ON THE GROWTH RATE OF THE CORRELATION FUNCTION OF FAINT GALAXIES

DAVID VALLS-GABAUD¹ AND BOUD ROUKEMA²
¹ Observatoire de Strasbourg,
11 Rue de l'Université, 67000 Strasbourg, France.
² Astronomy Centre, University of Sussex, Brighton BN1 9QH, UK.

We constrain the growth rate of structure, as represented by the spatial two-point galaxy auto-correlation function, at redshifts where this has not yet been measured directly by combining recent measurements of the amplitude of the angular two-point galaxy auto-correlation, at magnitudes as faint as $V_{median} \leq 25$, with new observations of the redshift distribution of very faint galaxies. We show that ξ for the overall galaxy population (at a fixed proper separation r) grows $(1+z)^{4\pm 1}$ times as fast as clustering which is fixed in proper coordinates. Even extreme models where "blue" galaxies have a smaller, IRAS-like, correlation function do not reduce the growth rate below $(1 + z)^{2.5\pm 1}$ times the clustering fixed in proper coordinates (Roukema, B.F. and Valls-Gabaud, D. (1995) A & A, submitted).

Figure 1. Amplitude of the galaxy two-point angular auto-correlation function $w_0 = w(1')$ against median V magnitude.