Canad. Math. Bull. Vol. 21 (2), 1978

AN INTERPOLATORY RATIONAL APPROXIMATION

ву A. MEIR

1. The classical Hermite-Fejér interpolation process is a positive linear mapping from C[-1, 1] into the space of polynomials of degree $\leq 2n-1$. If $T_n(x)$ denotes the Tchebisheff polynomial of degree n and $x_k = x_{nk}$ (k = 1, 2, ..., n) its roots, then for any given $f \in C[-1, 1]$ the Hermite-Fejér image $H_n f$ of f is defined by

(1.1)
$$(H_n f)(x) = \sum_{k=1}^n h_{nk}(x) f(x_k)$$

where

(1.2)
$$h_{nk}(x) = \frac{T_n^2(x)}{n^2(x-x_k)^2} (1-xx_k)$$

for k = 1, 2, ..., n. It is known ([2], p. 69) that

(1.3)
$$\sum_{k=1}^{n} h_{nk}(x) \equiv 1$$

and

$$h'_{nk}(x_j) = 0, \qquad k, j = 1, 2, \ldots, n.$$

As to the behavior of $H_n f$ as an approximant, it has been shown ([1]) that if $\omega_f(\cdot)$ denotes the modulus of continuity of $f \in C[-1, 1]$, then the approximation error $||f - H_n f||$ is of the order $n^{-1} \sum_{k=1}^n \omega_f(k^{-1})$. This quantity is essentially larger than $\omega_f(n^{-1})$, the best order of approximation achievable by polynomials of degree *n*. The purpose of this paper is to present a sequence of *positive*, *linear*, *interpolatory* operators $\Lambda_n(n=1,2,\ldots)$, which map C[-1,1] into the set of rational functions of degree $\leq 4n-1$ and for which the error bound $||f - \Lambda_n f||$ is fo the order $\omega_f(n^{-1})$.

For functions in particular subclasses of C[-1, 1] it is known ([3]) that there exist rational approximations of degree n which yield an error bound better than $\omega_f(n^{-1})$; the specific rational operators Λ_n to be introduced here are *interpolatory*, *positive* and *linear*. In addition, the denominator of each $\Lambda_n f$ is independent of the function f and it remains between the fixed bounds $\frac{1}{3}$ and 1 for all n.

2. For $n = 1, 2, ..., let T_n(x)$ denote the classical Tchebisheff polynomial of degree *n* with roots $x_n < x_{n-1} < \cdots < x_1$ in [-1, 1]. It is easy to verify that the

Received by the editors June 15, 1977 and, in revised form, September 30, 1977.

A. MEIR

polynomials $p_{nk}(x)$ of degree 4n-1 defined for k = 1, 2, ..., n by

(2.1)
$$p_{nk}(x) = \frac{T_n^4(x)}{2n^4(x-x_k)^4} \left\{ (1-x^2)(1-x_k^2) + (1-xx_k)^2 + \frac{4n^2-1}{3}(x-x_k)^2(1-xx_k) \right\}$$

satisfy the relations

(2.2)

$$p_{nk}(x_j) = \delta_{kj}, \quad k, j = 1, 2, ..., n$$

$$p'_{nk}(x_j) = p''_{nk}(x_j) = 0, \qquad k, j = 1, 2, ..., n$$

$$\sum_{k=1}^{n} p_{nk}(x) \equiv 1.$$

If we set for $k = 1, 2, \ldots, n$

(2.3)
$$\lambda_{nk}(x) = \frac{T_n^4(x)}{2n^4(x-x_k)^4} \{(1-x^2)(1-x_k^2) + (1-xx_k)^2,$$

then by (1.2) and (2.1)

$$\lambda_{nk}(x) = p_{nk}(x) - \frac{4n^2 - 1}{6n^2} T_n^2(x) h_{nk}(x),$$

so that

(2.4)
$$\lambda_{nk}(x_j) = \delta_{kj}, \qquad k, j = 1, 2, \ldots, n.$$

Moreover, (1.3) and (2.2) imply that

(2.5)
$$\sum_{k=1}^{n} \lambda_{nk}(x) = 1 - \frac{4n^2 - 1}{6n^2} T_n^2(x).$$

3. For any given $f \in C[-1, 1]$ we define the rational function $\Lambda_n f$ by

(3.1)
$$(\Lambda_n f)(x) = \sum_{k=1}^n \lambda_{nk}(x) f(x_k) / Q_n(x)$$

where

(3.2)
$$Q_n(x) = 1 - \frac{4n^2 - 1}{6n^2} T_n^2(x).$$

It follows from (2.4) and (2.5) that $(\Lambda_n f)(x_j) = f(x_j)$ for j = 1, 2, ..., n, i.e. Λ_n is an interpolatory operator. From (2.3) and (3.1) it is clear that Λ_n is a positive and linear operator. Observe also that the denominator $Q_n(x)$ of every $\Lambda_n f$ is of degree 2n and that $\frac{1}{3} < Q_n(x) \le 1$ for $x \in [-1, 1]$. We now state our result concerning the error of approximation.

