ON APPROXIMATIONS TO SOLUTIONS OF NONLINEAR INTEGRAL EQUATIONS OF THE URYSOHN TYPE

BY
K. A. ZISCHKA

1. Introduction. This note will derive a priori estimates of the errors due to replacing the given integral operator A by a similar operator A^{*} of the same type when successive approximations are applied to the integral equation $\varphi=A \varphi$.

The existence and uniqueness of solutions to this equation follow easily by applying a well known fixed point theorem in a Banach space to the above mapping [1, 2]. Moreover, sufficient conditions for the existence and uniqueness of a solution to Urysohn's equation are stated explicitly in a note by the author [3].
2. Formulation of the problem. We recall that Urysohn's integral equation is defined as

$$
\begin{align*}
& \varphi=A \varphi \quad \text { where } A \text { is given by: } \tag{2.1}\\
& A \varphi:=\lambda \int_{G} F(x, y ; \varphi(y)) d y+f(x) . \tag{2.2}
\end{align*}
$$

Here G is a closed bounded set in E^{n}. The function F is assumed to be measurable for each value of $\varphi(y)$ and for each $x, y \in G$. We also assume that

$$
\int_{G} F(x, y: \varphi(y)) d y \in L^{2}(G)
$$

for each $\varphi \in S$, where S denotes a closed sphere of radius $\rho>0$ about θ in $L^{2}(G) .{ }^{(1)}$ Moreover we assume that F satisfies a generalized Lipschitz condition in G, namely:

$$
\begin{equation*}
\left|F\left(x, y ; u_{1}\right)-F\left(x, y ; u_{2}\right)\right| \leq a(x, y)\left|u_{1}-u_{2}\right| \tag{2.3}
\end{equation*}
$$

for any u_{1}, u_{2}, with $a(x, y)$ satisfying:

$$
\begin{equation*}
0<\|a\|^{2}:=\int_{G} \int_{G} a^{2}(x, y) d x d y \leq A^{2} \tag{2.4}
\end{equation*}
$$

(where A is a positive constant). We also assume that λ satisfies:

$$
\begin{equation*}
|\lambda| \leq\|a\|^{-1} \tag{2.5}
\end{equation*}
$$

${ }^{(1)}$ i.e. the space of real-valued, square integrable functions on T with norm:

$$
\|x\|^{2}:=\int_{G} x^{2}(t) d t .
$$

and that $f \in L^{2}(G)$. We may then conclude [3] that the iteration

$$
\begin{equation*}
\varphi_{n+1}:=A \varphi_{n} \quad \text { with } n=0,1, \ldots ; \quad \varphi_{0} \in S \tag{2.6}
\end{equation*}
$$

converges to the unique solution of (2.1), provided that ρ satisfies:

$$
\begin{equation*}
\left\|f+\lambda \int_{G} F(x, y ; \theta) d y\right\| \leq \rho(1-K) \quad \text { with } K:=|\lambda|\|a\| . \tag{2.7}
\end{equation*}
$$

Unfortunately, due to computational difficulties, such as evaluation of the integrals, the method of successive approximations is not always suitable for calculating approximations to a solution of (2.1) in applications. Therefore a somewhat different procedure for generating approximations to the solution is desired.

The approach chosen in this note is the consideration of another integral equation of the same type, with a different integrand which is "similar" to that in (2.1). In short, we introduce a perturbed operator A^{*} of similar structure to the operator A where A^{*} is assumed to be much simpler to compute in order to generate approximations to the solution of (2.1).
3. Results. The following theorem gives us the desired a priori estimates of the errors induced by replacing A by A^{*} in (2.6).

Theorem. Let A be the operator of $\S 2$ under the hypotheses there assumed. Let $F^{*}(x, y, u)$ be another function similar to $F(x, y, u)$. Suppose that for any $\varphi \in S$ we have:

$$
\begin{equation*}
\left|F^{*}(x, y ; \varphi(y))-F(x, y ; \varphi(y))\right| \leq \omega(x, y) \tag{3.1}
\end{equation*}
$$

and for any u

$$
\begin{equation*}
\left|F^{*}(x, y ; u)-F^{*}(x, y ; \theta)\right| \leq \alpha(x, y)|u| \tag{3.2}
\end{equation*}
$$

where α and ω are nontrivial L^{2} functions on $G \times G$. Furthermore suppose that we have

$$
\begin{equation*}
\|\alpha\| \leq\|a\| . \tag{3.3}
\end{equation*}
$$

Then the iteration

$$
\begin{equation*}
\varphi_{n+1}^{*}:=A^{*} \varphi_{n}^{*}, \quad n=0,1, \ldots, \quad \text { where } \quad \varphi_{0}^{*}:=\varphi_{0} \in S \tag{3.4}
\end{equation*}
$$

with

$$
\begin{equation*}
A^{*} \varphi:=\lambda \int_{G} F^{*}(x, y ; \varphi(y)) d y+f(x), \tag{3.5}
\end{equation*}
$$

with $\varphi \in S$, can be carried out indefinitely, and all $\varphi_{n}^{*}, n=0,1$ remain within the sphere S of radius ρ and centre θ, provided that:

$$
\begin{equation*}
\left\|A^{*} \theta\right\| \leq \rho(1-K) \tag{3.6}
\end{equation*}
$$

