ON MAXIMAL ABELIAN SUBRINGS OF FACTORS
OF TYPE II,

LAJOS PUKANSZKY

1. Introduction. Although we possess a fairly complete knowledge of the
abelian subrings of rings of operators in a Hilbert space which are algebraic-
ally isomorphic to the ring of all bounded operators of a finite or infinite
dimensional unitary space, that is of factors of Type I, very little is known
of abelian subrings of factors! of Type II;!. In (1), Dixmier investigated
several properties of maximal abelian subrings of factors of Type I1. It turned
out that their structure differs essentially from that of maximal abelian
subrings of factors of Type I. He showed the existence of maximal abelian
subrings in approximately finite factors,? possessing the property that every
inner*-automorphism carrying this subring into itself is necessarily imple-
mented by a unitary operator of this subring. These maximal abelian sub-
rings are called singular. In addition, he constructed a II; factor containing
two singular abelian subrings which cannot be connected by an inner *-auto-
morphism of this ring.?

The purpose of the present paper is to introduce new invariants for abelian
subrings of a factor of Type II,. By means of these we shall be able to show
the existence of infinitely many singular maximal abelian subrings of a factor
of approximately finite type which, pairwise, cannot be connected by *-auto-
morphisms of this ring.

Indeed (cf. Lemma 1 below), we associate with every abelian subring of a
II, factor an abelian ring, such that the rings corresponding to abelian
subrings connected by *-automorphisms are unitarily equivalent. Since the
spatial invariants of abelian rings in a Hilbert space are well known (4), we
obtain a useful set of invariants for the abelian subrings, with the aid of
which we construct various examples.

The author is indebted to the referee for his valuable criticism; in particular
Lemma 5 in its present form was suggested by him.

Received January 8, 1959.

iWe recall that a weakly closed self-adjoint operator algebra in a Hilbert space, which
contains the unit operator (that is, a ring of operators), is a factor if its center consists only of
the scalar multiples of the unit operator. A factor which is not of Type I is of Type II, if all
isometries contained in it are unitary transformations. For a theory of factors cf. (2). When
speaking simply of a ring, we always mean a ring of operators in a Hilbert space.

2A 11, factor is of approximately finite type, if it is generated by an ascending sequence of
subfactors algebraically isomorphic to the full rings of finite dimensional unitary spaces. Two
11, factors of approximately finite type are algebraically isomorphic and every II; factor
contains such a subfactor. For details cf. (3).

3Cf. (1). This factor is very probably not of approximately finite type.
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2. The invariants. Let M be a 11, factor and P a maximal abelian sub-
ring of it. Let Tr(4) (4 € M) be the canonical trace on M. Putting
(X,7) = Tr(XY*) for X, V ¢ M, M becomes a pre-Hilbert space; let H be
the completion of M. If 4 € M, there exist two bounded operators L, and
R, on H, such that for X ¢ M we have L, X = AX and R, X = XA re-
spectively. Let us denote by R(P) the weakly closed abelian ring in /I
generated by the sets of operators {L,;.1 ¢ P} and {R,;.l € P}.

LEMMA 1. Let M, and My be two 11, factors, Py C My and Py C M, two
maximal abelian subrings. Let ¢ be a *-isomorphic mapping from My onto M.,
which carries Py onto Pa. Then there exists a unitary mapping of the space H,
onto the space Ho, which carries R(Py) onto R(Py).

Proof. For this it is enough to show the existence of a unitary mapping U
from H; onto H,, such that

ULA Ul = L¢(A)
and

LTRB Z-]_1 = R¢(B)

for 4, B ¢ M. By the uniqueness of the normalized traces in 1l factors we
have Tr;(4) = Tra(¢(4)), so that putting U(X) = ¢(X) (X € M;) we get
an isometry between the dense linear manifolds My € A, and M, € I, which
can be extended to a unitary mapping U from Hyonto Hy. If 4 ¢ M, X € My,
then

UL, UT'X = ULy (X) = U(d¢7' (X)) = ¢ (o7 (X)) = ¢(1)X = Ly X,
and similarly

UR,U'X = Ry X
which proves our lemma.

