# AN INTERPOLATORY RATIONAL APPROXIMATION 

BY<br>A. MEIR

1. The classical Hermite-Fejér interpolation process is a positive linear mapping from $C[-1,1]$ into the space of polynomials of degree $\leq 2 n-1$. If $T_{n}(x)$ denotes the Tchebisheff polynomial of degree $n$ and $x_{k}=x_{n k}$ $(k=1,2, \ldots, n)$ its roots, then for any given $f \in C[-1,1]$ the Hermite-Fejér image $H_{n} f$ of $f$ is defined by

$$
\begin{equation*}
\left(H_{n} f\right)(x)=\sum_{k=1}^{n} h_{n k}(x) f\left(x_{k}\right) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{n k}(x)=\frac{T_{n}^{2}(x)}{n^{2}\left(x-x_{k}\right)^{2}}\left(1-x x_{k}\right) \tag{1.2}
\end{equation*}
$$

for $k=1,2, \ldots, n$. It is known ([2], p. 69) that

$$
\begin{equation*}
\sum_{k=1}^{n} h_{n k}(x) \equiv 1 \tag{1.3}
\end{equation*}
$$

and

$$
h_{n k}^{\prime}\left(x_{j}\right)=0, \quad k, j=1,2, \ldots, n .
$$

As to the behavior of $H_{n} f$ as an approximant, it has been shown ([1]) that if $\omega_{f}(\cdot)$ denotes the modulus of continuity of $f \in C[-1,1]$, then the approximation error $\left\|f-H_{n} f\right\|$ is of the order $n^{-1} \sum_{k=1}^{n} \omega_{f}\left(k^{-1}\right)$. This quantity is essentially larger than $\omega_{f}\left(n^{-1}\right)$, the best order of approximation achievable by polynomials of degree $n$. The purpose of this paper is to present a sequence of positive, linear, interpolatory operators $\Lambda_{n}(n=1,2, \ldots)$, which map $C[-1,1]$ into the set of rational functions of degree $\leq 4 n-1$ and for which the error bound $\left\|f-\Lambda_{n} f\right\|$ is fo the order $\omega_{f}\left(n^{-1}\right)$.

For functions in particular subclasses of $C[-1,1]$ it is known ([3]) that there exist rational approximations of degree $n$ which yield an error bound better than $\omega_{f}\left(n^{-1}\right)$; the specific rational operators $\Lambda_{n}$ to be introduced here are interpolatory, positive and linear. In addition, the denominator of each $\Lambda_{n} f$ is independent of the function $f$ and it remains between the fixed bounds $\frac{1}{3}$ and 1 for all $n$.
2. For $n=1,2, \ldots$, let $T_{n}(x)$ denote the classical Tchebisheff polynomial of degree $n$ with roots $x_{n}<x_{n-1}<\cdots<x_{1}$ in [-1,1]. It is easy to verify that the
polynomials $p_{n k}(x)$ of degree $4 n-1$ defined for $k=1,2, \ldots, n$ by

$$
\begin{align*}
p_{n k}(x)=\frac{T_{n}^{4}(x)}{2 n^{4}\left(x-x_{k}\right)^{4}}\left\{\left(1-x^{2}\right)\left(1-x_{k}^{2}\right)\right. &  \tag{2.1}\\
& \left.+\left(1-x x_{k}\right)^{2}+\frac{4 n^{2}-1}{3}\left(x-x_{k}\right)^{2}\left(1-x x_{k}\right)\right\}
\end{align*}
$$

satisfy the relations

$$
\begin{align*}
& p_{n k}\left(x_{j}\right)=\delta_{k j}, k, j=1,2, \ldots n \\
& p_{n k}^{\prime}\left(x_{j}\right)=p_{n k}^{\prime \prime}\left(x_{j}\right)=p_{n k}^{\prime \prime \prime}\left(x_{j}\right)=0, k, j=1,2, \ldots, n \\
& \sum_{k=1}^{n} p_{n k}(x) \equiv 1 . \tag{2.2}
\end{align*}
$$

