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Abstract

An algorithm is given for transforming a polynomial with n coeflScients to a
continued fraction accurate to the same order. Only n numbers are held in
storage at each stage. An extension to produce an inverse polynomial, also
accurate to order n, is described.

This paper describes an algorithm for forming a continued fraction from a power
series, and a consequent method of inverting the series. There are existing pro-
cedures for performing such tasks: continued fraction coefficients are usually
found by the Viskovatoff algorithm [3] or the quotient-difference algorithm [1 ],
while inversion can be performed by solving the sequence of equations formed
when the series and its inverse are multiplied and the higher order coefficients set
equal to zero [4].

In all these methods, to deal with n coefficients requires the retention in storage
of about 2n numbers. The procedures described here need only storage space for n
numbers. This is an important gain where the algorithms are used on small calcu-
lators. The arithmetic required for continued fraction formation is similar to that
of alternative methods, although inversion requires about twice as many opera-
tions.

DEFINITIONS. Let W be a contour in the complex plane terminating at x = 0.
A sequence {rt; i = 0,...,«— 1} containing no zeroes is said to be a continued

fraction expansion {c.f.e.) of order n of a function f{x) if the sequence of remainder
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[2] Series operations using minimum storage 85

functions {Rfc), i = 0,...,«} defined by

*o(*) =/(*),

*i+i(*) = (></*»(*)-1)/*, / = 0 , . . . , B - 1 , (1)

has the property that each Rfa) is bounded as x->0 along c€.

This property is ensured if R^x) is bounded, since then each Rfe)->rt as x->0
along c€, i = 0, . . . , n - l .

The function/(x) can, by applying (1), be written in the more familiar form

l+XTy ...+xrx

As a trivial but useful extension, the empty sequence is defined as a c.f.e. of order
zero for/(x), provided f(x) is bounded as x->0 along # .

The basic step

Suppose/(JC) has the «th-order c.f.e. {rj defined above. Then we find for

g(x) = so+uoxf(x) so^O, (2)
l+vox+w0xf(x)

a c.f.e. of order n +1, by sequential construction of the remainder functions. Let
S0(x) = g(x), and suppose that the /th remainder St has been found and expressed
in the form

Si = si+uixRi , where ^5^0 and 0^/<«. (3)
1+ViX+WtxRi

Then
Si***

= Sj (4)
l+xSi+1

where
(5)

Since /?< is bounded as x->0 along ^", so is Si+1, and ^ can be defined to be the
ith coefficient of a c.f.e. for g(jc).
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86 A. N. Stokes [3]

If /< n then (1) can be used to express /^ in terms of Ri+1, x and ri( giving

+ 1 + 1 i + 1 (6)
where

(7a)

(7b)

(7c)

% = 1- (7d)

We now proceed by induction from i = 0. Now So is in the standard form (3),
and is bounded as x->0 along <€, so s0 is the first coefficient of the c.f.e., and Sx as
defined by (5) is the next remainder. If n > 0, Sx is converted to the form (6), with
coefficients given by (7) and the process repeated. Termination occurs either when
(7a) requires division by a zero coefficient s{, or when Sn+1 has been defined by (5).
In the latter case, it is easy to verify that Sn+1 is bounded as x->0 along e€.

An algorithm for converting a series to a continued fraction

Suppose the function/(x) has a series expansion

fix) =po+Plx+... +pn_1 x
n~l+xn PJx), (8)

where Pn(x) is bounded as x-+0 along ft, and it is required to find a c.f.e. of order
n for/(.*).

In the evaluation affix) by Horner's method, a sequence Qk(x) is defined by

QJx) = PJx),

Qn-M=Pn-k+xQn-k+1(x), k = l,2,-,n. (9)
Then

Suppose that the function Qn-k+i n a s a c-f-e- {Qi.n-k+1 '> i = 0,...,k—2}. Then the
procedure of the previous section can be used to construct a c.f.e. {<&,„_£;
/ = 0, ...,k— 1} for Qn-.k, since (9) is a special case of (3). But, trivially, Qn has a
c.f.e. of order zero. Then a c.f.e. of order 1 is found for £?n-i>

 a nd s o on> until a
c.f.e. of order n has been found for Qo =f(x).

At any stage this process could be terminated by the occurrence of a zero
coefficient. More will be said about this later.
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The complete algorithm can be set out as follows:
I. Set k = n-2, q^^ = pn_x.