As a consequence of Lemma 1 we may conclude that to all spatial invariants
of the ring R(P) correspond properties of P which are invariant under *-iso-
morphisms of the ring M which contains P. Now let P be an arbitrary abelian
ring in the Hilbert space H. As is known (4), there exists a uniquely determined
sequence of mutually orthogonal projections P, ¢ P(n = 1,2,..., + ») the
sum of which equals unity, such that the restriction of P into the subspace
P,H is an n-fold copy of a maximal abelian ring. In particular, if P is unitarily
equivalent to Py, then these sequences of projections in these two rings must
correspond to each other. Our next objective is to construct a sequence
P, (n=1,2,...)) of singular maximal abelian subrings (cf. § 1) of an
approximately finite 11, factor so that for R(P,) only P; and P, differ from
zero. In this case clearly R(P,) and R(P,,) cannot be unitarily equivalent for
n # m, and so (Lemma 1) P, and P,, cannot be connected by a *-automor-
phism of M.
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3. Examples. First we recall the following facts concerning the con-
struction of factors of Type II; (cf. 1; 2; 3). Let G be a countably infinite
group, and let L?(G) be the Hilbert space of all complex-valued square sum-
mable functions on G. For a € G and f(x) € L?(g) define the unitary operator
U, by

(Udf) (x) = fla™*x),
and V, by

(Vaf) (%) = f(xa).

Let M(G) be the operator ring generated by the set {U,; @ € G}. Then M(G)
is a factor of Type II; if and only if every non-trivial class of conjugate ele-
ments in G is infinite. If, in addition, G is the union of an increasing sequence
of finite subgroups, then M(G) is approximately finite.* Let Gy C G be an
abelian subgroup and denote by P(G,) the abelian ring generated by the
set {Us;a € Go}. Then P(Go) is maximal if and only if for @ € G, the set
{gag™"'; g € Go} is infinite. P(Gy) is singular if G has the following property:
for every element a € Gy and arbitrary finite subset B C G there exists an
element go € Gy, such that agea=! € Gy and from ggoh™! = go (g, & € B) it
follows that g = &.

Alternatively, the ring M (G) can be described as follows. For f, g € L*(G)
define

(f X g)(x) = HE;; vy He)

and Uyg = f X g. Then M(G) is the collection of those operators Uy, for
which U;g € L*(G) for every g € L*(G). For such an U, its adjoint U*; is
Uy, where

&) = f@&™),
and its trace is the value of the function f(x) on the unit element of G, or
Tr(U;) = f(e). Let Go C G be an abelian subgroup and let us determine
R(P(Gy)). If A = Uy and B = U, then

Tr(AB") = Tr(U,Uy) = Tr(Upg) = (f X g)(e) = > Fwe).

Since the set of elements in L2(G) for which U, is a bounded operator is
dense in L2(G), H (cf. Lemma 1) and L%(G) can be identified so that for

4 =U,la € G) (Lf(x) = fla'x)

and (R,f(x) = f(xa) (x € G). So finally R(P(Gy)) can be identified with the
ring in L2(G) generated by the set of operators

{Us Vyya, b € Go}.

‘See footnote 2.
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In the following, G will denote a subgroup of the affine group over a count-
ably infinite field K, obtained by restricting the subgroup of dilatations to an
infinite subgroup G, of the multiplicative group of non-zero elements of K. We
shall specify K and this subgroup later in a way which is suitable for our
purposes. Alternatively, in each case G can be described as the set of all
pairs (a,a) (@ € Gy, « € K+, where we denote by Kt the additive group of
K), multiplication being defined as (a, «) (b, 8) = (ab, a8 + «).

LeMMA 2. Suppose that K is the union of an increasing sequence of finite
subfields. Then M(G) is a 11, factor of approximately finite type.

Proof. (1, p. 282). Observe first, that in this case G is the union of an
ascending sequence of finite subgroups. Therefore we have only to prove that
every non-trivial class of conjugate elements in G is infinite. Suppose first
that g = (¢, @), where a # 0. Then (¢, 0) (a,a) (¢, 0)~' = (a, ca) and if ¢
runs over the elements of Gy we get infinitely many elements. On the other
hand, we have (1,v) (a,0) (1, )" ! = (a, y—avy), therefore, if a 5 1, we get
again infinitely many different elements when ¢ varies over K, which proves
our lemma.

It is of some interest to remark that Lemma 2 holds true even if K is an
arbitrary countable abelian field, though the proof for it is somewhat com-
plicated.®

LeEMMA 2'. Let K be an arbitrary countably infinite field. Then M(G) is a 11,
factor of approximately finite type.

Proof. (For the following reasoning cf. (3, p. 793, § 5.5)). By the definition
of the group G the space L?(G) is the collection of all complex-valued square
summable functions of the wvariables ¢ € G, and « ¢ K+. Let X be the
character group of K+, and u the normalized Haar measure on it, and L*(X)
the Hilbert space of square integrable functions on it. For f(a, @) € L*(G) we
denote by F(a, x)(x € X) the function on G, X X obtained by taking the
Fourier transforms of the functions f(a, «) for each fixed a € Gy. Since

S W@F =2 [ 17 ol

the correspondence f— F gives a unitary mapping from L?(G) onto
L2(Go)-® L*(X) = H. For a € Gy let us put x*a) = x(aa)(a € K¥); it is
well known that the collection of the mappings x — x* is a representation
of Gy by automorphisms of the topological group X which leaves the Haar
measure invariant. Moreover, since for a # 0 the set {aa;a € Gy} is infinite,

5The subgroups of dilatations and translations are the sets { (a,0); ae Go} and { (1,7);ve K ] .
In the following we shall sometimes write simply ¢ and a instead of (¢, 0) and (1, v) respectively.