Then we have also:

$$
\begin{equation*}
\left\|\varphi_{n}^{*}-\varphi_{1}^{*}\right\| \leq \frac{K}{1-K}\left\|\varphi_{0}-\varphi_{1}^{*}\right\|+\frac{2\|\omega\||\lambda| \sqrt{\operatorname{meas}(G)}}{1-K} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\varphi_{n}-\varphi_{n}^{*}\right\| \leq \frac{\|\omega\||\lambda| \sqrt{\operatorname{meas}(G)}}{1-K} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\varphi-\varphi_{1}^{*}\right\| \leq \frac{K}{1-K}\left\|\varphi_{0}-\varphi_{1}^{*}\right\|+\frac{\|\omega\||\lambda| \sqrt{\operatorname{meas}(G)}}{1-K} \tag{3.9}
\end{equation*}
$$

The changes $\left\|\varphi_{n}^{*}-\varphi_{n+1}^{*}\right\|$ are strictly decreasing, at least as long as

$$
\begin{equation*}
\left\|\varphi_{n+1}^{*}-\varphi_{n}^{*}\right\|>\frac{2\|\omega\||\lambda| \sqrt{\operatorname{meas}(G)}}{1-K} \tag{3.10}
\end{equation*}
$$

Proof. (i) First let us estimate $\left\|A \varphi-A^{*} \varphi\right\|, v \varphi \in S$. From (2.2) and (3.5) it follows that:

$$
\left|A \varphi-A^{*} \varphi\right|^{2} \leq|\lambda|^{2}\left|\int_{G}\right| F(x, y ; \varphi(y))-F^{*}(x, y ; \varphi(y))|d y|^{2}
$$

using (3.1) and the Schwarz inequality we find

$$
\begin{equation*}
\left\|A \varphi-A^{*} \varphi\right\| \leq|\lambda|\|\omega\| \sqrt{\operatorname{meas}(G)}=: \varepsilon \tag{3.11}
\end{equation*}
$$

We may assume that ε is a small positive number.
(ii) Let us find an estimate for $\left\|A^{*} \varphi-A^{*} \theta\right\|$. Again using (3.5), (3.2), the Schwarz inequality, and (3.3), we find that for any $\varphi \in S$:

$$
\left\|A^{*} \varphi-A^{*} \theta\right\| \leq|\lambda|\|\alpha\|\|\varphi\| \leq K \rho
$$

hence $\left\|A^{*} \varphi\right\| \leq\left\|A^{*} \theta\right\|+K \rho$, and because of (3.6) we have

$$
\begin{equation*}
\left\|A^{*} \varphi\right\| \leq \rho, \quad \vee \varphi \in S \tag{3.12}
\end{equation*}
$$

Therefore, A^{*} maps the sphere S with radius ρ and centre θ into itself and the iterations (3.4) are defined for $n=0,1, \ldots$ and all the φ_{n}^{*} remain within the sphere S.
(iii) Next, let us estimate $\left\|\varphi-\varphi_{1}^{*}\right\|$. We have $\left\|\varphi-\varphi_{1}^{*}\right\| \leq\left\|\varphi-\varphi_{1}\right\|+\left\|\varphi_{1}-\varphi_{1}^{*}\right\|$. Using the inequality [3]:

$$
\left\|\varphi-\varphi_{n}\right\| \leq \frac{K^{n}}{1-K}\left\|\varphi_{1}-\varphi_{0}\right\|
$$

and the relations (2.6) and (3.4) we find that:

$$
\left\|\varphi-\varphi_{1}^{*}\right\| \leq \frac{K}{1-K}\left\|\varphi_{1}-\varphi_{0}\right\|+\varepsilon
$$

From

$$
\left\|\varphi_{1}-\varphi_{0}\right\| \leq\left\|\varphi_{1}-\varphi_{1}^{*}\right\|+\left\|\varphi_{1}^{*}-\varphi_{0}\right\|=\left\|\varphi_{1}^{*}-\varphi_{0}\right\|+\left\|A \varphi_{0}-A^{*} \varphi_{0}\right\|
$$

and (3.11) we get: $\left\|\varphi_{1}-\varphi_{0}\right\| \leq\left\|\varphi_{1}^{*}-\varphi_{0}\right\|+\varepsilon$, and hence

$$
\begin{equation*}
\left\|\varphi-\varphi_{1}^{*}\right\| \leq \frac{K}{1-K}\left\|\varphi_{1}^{*}-\varphi_{0}\right\|+\frac{\varepsilon}{1-K} \tag{3.13}
\end{equation*}
$$