II. Set qok =pk,u0=l,v0 = 0, w0 = 0.
III. For j = 0,1 n—k— 1, compute the terms

(1Oa)

(10b)

vi+1, (10c)

(10d)

IV. If k > 0, decrease k by 1 and return to step II. If k = 0, terminate.
Note that v2i = u2i+1 = 0 (/ = 0,1,2,...). Consequently the operations of (10a)

are performed only if / is even. Also, since wt is either 0 or 1, no multiplication is
performed in (10c). In total the algorithm requires n2/4 multiplications if n is even,
or (n2—1)/4 if n is odd, and the same number of divisions.

It is necessary to store each coefficient qi>k+x only until qi+ltk is computed by
(10c). At this stage the following numbers are stored:

This makes a total of n numbers. In addition either vi+1, if i is even, or «i+1, if
i is odd, will be stored.

Treatment of zero and near-zero coefficients

The algorithm cannot proceed if any coefficient qik appearing in the denominator
of (10a) is zero, when / is even. Numerical difficulties may arise if the denominator
is small. In most cases such problems can be avoided by first multiplying the series
(8) by 1 + ex, for suitable e. The algorithm is employed as far as finding the c.f.e. of
Qi(x), then in the final stage the initial condition v0 = 0 is replaced by i;0 = e. This
effects a division by (1 +ex).

Certain patterns of zeroes cannot be fully eliminated by this procedure. For
example, if three consecutive coefficients pt were zero, one zero would remain. To
remove this, the polynomial can be multiplied by another factor l + stx which is
then removed by setting v0 = e1 when the c.f.e. of 2i(*) is formed.

There are more direct ways of dealing with zeroes as they are encountered, but
they are complicated to program, and do not deal with near-zeroes.
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Inversion of series

The algorithm described can be used in reverse to convert a c.f.e. into a series
expansion, again requiring storage of n numbers. So if a series is converted to a
c.f.e., which is then inverted (which is trivial) and the inverted expression expanded
as a series, the reciprocal series of f(x) is obtained. The process uses twice the
arithmetic but half the memory required for the usual algorithm described, for
example, in [4].

Numerical properties and comparisons with other algorithms

Compared with the usual methods, the quotient-difference (q-d) algorithm and
the Viskovatoff algorithm, the present algorithm forms a c.f.e. with about the
same amount of arithmetic, using about half the memory. It is similar to the q-d
algorithm, and could be derived from it; the derivation given here is direct, and
gives an interpretation to the coefficients allowing zero values to be treated.
These are a difficult problem in the q-d algorithm.

All the algorithms mentioned tend to be unstable when the ratios of series
coefficients form a regular progression. This occurs because the continued fraction
coefficients involve higher-order differences of the ratios. The q-d algorithm can
be stabilized by forming these differences accurately in advance, and operating on
them in such a way that accuracy is not lost [5]; other algorithms do not seem
amenable to this treatment.

Henrici [2] has developed an ingenious algorithm for obtaining continued
fraction coefficients using even less memory than the algorithm given here. The
saving in memory is transferred to the operator, who must insert the required series
coefficients before the calculation of each continued fraction coefficient. Much
more numerical work is required.

An implementation on a programmable calculator

The following program implements the algorithm on a Texas Instruments SR 52
programmable calculator, which has 20 memory locations. To convert a poly-
nomial P(x) = po+p1x+...pNxN(N^l9) press A and enter in sequence the ratios
PN/PN-I>->PI/PO' pressing RUN after each entry. All coefficients must be non-
zero. Denoting the coefficients of the c.f.e. of P{x) by ̂ (7 = 0,..., N), then g0 = p0,
and for z = 1,..., N, each gt appears in memory 19—/. If N = 19, then qN appears
in the display register.
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The program

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

is:

IND
EXC
0
0
_
SUB
B
=
+
-=-
IND
EXC
0
0
-v-

SUB
B
=

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

—
RSET
LBL
B
1
INV
SUM
0
0
IND
RCL
0
0
IF ZERO
E
RTN
LBL

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

References

A
CMS
LBL
E
1
9
STO
0
0
CLR
LBL
D
IND
EXC
0
0
IF ZERO
C

54
55
56
57
58
59
60
61
62
63
64
65
66
67

DSZ
D
HLT
LBL
C
1
9
STO
0
0
HLT
+
—
RSET
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