If we set for $k=1,2, \ldots, n$

$$
\begin{equation*}
\lambda_{n k}(x)=\frac{T_{n}^{4}(x)}{2 n^{4}\left(x-x_{k}\right)^{4}}\left\{\left(1-x^{2}\right)\left(1-x_{k}^{2}\right)+\left(1-x x_{k}\right)^{2},\right. \tag{2.3}
\end{equation*}
$$

then by (1.2) and (2.1)

$$
\lambda_{n k}(x)=p_{n k}(x)-\frac{4 n^{2}-1}{6 n^{2}} T_{n}^{2}(x) h_{n k}(x),
$$

so that

$$
\begin{equation*}
\lambda_{n k}\left(x_{j}\right)=\delta_{k j}, \quad k, j=1,2, \ldots, n . \tag{2.4}
\end{equation*}
$$

Moreover, (1.3) and (2.2) imply that

$$
\begin{equation*}
\sum_{k=1}^{n} \lambda_{n k}(x)=1-\frac{4 n^{2}-1}{6 n^{2}} T_{n}^{2}(x) \tag{2.5}
\end{equation*}
$$

3. For any given $f \in C[-1,1]$ we define the rational function $\Lambda_{n} f$ by

$$
\begin{equation*}
\left(\Lambda_{n} f\right)(x)=\sum_{k=1}^{n} \lambda_{n k}(x) f\left(x_{k}\right) / Q_{n}(x) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{n}(x)=1-\frac{4 n^{2}-1}{6 n^{2}} T_{n}^{2}(x) \tag{3.2}
\end{equation*}
$$

It follows from (2.4) and (2.5) that $\left(\Lambda_{n} f\right)\left(x_{j}\right)=f\left(x_{j}\right)$ for $j=1,2, \ldots, n$, i.e. $\Lambda_{n}$ is an interpolatory operator. From (2.3) and (3.1) it is clear that $\Lambda_{n}$ is a positive and linear operator. Observe also that the denominator $Q_{n}(x)$ of every $\Lambda_{n} f$ is of degree $2 n$ and that $\frac{1}{3}<Q_{n}(x) \leq 1$ for $x \in[-1,1]$. We now state our result concerning the error of approximation.

Theorem 1. Let $f \in C[-1,1]$ with modulus of continuity $\omega_{f}(\cdot)$. Then for $n=1,2, \ldots$ we have (in the max norm)

$$
\begin{equation*}
\left\|f-\Lambda_{n} f\right\| \leq(1+\sqrt{ } 3) \omega_{f}\left(n^{-1}\right) . \tag{3.3}
\end{equation*}
$$

Proof. Let $x \in[-1,1]$. Then by (3.1)

$$
\left|f(x)-\left(\Lambda_{n} f\right)(x)\right| \leq\left\{\sum_{k=1}^{n} \lambda_{n k}(x)\left|f(x)-f\left(x_{k}\right)\right|\right\} / Q_{n}(x)
$$

Since for all $x, x_{k}$ one has

$$
\left|f(x)-f\left(x_{k}\right)\right| \leq\left\{1+n\left|x-x_{k}\right|\right\} \cdot \omega_{f}\left(n^{-1}\right)
$$

we get from the above

$$
\begin{equation*}
\left|f(x)-\left(\Lambda_{n} f\right)(x)\right| \leq\left(1+\frac{n}{Q_{n}(x)} \sum_{k=1}^{n} \lambda_{n k}(x)\left|x-x_{k}\right|\right) w_{f}\left(n^{-1}\right) \tag{3.4}
\end{equation*}
$$

Now, using the inequality of Schwartz and (2.5), we obtain

$$
\begin{equation*}
\sum_{k=1}^{n} \lambda_{n k}(x)\left|x-x_{k}\right| \leq\left(Q_{n}(x)\right)^{1 / 2}\left(\sum_{k=1}^{n} \lambda_{n k}(x)\left(x-x_{k}\right)^{2}\right)^{1 / 2} \tag{3.5}
\end{equation*}
$$

In order to estimate the last sum on the right hand side, we first rewrite (2.3) as

$$
\lambda_{n k}(x)=\frac{T_{n}^{4}(x)}{n^{4}\left(x-x_{k}\right)^{4}}\left\{1-x x_{k}-x^{2}\left(1-x_{k}^{2}\right) / 2-x_{k}^{2}\left(1-x^{2}\right) / 2\right\} .
$$

It is then clear that

$$
\lambda_{n k}(x)\left(x-x_{k}\right)^{2} \leq \frac{T_{n}^{2}(x)}{n^{2}} \cdot \frac{T_{n}^{2}(x)}{n^{2}\left(x-x_{k}\right)^{2}}\left(1-x x_{k}\right),
$$

which, on account of (1.2) and (1.3), yields that

$$
\begin{equation*}
\sum_{k=1}^{n} \lambda_{n k}(x)\left(x-x_{k}\right)^{2} \leq \frac{T_{n}^{2}(x)}{n^{2}} \leq \frac{1}{n^{2}} \tag{3.6}
\end{equation*}
$$