which together with (3.11) proves (3.9).
(iv) Now, we consider $\left\|\varphi_{n}-\varphi_{n}^{*}\right\|$. Since

$$
\left\|\varphi_{n}-\varphi_{n}^{*}\right\|=\left\|A \varphi_{n-1}-A^{*} \varphi_{n-1}^{*}\right\| \leq\left\|A \varphi_{n-1}-A \varphi_{n-1}^{*}\right\|+\left\|A \varphi_{n-1}^{*}-A^{*} \varphi_{n-1}^{*}\right\|
$$

we have

$$
\left\|\varphi_{n}-\varphi_{n}^{*}\right\| \leq K\left\|p_{n-1}-\varphi_{n-1}^{*}\right\|+\varepsilon, \quad n=1,2, \ldots
$$

By induction we find that:

$$
\begin{equation*}
\left\|\varphi_{n}-\varphi_{n}^{*}\right\| \leq \frac{\varepsilon}{1-K}=\frac{\|\omega\||\lambda| \sqrt{\operatorname{meas}(G)}}{1-K} \tag{3.14}
\end{equation*}
$$

and this proves (3.8).
(v) Let us now find an estimate for $\left\|\varphi_{n}^{*}-\varphi_{1}^{*}\right\|$. From $\left\|\varphi_{n}^{*}-\varphi_{1}^{*}\right\| \leq\left\|\varphi_{n}^{*}-\varphi_{n}\right\|+$ $\left\|\varphi_{n}-\varphi_{1}^{*}\right\|$ we find with the help of (3.14) that:

$$
\begin{equation*}
\left\|\varphi_{n}^{*}-\varphi_{1}^{*}\right\| \leq \frac{\varepsilon}{1-K}+\left\|\varphi_{n}-\varphi_{1}^{*}\right\| \tag{3.15}
\end{equation*}
$$

Using the fact that A is a contraction mapping [3], it can easily be shown that:

$$
\left\|\varphi_{n}-\varphi_{1}\right\| \leq \frac{K}{1-K}\left\|\varphi_{1}-\varphi_{0}\right\|
$$

Hence (3.13) remains valid if one replaces φ by φ_{n}, yielding:

$$
\left\|\varphi_{n}-\varphi_{1}^{*}\right\| \leq \frac{K}{1-K}\left\|\varphi_{1}^{*}-\varphi_{0}\right\|+\frac{\varepsilon}{1-K} .
$$

From this and (3.15) we obtain (3.7).
(vi) Finally, we estimate $\left\|\varphi_{n+1}^{*}-\varphi_{n}^{*}\right\|$. We have:

$$
\left\|\varphi_{n}^{*}-\varphi_{n+1}^{*}\right\| \leq\left\|A^{*} \varphi_{n-1}^{*}-A \varphi_{n-1}^{*}\right\|+\left\|A \varphi_{n-1}^{*}-A \varphi_{n}^{*}\right\|+\left\|A \varphi_{n}^{*}-A^{*} \varphi_{n}^{*}\right\|
$$

Hence $\left\|\varphi_{n}^{*}-\varphi_{n+1}^{*}\right\| \leq 2 \varepsilon+K\left\|\varphi_{n-1}^{*}-\varphi_{n}^{*}\right\|$ and therefore:

$$
\left\|\varphi_{n-1}^{*}-\varphi_{n}^{*}\right\|-\left\|\varphi_{n}^{*}-\varphi_{n+1}^{*}\right\| \geq(1-K)\left(\left\|\varphi_{n-1}^{*}-\varphi_{n}^{*}\right\|-\frac{2 \varepsilon}{1-K}\right)
$$

Because of (3.10) we conclude that: $\left\|\varphi_{n-1}^{*}-\varphi_{n}^{*}\right\|>\left\|\varphi_{n}^{*}-\varphi_{n+1}^{*}\right\|$ which completes the proof of the theorem.

Remark. The main part of this proof is similar to the proof of Urabe's theorem [4], [5].

References

1. H. P. Thielman, (Applications of the fixed point theorem by Russian mathematicians) Nonlinear integral equations, by P. M. Anselone, Univ. of Wisconsin Press, Madison, Wis. (1964), 35-68.
2. M. A. Krasnosels'kii, Topological methods in the theory of nonlinear integral equations, Gosudarstvennoe Izdatel'stvo Tekhniko-teoreticheskoi literatury, (Russian), Moscow, 1958.
3. K. A. Zischka, On the existence and uniqueness of solutions of nonlinear equations of the Urysohn type, Math. Note, Amer. Math. Monthly (to appear).
4. M. Urabe, Convergence of numerical iterations in solutions of equations, J. Sci. Hiroshima Univ. Ser. A-19 Math., (1957), 479-489.
5. L. Collatz, Functional analysis and numerical mathematics, Academic Press, New York (1966), 218-220.

University of Windsor, Windsor, Ontario