®In the course of the proof we make use of the lemma 5.2.3. of (3), the proof of which has not
been published yet.
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Gy acts ergodically on X. For ¢ € Gy we have (¢, 0)~'(a, a) = (¢ 'a, ¢ '), so
that

(U.F)(a, x) = MXK; f(ca, Ta)a(x)

= 2 [T @) () () = Fe7a, x°)

so that the operator U, in H corresponding to U, is defined for F € H by
(UcF)(a, x) = F(c™'a, x°). For v € K*

(17 'Y)_l(a: O() = (av OL—"’)/).

Introducing for a bounded measurable function ¢(x) on X the operator L,
by (LsF) (a, x) = ¢(x)F(a, x) (F € H), we get easily that the operator corre-
sponding to V,(a € K*) in H is Layy. Since the operators U, and U, (a € G,
a € K+) generate M(G), its image in H is generated by the operators U,
and Laqy. By virtue of the completeness of the system of characters {a(x)},
this ring is identical with the ring generated by the operators U, and L,
where ¢ (x) is an arbitrary bounded measurable function on X. But, according
to a result of Murray and Neumann, operator rings represented in this form
are II; factors of approximately finite type (3, p. 787, Lemma 5.2.3).

LemMA 3. The ring P(Go) is a maximal singular abelian subring of M(G).

Proof. (cf. (1 p. 282, 11. 22-36)).

(a) We have (g, 0) (a,a) (g,0)"t = (g,0) (eg”!, o) = (a, go). Hence if
a # 0, varying g over Go we get infinitely many different elements of the
group G.

(b) To prove that P(Go) issingular,let B = {(a,; ;) = d,,j =1,2,..., n}
be a finite subset of G, and @ = (a, &) € G For g € G we have
digd;l = (as ) (g 0)(ay 04]‘)—1 = (@i, a:) (g, 0) (0;11 —ay/a;)

= (a4, @) (ga;'l: —ga;/a;) = (aigayl: —gaai/a; + ;)
and dga! = (g, a—ga). Since o # 0, this element is not in Go for g # 1.
a,ga;~' = g implies a; = a;, and —ga; + «; = 0, so that if in addition for
every 1,7 and a; # 0, g # a;/a;, we have a; = a,.

Now we are going to find out more about the structure of the ring R(P(Gy))
(in the following denoted simply by R), by specializing the group G, appropri-
ately. We know (cf. above), that R is generated by the set of operators
{U,, Vii g, h € Go}.

LEMMA 4. Let n + 1 be the number of double cosets of G according to the
subgroup Go (mn =1,2,..., + ). Then R is the direct sum of a maximal
abelian ring with an abelian ring of uniform multiplicity n.

Proof. Let T be the set of double cosets of G according to G, which differ
from Gy. For v € T let us put
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Il

M, = {f(x); f(x) € LAG); f(x) = 0,x € v}
Mo = {f(x);f(@) = 0,2 € Go}.

Then L2(G) is the direct sum of the mutually orthogonal subspaces Ity and
M, (y € T). Evidently these subspaces are invariant with respect to the
operators U,, V,(a, b € Go) and so they all reduce the ring R. Let a(y) =
(@4, ay) be an arbitrary element from v. Since ay, # 0, for g, ¢’ € Gy ga(y)g’
= a(y), or (gd'ay, a,g) = (ay, @,) implies ¢’ = g = 1. Therefore, if for f € M,
we define the function f' on Gy X Gy by f'(x,y) = f(xa(v)y) (x,y € Gy), we
get an isometric mapping between I, and L*(Gy X G,) such that to the
operators U, and V, correspond translations by the same elements in L*(Go X Go)
acting on x and y respectively. In particular, for vy, vy’ € T' there exists an
isometric mapping between the spaces M, and M,  such that the restrictions
of the operators U, and V, in these subspaces correspond to each other under
this mapping. From this it follows at once that the restriction of the ring R
in the orthogonal complement of the subspace M, is the n-fold copy of its
restriction to any of the subspaces I,.

Similarly 9 can be identified with the space L2(G,).

