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ON APPROXIMATIONS TO SOLUTIONS OF NONLINEAR 
INTEGRAL EQUATIONS OF THE URYSOHN TYPE 

BY 

K. A. ZISCHKA 

1. Introduction. This note will derive a priori estimates of the errors due to 
replacing the given integral operator A by a similar operator A* of the same type 
when successive approximations are applied to the integral equation cp=Acp. 

The existence and uniqueness of solutions to this equation follow easily by 
applying a well known fixed point theorem in a Banach space to the above mapping 
[1, 2]. Moreover, sufficient conditions for the existence and uniqueness of a 
solution to Urysohn's equation are stated explicitly in a note by the author 
[3]. 

2. Formulation of the problem. We recall that Urysohn's integral equation is 
defined as 

(2.1) cp = Aq> where A is given by: 

(2.2) Acp := X f F(x9 y; <p(y)) dy+f(x). 
Jo 

Here G is a closed bounded set in En. The function F is assumed to be measurable 
for each value of cp(y) and for each x j e G . We also assume that 

Ï F(x,y:<p(y))dyeL*(G) 

for each <p e S, where S denotes a closed sphere of radius p>0 about 6 in L^G).^) 
Moreover we assume that F satisfies a generalized Lipschitz condition in G, 
namely: 

(2.3) |F(x, y; uJ-Ffr, y; u2)\ <. a(x> y) l^-u^ 

for any ul9 w2, with a(x9y) satisfying: 

(2.4) 0 < |M|2 : = f f a2(x, y) dx dy £ A2 

Jo Jo 
(where A is a positive constant). We also assume that A satisfies: 

(2.5) \X\ £ \\a\r1 

(') i.e. the space of real-valued, square integrable functions on T with norm: 

||*||,:=J« *•«)*. 
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and t h a t / e L2(G). We may then conclude [3] that the iteration 

(2.6) ç?n+1 := A<pn with n = 0, 1 , . . . ; ^ G S 

converges to the unique solution of (2.1), provided that /> satisfies: 

(2.7) \f+X (F(X, y; 6) dy < p(l-K) with K : = |A| ||a||. 

Unfortunately, due to computational difficulties, such as evaluation of the 
integrals, the method of successive approximations is not always suitable for cal­
culating approximations to a solution of (2.1) in applications. Therefore a some­
what different procedure for generating approximations to the solution is desired. 

The approach chosen in this note is the consideration of another integral 
equation of the same type, with a different integrand which is "similar" to that in 
(2.1). In short, we introduce a perturbed operator A* of similar structure to the 
operator A where A * is assumed to be much simpler to compute in order to generate 
approximations to the solution of (2.1). 

3. Results. The following theorem gives us the desired a priori estimates of the 
errors induced by replacing A by A* in (2.6). 

THEOREM. Let A be the operator of §2 under the hypotheses there assumed. Let 
F*(x, y, u) be another function similar to F(x, y, u). Suppose that for any <p e S we 
have: 

(3-D \F*(x, y; <p(y))-F(x, y; <p(y))\ < m(x, y) 

and for any u 

(3.2) \F*{x, y; u)-F*(x, y; 6)\ < a.{x, y) \u\ 

where a and m are nontrivial L2 functions onGxG. Furthermore suppose that we have 

(3.3) ||a|| < ||a||. 

Then the iteration 

(3.4) 9?*+1 := A*<p*9 n = 0, 1, . . . , where y* := cp0eS 

with 

(3.5) A*y : = X f F*(xy y; <p(y)) dy+f(x), 
Jo 

with cp e S, can be carried out indefinitely, and all ç>*, « = 0 , 1 remain within the 
sphere S of radius p and centre 6, provided that: 

(3.6) ||,4*0|| £ P(l-K). 

