there exists a unique ., € M(G) such that (k, ¢(v*)) = f,(v),
(Y € G), and we have p, = 0. The map k> p, can be extended to a linear

positive, hence continuous, U: Cy( X) - M(G). Then
(k,o(v*)) = (Uk) (v) (ke CyX),yEG).
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It is easy to see that (U(f=*k)) = f(Uk) = (f*Uk) for all f€ LY(G), k €
Co( X). Thus U is a homomorphism. U in turn induces a positive homomorphism
T: C(G) » M(X) by

(k,Tf) = (f,Uk)  (f€ C(G), k € C(X)).
Applying Theorem (3.1) we obtain a p € M(X), p = 0 such that Tf = f * p for all

f € C(G). In particular, (k, y * pt) = (k, Ty) = (v, Uk) = (Uk) (v*) = (k, $(¥))
for all k € Cy(X) and y € G. It follows that ¢ = i

We specialize further and assume the existence of a positive Radon measure m
on X that is invariant under the action of G. Then every L,(m) (1 <p < o) can
be made into a group algebra module by

(f+k)(x) =[f(s)k(s-'x) dx  (f€L(G),keL,(m))

for locally almost all x € X (see [1]). For p < oo, L,(m) is absolutely continuous.
The natural linear maps L,(m) —» M(X), L,(m) > L(m)* (p~' + ¢ "' = 1) are
isometric homomorphisms. We identify L (m) and L (m)* (p>1,p™' + ¢! =
1.

R. Ryan [8] characterizes those Fourier-Stieltjes transforms of measures on G
that actually are Fourier transforms of elements of L(G) N L,(G). His theorem
can be extended in the following way.

3.3 THEOREM. Let 1 <p< oo, p' +¢'= 1 LetE—{kECOO(X)Ik #0
for only finitely many y € G} Let p € M(X) and assume that there exists a
number c¢ such that

< clikll,

Z (£, 55)

yEG

for all k &€ E. Then there exists a g € L (m) N L,(m) such that p = gm (that is,
p(A) = [, g dm for all Borel sets A C X).

PROOF. If k € Cp( X) and B € G, then
(Brk,p)= 2 (Brk,¥*xp)= 3 (Bxk, ;).
YEG YEG
The elements of E are finite sums 28, * k,. Hence

(k,p)= 2 (k,@;) (k€E).

yEG
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By the isomorphism between L (m)* and L,(m) thereis a g € L,(m) such that

(k,p)=(k,g) (k€E).
If we can prove that g € L (m), then p and gm are bounded regular measures
and (k,p) = (k, gm) for all k in a dense subspace of Cy(X); then (k, p) =
(k, gm)forallk € C(X)and p = gm.

Take k € Cyo( X); let S be the support of k. For 4 C X let {, be the
characteristic function of 4. For every positive integer n let f, be a trigonometric
polynomial on G such that || f |, <1l and ||f,*k — k||, <27". Then lim f, * k =
k, a.e. and f, x k € E. Further, || f, * k||, < ||/l Ikl <|ik|l> and f,x k=0
outside the compact set GS. Thus, lim (f, x k)g = kg a.e., and |(f, * k)g|< ||k||,
|g81éss- As géss € Li(m) it follows by the Lebesgue Dominated Convergence
Theorem that

}/kgdml:ﬁm f(fn*k)gdm

=Hm|(f, * k, p)|<sup|l f, * k|| |ln]l-

Thus,

[kgdm|<pllikll,,  (k € Co(X)).

Now let C C X be compact. Let U be an open set containing C and of finite
m-measure. Let & be a measurable function, |[A(x)|< 1 for all x, such that
hg =|glé- and h = 0 off C. For each positive integer n choose k, € Cyy( X),
ltk, — All, <277, {lk,llo =1, &, =0 outside U. By another application of the
Lebesgue theorem (note that g€, € L (m)) we get

[1g1dm = fig1écdm = [hg am

=lim [k, g dm < [|ullsupllk, Il = .

As this is true for all compact C, it follows that g € L,(m).
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