Combining (3.4)-(3.6) we obtain the inequality

$$
\begin{equation*}
\left|f(x)-\left(\Lambda_{n} f\right)(x)\right| \leq\left\{1+\left(Q_{n}(x)\right)^{-1 / 2}\right\} \cdot \omega_{f}\left(n^{-1}\right) \tag{3.7}
\end{equation*}
$$

Since (3.2) implies that $Q_{n}(x)>\frac{1}{3}$ for all $x \in[-1,1]$, the required result follows from (3.7).
4. For functions that satisfy a Lipschitz condition, we can state a somewhat stronger result.

Theorem 2. Let $f \in \operatorname{Lip}_{M} 1$ in $[-1,1]$. Then for $x \in[-1,1]$ and $n=1,2, \ldots$, we have

$$
\left|f(x)-\left(\Lambda_{n} f\right)(x)\right| \leq M\left(\frac{\sqrt{ } 6\left(1-x^{2}\right)}{n}+\frac{3}{2 n^{2}}\right)
$$

Proof. We again rewrite (2.3). We have for $k=1,2, \ldots, n$

$$
\begin{equation*}
\lambda_{n k}(x)=\left(1-x^{2}\right)\left(1-x_{k}^{2}\right) \frac{T_{n}^{4}(x)}{n^{4}\left(x-x_{k}\right)^{4}}+\frac{T_{n}^{4}(x)}{2 n^{4}\left(x-x_{k}\right)^{2}}=u_{k}(x)+v_{k}(x) . \tag{4.1}
\end{equation*}
$$

It is easy to see that for all $x, x_{k} \in[-1,1]$, the inequalities $\left|x-x_{k}\right| \leq 1-x x_{k}$ and $1-x_{k}^{2} \leq 2\left(1-x x_{k}\right)$ hold. Hence by (1.2) and (1.3),

$$
\begin{equation*}
\sum_{k=1}^{n} v_{k}(x)\left|x-x_{k}\right| \leq T_{n}^{2}(x) / 2 n^{2} \leq \frac{1}{2 n^{2}} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} u_{k}(x)\left(x-x_{k}\right)^{2} \leq 2\left(1-x^{2}\right) \frac{T_{n}^{2}(x)}{n^{2}} \leq \frac{2\left(1-x^{2}\right)}{n^{2}} \tag{4.3}
\end{equation*}
$$

From (4.3), on using the Schwartz inequality and the fact that $u_{k}(x) \leq \lambda_{n k}(x)$, we get

$$
\begin{equation*}
\sum_{k=1}^{n} u_{k}(x)\left|x-x_{k}\right| \leq\left(Q_{n}(x)\right)^{1 / 2} \cdot \frac{\sqrt{ } 2\left(1-x^{2}\right)}{n} \tag{4.4}
\end{equation*}
$$

The result now follows from (4.2), (4.4) and the inequality $Q_{n}(x)>\frac{1}{3}$, since $\left|f(x)-f\left(x_{k}\right)\right| \leq M \cdot\left|x-x_{k}\right|$ for all $x, x_{k}$.

Remark. The estimates given for $\left\|f-\Lambda_{n} f\right\|$ by Theorem 1 and for $\mid f(x)-$ $\left(\Lambda_{n} f\right)(x) \mid$ by Theorem 2 are poor if $n=1$. In fact we have $\left\|f-\Lambda_{1} f\right\| \leq \omega_{f}(1)$ and $\left\|f-\Lambda_{1} f\right\| \leq M$ respectively.

## References

1. R. Bojanic, A note on the precision of interpolation by Hermite-Fejér polynomials. Proc. Conference on Constructive Theory of Functions, 1969. Akadémiai Kiadó (Budapest, 1972), 69-76.
2. L. Fejér, Über Interpolation. Göttinger Nachrichten (1916), 66-91.
3. P. Szüsz, and P. Turán, On the constructive theory of functions, III. Studia Sci. Math. Hungar. 1 (1966), 315-322.
4. A. Sharma and J. Tzimbalario, Quasi-Hermite-Fejer Type Interpolation of Higher Order, Journal Approx. Theory 13 (1975), 431-442.

University of Alberta
Edmonton, Alberta
Canada T6G 2G1