Then we have also: 

rm „ * *., ^ K „ *„ , 2 M l WVmeas(G) 
(3.7) llÇ'n-^ill < " — - \\<Po-<Pi\\ + — T ^ T -

1 — K J — K 
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and 

rxn il *„ ^ 1MI W Vmeas(G) 
(3.8) Il y » - ? nil < : — 

1 — K 
and 

(3.9) l ip-Pi II ̂  :—~ IIPo-Pill+ :— 
1 — iv 1 — K 

The changes \\ç>* — 9>*-fill cire strictly decreasing, at least as long as 

/ a i m «I * *ll - 2 I H I W V m e a S ( G ) 
(3.10) llçWi-9>»ll > 1 — " 

1 — K 
Proof, (i) First let us estimate \\A<p-A*<p\\9 vcpeS. From (2.2) and (3.5) it 

follows that: 

\A<p-A*V\% < \X\* f \F(x, y; <p(y))-F*(x, y; <p(y))\ dy \ 
I Jo 

using (3.1) and the Schwarz inequality we find 

(3.11) \\A(p-A*(p\\ < |A| H I Vmeas(G) = : e 

We may assume that £ is a small positive number. 
(ii) Let us find an estimate for \\A*q>—A*0\\. Again using (3.5), (3.2), the 

Schwarz inequality, and (3.3), we find that for any <p e S: 

M*ç>-^*0II < W Ml M l < KP, 

hence |M*ç?|| < \\A*6\\ +Kp, and because of (3.6) we have 

(3.12) \\A*<p\\£p, vyeS. 

Therefore, A* maps the sphere S with radius p and centre 6 into itself and the 
iterations (3.4) are defined for «=0 , 1, . . . and all the <p* remain within the sphere S. 

(iii) Next, let us estimate \\q> — q>* ||. We have ||ç? — ç>*|| < \\(p — <px\\ + \\q>i—q>*\\. 
Using the inequality [3]: 

Kn 

Wv-yJ < : — - ll^i-^oL 

1 — K 

and the relations (2.6) and (3.4) we find that: 

\\<P~-<PÏ\\ < IIÇ'x-Ç'oll+c 
1 — K. 

From 

«Pi-Poll < llPi-Pil + lltf-Poll = K - Ç j + MPo-^oll 
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and (3.11) we get: H^—(po\\<\\<p*—<Po\\+£, a n d hence 

(3.13) By-çfll < - ^ - \\<p*-cp0 ll+T^Z 
1 — K 1 —A 

which together with (3.11) proves (3.9). 

(iv) Now, we consider \\q>n—ç>*||. Since 

we have 

llPn-rôll < * ll9V-l~<P*-lll+*> H = 1, 2, . . . 

By induction we find that : 

(3.14) ll^n-^nll < YZ]c = iZjf 
and this proves (3.8). 

(v) Let us now find an estimate for ||ç>* —?>*||. From ||ç>* — q>*\\ <||<p* — <pn\\ + 
ll^n-y*Il w e find w i t h the help of (3.14) that: 

(3.15) il^-^ll < 7̂ +11̂ -̂ *11. 
1 — K. 

Using the fact that A is a contraction mapping [3], it can easily be shown that: 

llç>„-9>ill <, J—^119'1-9'oll-

Hence (3.13) remains valid if one replaces <p by <p„, yielding: 

1 — K 1 — K 

From this and (3.15) we obtain (3.7). 
(vi) Finally, we estimate ||ç>*+1 — ç>*||. We have: 

\\<P*n-<P*n+A ^ \\A*yU-A<pï^ + \\A<pU-A<p*n\\ + \\A<p*n-A*cp*J 

Hence ||ç>* —<pt+i\\<2e+K\\<pt-i — <pt\\ and therefore: 

l l r f -x-^ l l - l l^-^H-i l l > (i-K){\\<pU-<p*J-~^. 

Because of (3.10) we conclude that: \\(pt-i'-(pt\\>\\(pt—(pt+i\\ which completes 
the proof of the theorem. 

REMARK. The main part of this proof is similar to the proof of Urabe's theorem 
[4], [5]. 
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