THEOREM 1. Let $f \in C[-1, 1]$ with modulus of continuity $\omega_f(\cdot)$. Then for $n = 1, 2, \ldots$ we have (in the max norm)

(3.3)
$$||f - \Lambda_n f|| \le (1 + \sqrt{3})\omega_f(n^{-1}).$$

https://doi.org/10.4153/CMB-1978-033-6 Published online by Cambridge University Press

[June

Proof. Let $x \in [-1, 1]$. Then by (3.1)

$$|f(x) - (\Lambda_n f)(x)| \leq \left\{ \sum_{k=1}^n \lambda_{nk}(x) |f(x) - f(x_k)| \right\} / Q_n(x).$$

Since for all x, x_k one has

$$|f(x)-f(x_k)| \leq \{1+n|x-x_k|\} \cdot \omega_f(n^{-1}),$$

we get from the above

(3.4)
$$|f(x) - (\Lambda_n f)(x)| \leq \left(1 + \frac{n}{Q_n(x)} \sum_{k=1}^n \lambda_{nk}(x) |x - x_k|\right) w_f(n^{-1}).$$

Now, using the inequality of Schwartz and (2.5), we obtain

(3.5)
$$\sum_{k=1}^{n} \lambda_{nk}(x) |x - x_k| \leq (Q_n(x))^{1/2} \left(\sum_{k=1}^{n} \lambda_{nk}(x) (x - x_k)^2 \right)^{1/2}.$$

In order to estimate the last sum on the right hand side, we first rewrite (2.3) as

$$\lambda_{nk}(x) = \frac{T_n^4(x)}{n^4(x-x_k)^4} \{1 - xx_k - x^2(1-x_k^2)/2 - x_k^2(1-x^2)/2\}.$$

It is then clear that

$$\lambda_{nk}(x)(x-x_k)^2 \leq \frac{T_n^2(x)}{n^2} \cdot \frac{T_n^2(x)}{n^2(x-x_k)^2} (1-xx_k),$$

_

which, on account of (1.2) and (1.3), yields that

(3.6)
$$\sum_{k=1}^{n} \lambda_{nk}(x)(x-x_k)^2 \leq \frac{T_n^2(x)}{n^2} \leq \frac{1}{n^2}.$$

Combining (3.4)–(3.6) we obtain the inequality

(3.7)
$$|f(x) - (\Lambda_n f)(x)| \leq \{1 + (Q_n(x))^{-1/2}\} \cdot \omega_f(n^{-1}).$$

Since (3.2) implies that $Q_n(x) > \frac{1}{3}$ for all $x \in [-1, 1]$, the required result follows from (3.7).

4. For functions that satisfy a Lipschitz condition, we can state a somewhat stronger result.

THEOREM 2. Let $f \in Lip_M 1$ in [-1, 1]. Then for $x \in [-1, 1]$ and n = 1, 2, ..., wehave

$$|f(x) - (\Lambda_n f)(x)| \le M\left(\frac{\sqrt{6(1-x^2)}}{n} + \frac{3}{2n^2}\right).$$

Proof. We again rewrite (2.3). We have for k = 1, 2, ..., n

(4.1)
$$\lambda_{nk}(x) = (1-x^2)(1-x_k^2)\frac{T_n^4(x)}{n^4(x-x_k)^4} + \frac{T_n^4(x)}{2n^4(x-x_k)^2} = u_k(x) + v_k(x).$$

199

1978]

A. MEIR

It is easy to see that for all $x, x_k \in [-1, 1]$, the inequalities $|x - x_k| \le 1 - xx_k$ and $1 - x_k^2 \le 2(1 - xx_k)$ hold. Hence by (1.2) and (1.3),

(4.2)
$$\sum_{k=1}^{n} v_k(x) |x - x_k| \le T_n^2(x)/2n^2 \le \frac{1}{2n^2}$$

and

(4.3)
$$\sum_{k=1}^{n} u_k(x)(x-x_k)^2 \leq 2(1-x^2) \frac{T_n^2(x)}{n^2} \leq \frac{2(1-x^2)}{n^2}.$$

From (4.3), on using the Schwartz inequality and the fact that $u_k(x) \le \lambda_{nk}(x)$, we get

(4.4)
$$\sum_{k=1}^{n} u_k(x) |x - x_k| \leq (Q_n(x))^{1/2} \cdot \frac{\sqrt{2(1 - x^2)}}{n}.$$

The result now follows from (4.2), (4.4) and the inequality $Q_n(x) > \frac{1}{3}$, since $|f(x) - f(x_k)| \le M \cdot |x - x_k|$ for all x, x_k .

REMARK. The estimates given for $||f - \Lambda_n f||$ by Theorem 1 and for $|f(x) - (\Lambda_n f)(x)|$ by Theorem 2 are poor if n = 1. In fact we have $||f - \Lambda_1 f|| \le \omega_f(1)$ and $||f - \Lambda_1 f|| \le M$ respectively.

References

1. R. Bojanic, A note on the precision of interpolation by Hermite-Fejér polynomials. Proc. Conference on Constructive Theory of Functions, 1969. Akadémiai Kiadó (Budapest, 1972), 69-76.

2. L. Fejér, Über Interpolation. Göttinger Nachrichten (1916), 66-91.

3. P. Szüsz, and P. Turán, On the constructive theory of functions, III. Studia Sci. Math. Hungar. 1 (1966), 315-322.

4. A. Sharma and J. Tzimbalario, Quasi-Hermite-Fejer Type Interpolation of Higher Order, Journal Approx. Theory 13 (1975), 431-442.

UNIVERSITY OF ALBERTA Edmonton, Alberta Canada T6G 2G1