Let X be the character group of Go. Then X X X is the character group
of Gy X Go, and via Fourier transforms we have an isometry between the
space L2(Gy X Gy) and the Hilbert space of complex-valued functions
f(o,¥) (¢, ¥ € X) square-integrable with respect to the Haar measure v on
X X X. To the operators U, and V, correspond the multiplications by a(¢)
and b(¢). Since these operators generate the ring of operators consisting of
multiplication by any bounded measurable function on X X X, we see that
the restriction of R in M, (y € T) is maximal. Analogous reasoning shows
that the restriction of R in Iy is maximal abelian too. In order to prove
Lemma 4 it evidently suffices to show that the restriction of R in the space
Mo ® M, (v arbitrarily chosen from T') contains the projection on the sub-
space L,. By reasonings applied above this amounts to the following: Let Z
be the sum of the topological spaces X and X X X, and let L?*(Z) be the
Hilbert space of functions on Z square-integrable with respect to a measure ,
which coincides on X and X X X with the Haar measures of these compact
topological groups respectively. For a, b € Gy and F(p) € L*(X) (p € Z) let

us define
(Len F) () = han(p) F(p)
where
mﬂw:{wmﬁﬁ it p=xcX
a(e)b(¥) it p=(¢,¢¥) € X XX.

Then all that we have to prove is that the ring generated by the operators
L, contains the multiplication by the characteristic function of X. If a
sequence of linear combinations of the functions %, ,(p) (a, b € G,) converges
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on X X X uniformly towards a continuous function, then it converges uni-
formly on Z towards a continuous function f(p) which satisfies f(p1) = f(p2)
if pr=x€¢X and p, = (x, x) € X X X. Conversely, every continuous
function on Z satisfying this condition can be obtained in this way. Therefore
the ring generated by the operators L,, contains multiplications by such
functions. But since the characteristic function of the set X C Z can be
obtained as limit of a bounded sequence of them, converging alimost every-
where with respect to the measure 7, our lemma is proved.

In order to obtain a sequence of singular maximal abelian subrings with
the desired properties in a II; factor of approximately finite type, by virtue
of Lemmas 2, 3, and 4 it suffices to prove the following.

LuMmMA 5. Let n be a positive integer. Then there exists a field K which is the
union of an increasing sequence of finite subfields, a subgroup Gy of the multi-
plicative group K* of K, such that if G is the subgroup of the affine group over
K corresponding to Go, the number of double cosets of G according to Gy equals
n + 1.

Proof. We shall perform this in two steps.

(a) Let Go be a subgroup of the multiplicative group of K, which has the
index n. We show that the number of double cosets of G according to G, is
n + 1. To see this, we observe, that if @ = (¢, @) and b = (b, 8) are in the
same double coset then gdg’ = b, or (gd'a, go) = (b,8), and so B = ga
(g, g’ € Gy). The converse can be proved similarly.

(b)7 According to (a) it suffices to find a K and a Gy, such that G, has the
index n in K*. Let p be a prime number, such that % is a divisor of p—1; let
n® be the greatest power of # which divides p—1. For an integer k£ > 0, let
us denote by F; the field of order p*, and by F) the multiplicative group of
I, Let By < ks < be a sequence of integers relatively prime to #. We have

F,CF,C....
We denote by K the union of the fields
Fe,(t=1,2,...,).

We are going to show that K is the direct product of a subgroup with a
cyclic group of order #*, from which the existence of the Gy with the required
properties follows at once. The number of elements of F; is

Pr=1 = (p=1)(P14p2 + .+ 1),
On the other hand,
pri-t 4+ pri=2 4 . 4 1 = k; (mod n).

“The author is indebted to the referee for this part of the lemma which malkes it possible to
avoid the use of Lemma 2 and hence that of 5.2.3 in (3).
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So #*® is the highest power of z dividing p*¥—1. Since F*; is a cyclic group, it

contains a cyclic group H of order #°, which is a direct factor, and which

does not change with <. So H is a direct factor in KX, which proves our lemma.
We sum up the preceding lemmas in the following theorem:

THEOREM. If M s an approximately finite factor of Type 11, then it contains
an nfinite sequence of singular maximal abelian subrings which cannot be
pairwise connected by *-automorphisms of M.

REFERENCES

1. J. Dixmier, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. Math., 59
(1957), 279-286.

2. F. J. Murray and J. von Neumann, On rings of operators, Ann. Math., 37 (1936), 116-229.

3. ——— On rings of operators IV, Ann. Math., 44 (1943), 716-808.

4. 1. E. Segal, Decompositions of operator algebras 11, Mem. Amer. Math. Society, no. 9 (1951).

RIAS, Baltimore

https://doi.org/10.4153/CJM-1960-024-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1960-024-7

